
Cognitive agents with non-monotonic reasoning

Peter Novák
peter.novak@tu-clausthal.de
Department of Computer Science
Clausthal University of Technology

Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany

ABSTRACT
This extended abstract provides an overview of my research
towards a dissertation thesis in the context of programming
cognitive agents with non-monotonic reasoning capabilities.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages; I.2.5 [Artificial In-
telligence]: Programming Languages and Software; I.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent Agents

General Terms
Languages, Theory, Design, Experimentation

Keywords
hybrid agent architectures; agent programming languages;
reactive vs. deliberative; virtual agents; open-source soft-
ware tools; Jazzyk; Jazzbot

1. MOTIVATION
An important aspect of research in programming intelli-

gent agent systems is dealing with highly dynamic and un-
structured environments. Embodied agents often have to in-
teract with a world under incomplete information and uncer-
tainty, which can even be intrinsic to the nature of the envi-
ronment in question. Several approaches to formally model
and process information under the open world assumption
were proposed in the area of non-monotonic reasoning. In
my thesis I focus on applications of Answer Set Program-
ming (ASP) [1] in the domain of cognitive agents, i.e. such
with explicit representation of their mental attitudes such
as beliefs, goals, obligations and alike. I especially focus on
implementation of agent’s belief base as an ASP knowledge
base (KB).

An agent using an ASP module in its belief base and at
the same time embodied in an environment, requires a pro-
gramming framework which 1) allows an easy integration
of heterogeneous knowledge bases treated on a par, i.e. no

Cite as: Cognitive agents with non-monotonic reasoning, Peter Novák,
Proc. of 7th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons
(eds.), May, 12-16., 2008, Estoril, Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

knowledge representation (KR) approach is preferred over
another, and 2) provides a flexible programming language
for encoding of agent’s behaviours. Even though the land-
scape of agent programming approaches is thriving (see e.g.
[2]), none of them provides enough flexibility to allow an
easy integration of heterogeneous knowledge representation
techniques.

First, I motivate and develop a theoretical framework al-
lowing a straightforward integration of heterogeneous knowl-
edge bases into an agent system. Subsequently, I provide its
implementation in a form of an agent programming language
with an associated interpreter, and finally I present two case
study applications demonstrating a synergistic effect of us-
ing an ASP belief base, together with other types of KBs in
a single agent performing non-trivial behaviour.

2. BEHAVIOURAL STATE MACHINES
The theoretical framework of Behavioural State Machines

(BSM ) [9] is the current evolution of Modular BDI Architec-
ture [11] and our subsequent studies on modularity of agent
programming languages [12]. BSM draw a strict distinc-
tion between the knowledge representational and behavioural
layer of an agent program. An agent consists of a set of KR
modules, each providing a set of query and update inter-
face routines, and an agent program encoding the agent’s
behaviours in terms of nested reactive rules. The basic rules
consist of two parts: a query and an update. Queries are
expressions accessing the underlying modules via their pro-
vided interface routines and if evaluated to true, the execu-
tion of the right hand update part is enabled. A primitive
update is again an invocation of a KR module interface rou-
tine, modifying the underlying partial knowledge base of the
agent. Updates and rules form basic mental state transform-
ers (mst’ s), higher level syntactic constructs allowing source
code modularization of an agent program, which in turn is a
mst as well. The main focus of the BSM framework is thus
the highest level of control of an agent: its behaviours.

The underlying semantic abstraction is that of a transi-
tion system over a set of agent’s mental states and a set of
transitions between them. An agent’s mental state is a col-
lection of partial states of its KBs represented by the agent’s
KR modules. As the interaction with the environment is fa-
cilitated by specialized KR modules as well, the state of the
environment is included in the agent’s mental state. Transi-
tions are induced by updates of components of mental states.
An agent system semantics is then a set of all enabled paths
within the transition system, which the agent can traverse
during its lifetime. Alternatively, the computational model



of BSM provides a functional view on an agent program,
specifying a set of enabled transitions/updates, the agent
can execute in a situation it happens to be in.

3. CASE STUDIES
To allow implementation of software agents based on the

Behavioural State Machines framework, I developed Jazzyk
[8, 10], a programming language closely implementing the
BSM framework. Subsequently I implemented an inter-
preter for this language1.

Following the spirit of [6], where Laird and van Lent argue
that approaches for programming intelligent agents should
be tested in realistic and sophisticated environments of mod-
ern computer games, we work on two case studies demon-
strating applicability of BSM : Jazzbot virtual agent, and an
agent team for the Multi-Agent Programming Contest sce-
nario.

We designed and implemented Jazzbot [13], a virtual agent
embodied in a simulated 3D environment of a first-person
shooter computer game Nexuiz 2. Jazzbot provides a test-bed
for investigation of applications of non-monotonic reasoning
techniques, ASP in particular, on a realistic, yet affordable
agent system.

Jazzbot is a goal-driven agent. It features a belief base,
goal base, and an interface to its virtual body in a Nexuiz
environment. While the goal base consists of a single KB re-
alized as an ASP logic program, the belief base is composed
of two modules: ASP logic programming one and a Ruby3

module. Ruby is an interpreted object oriented program-
ming language. Finally, the interface to the environment
is facilitated by the Nexuiz game client module connected
to a remote Nexuiz server. Jazzbot ’s behaviours are imple-
mented as a Jazzyk program. It can fulfill e.g. search and
deliver tasks in the simulated environment while it avoids
obstacles and walls.

Multi-Agent Programming Contest4 [3, 4, 5] provides a
well established test-bed for testing approaches to program-
ming multi-agent systems. Implementation of a team of
agents for this scenario in Jazzyk, with a technological basis
similar to that of Jazzbot, will allow me to also touch on
coordination and cooperation issues in MAS.

4. OPEN ISSUES
My on-going and future work follows two principal direc-

tions. First, I focus on development of techniques for pro-
gramming agents based on the template of Jazzbot, so that
I can better understand a methodology for programming
such systems. The aim is to design at least a fragmentary
formal higher level specification language based on modal
logic, which allows a straightforward translation (compila-
tion) into raw Jazzyk programs.

The second line of research I am following stems from
the observation, that the state-of-the-art techniques (for an
overview see e.g. [7]) for knowledge base updating w.r.t.
semantics of ASP require storing a complete history of logic
program updates processed during agent’s lifetime. In order
to implement a non-trivial LP update mechanism, first the

1The first version of Jazzyk interpreter was published under
GNU GPL license at http://jazzyk.sourceforge.net/.
2http://www.alientrap.org/nexuiz
3http://www.ruby-lang.org/
4http://cig.in.tu-clausthal.de/AgentContest2007/

advanced approaches like e.g. Dynamic Logic Programming
[7] have to be adapted, and possibly simplified.

5. REFERENCES
[1] C. Baral. Knowledge Representation, Reasoning and

Declarative Problem Solving. Cambridge University
Press, 2003.

[2] Rafael H. Bordini, Lars Braubach, Mehdi Dastani,
Amal El Fallah Seghrouchni, Jorge J. Gomez-Sanz,
João Leite, Gregory O’Hare, Alexander Pokahr, and
Alessandro Ricci. A survey of programming languages
and platforms for multi-agent systems. Informatica,
30:33–44, 2006.

[3] Mehdi Dastani, Jürgen Dix, and Peter Novák. The
first contest on multi-agent systems based on
computational logic. In Francesca Toni and Paolo
Torroni, editors, CLIMA VI, volume 3900 of Lecture
Notes in Computer Science, pages 373–384. Springer,
2005.

[4] Mehdi Dastani, Jürgen Dix, and Peter Novák. The
second contest on multi-agent systems based on
computational logic. In Katsumi Inoue, Ken Satoh,
and Francesca Toni, editors, CLIMA VII, volume 4371
of Lecture Notes in Computer Science, pages 266–283.
Springer, 2006.

[5] Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent
Contest Competition - 3rd edition. In Proceedings of
Fifth international Workshop on Programming
Multi-Agent Systems, ProMAS’07, volume 4908 of
LNAI. Springer Verlag, 2007.

[6] John E. Laird and Michael van Lent. Human-level
AI’s killer application: Interactive computer games.
AI Magazine, 22(2):15–26, 2001.

[7] João Alexandre Leite. Evolving Knowledge Bases,
volume 81 of Frontiers of Artificial Intelligence and
Applications. IOS Press, 2003.

[8] Peter Novák. An open agent architecture:
Fundamentals (revised version). Technical Report
IfI-07-10, Department of Informatics, Clausthal
University of Technology, November 2007.

[9] Peter Novák. Behavioural State Machines:
programming modular agents. In AAAI 2008 Spring
Symposium: Architectures for Intelligent
Theory-Based Agents, AITA’08, March 26-28 2008.

[10] Peter Novák. Jazzyk: A programming language for
hybrid agents with heterogeneous knowledge
representations. Sixth International Workshop on
Programming Multi-Agent Systems, 2008.

[11] Peter Novák and Jürgen Dix. Modular BDI
architecture. In Hideyuki Nakashima, Michael P.
Wellman, Gerhard Weiss, and Peter Stone, editors,
AAMAS, pages 1009–1015. ACM, 2006.

[12] Peter Novák and Jürgen Dix. Adding structure to
agent programming languages. In Mehdi Dastani,
Amal El Fallah-Seghrouchni, Alessandro Ricci, and
Michael Winikoff, editors, Proceedings of Fifth
international Workshop on Programming Multi-Agent
Systems, ProMAS’07, volume 4908 of LNAI. Springer
Verlag, 2007.

[13] Peter Novák, David Mainzer, Michael Köster, and
Bernd Fuhrmann. Jazzbot: A non-monotonically
reasoning bot in a simulated 3D environment. 2008.


