Mission planning

Logic and game theory in multi-robot applications

Peter Novák

Agent Technology Center Czech Technical University in Prague

March 10th 2011

Peter Novák · Agent Technology Center Czech Technical University in Prague

Teamwork is a cooperative effort by the members of a team to achieve a common goal, in which individual team members contribute different skills, knowledge and interests to the unity and efficiency of the group.

Multi-agent planning

MASPlan: $\Pi = (\mathcal{L}, \mathcal{K}_{dom}, \{(\mathcal{C}, \phi)\}_{i=1}^{n}, \mathcal{S}_{o}, \gamma)$

- \mathcal{L} : a language of domain and control knowledge
- *K_{dom}*: domain and control knowledge about synchronised actions
- $\{(C, \phi)\}$: sets of capabilities of agents A_1, \ldots, A_n annotated by formulae from \mathcal{L}
 - *S*₀: the initial state
 - γ : a goal

Temporally extended goals and capabilities

starting assumptions

$\phi \in \mathcal{L}_{\mathsf{LTL}}$: temporally extended annotations of the agents' capabilities

 $\gamma \in \mathcal{L}_{?\mathsf{TL}}$: temporally extended goal (mission specification)

Is this reasonable?

- 1 modularity of behaviours ~>>> different approaches are appropriate for solving different problems
- 2 mission ~~ constraints on the plan, i.e., what should/shouldn't happen *during* execution of the mission

Bank robbers example revisited

Mission:

 $\begin{array}{l} [?] \Diamond checkedin(money) \land \\ \Box safe_team \land \\ \Diamond call_boss \end{array}$

Capabilities

(DCTL*/Process Logic)

Modular architecture sketch

Urban tactical missions captive extraction/rescue operations

- exploration
- 2 advance to the target location
- 3 extraction

Problems and challenges

Adversarial planning:

- smart targets modelling
 - pursuit-evasion (large map)
- patrolling
 - static targets (houses)mobile targets (convoys)

Lower level planning problems:

- coordinated crossing intersections
- dealing with unexpected events
 - re-planning, plan repair, reactive planning, agent programming

Undersea domain Anti-submarine warfare/port guarding

(courtesy of NATO Undersea Research Centre)

communication extremely constrained

- high autonomy
- decentralised computation/planning
- optimise for low communication complexity

Timeliness and prior art

- hardware ~> routinely deployed & relatively cheap
- tele-operation prevalent ~> 1 asset vs. 1 operator >> high costs!

N assets vs. 1 operator ~> autonomy & teamwork

Prior work:

- planning as model checking
- planning with temporally extended goals/control knowledge (TLPlan)

High-level strategic planning

Conclusions

- 1 What can logic do for applications?
- 2 What can game-theory do for applications?
- e.g., planning, adversarial planning, team-level reasoning, etc.

multi-robot applications human in the loop!

systems should be understandable, believable, ... of help
social choice, communication/argumentation, etc.