
Project no. W911NF-08-1-0521 – final report as of 30th September 2010

Intelligent Software Agent Control of Combined UAV
Operations for Tactical Missions
Final report

Michal Pěchouček1, Peter Novák, Lukáš Chrpa, Jiří Vokřínek and
Antonín Komenda
Agent Technology Center, Department of Cybernetics
FEE Czech Technical University in Prague
http://agents.felk.cvut.cz

This document provides a technical report on the work performed in the context
of the Project W911NF-08-1-0521. The project researches and develops agent-
based techniques for the control of cooperative autonomous aircrafts performing
information collection operations in support of tactical missions.

1 Principal investigator

Contents

1 Overview . 7
1.1 Motivation and context . 7
1.2 Project description . 9
1.3 Achievements & innovative claims . 11
1.4 Document structure . 14

2 Modelling and integration of Vertical Take-off and
Landing Assets . 15
2.1 Summary of the workpackage . 15
2.2 Technology description . 16

2.2.1 Trajectory planning . 16
2.2.2 Model of helicopter dynamics . 21
2.2.3 Trajectory visualization . 28

2.3 Evaluation and experiments . 29

3 Planning in Dynamic and Resource Constrained
Environments . 31
3.1 Summary of the workpackage . 31
3.2 Technology description . 33

3.2.1 Multi-Agent Solver . 33
3.2.2 Abstract Algorithm . 35
3.2.3 Cooperative Surveillance and Tracking 39
3.2.4 Tasking Extensions . 40
3.2.5 Task Injection . 41
3.2.6 Task Groups . 42

3.3 Evaluation and experiments . 42
3.3.1 Demonstration scenarios . 43
3.3.2 Scenario A: Homogeneous teams 44
3.3.3 Scenario B: Single team with multiple capabilities 46
3.3.4 Scenario C: Heterogeneous team with handover 48
3.3.5 Scenario D: Limited resources tracking 49

3

4 Integrated coordination for mixed information collection
activities . 55
4.1 Summary of the workpackage . 55
4.2 Technology description . 58

4.2.1 Coordinated multi-UAV exploration 58
4.2.2 Integrated scenario . 60
4.2.3 Mission specification . 66
4.2.4 Reactive planning as a simulated mission execution

framework . 68
4.2.5 Mission specification execution . 74

4.3 Evaluation and experiments . 77
4.3.1 Multi-UAV area exploration . 77

4.4 Towards mission planning and multi-agent plan repair 81
4.4.1 Multi-agent mission planing: brief survey of the state

of the art . 81
4.4.2 Multi-agent re-planning and plan repair 82

5 Discussion and conclusion . 87
5.1 Modelling and integration of Vertical Take-off and Landing

Assets . 87
5.2 Planning in Dynamic and Resource Constrained Environments 87
5.3 Integrated coordination for mixed information collection

activities . 88

References . 89

A Demonstators . 91

B Technology overview . 95

4

Executive summary

This document provides a final technical report on the work performed in the
context of the research project W911NF-08-1-0521 Intelligent Software Agent
Control of Combined UAV Operations for Tactical Missions (Tactical-
AgentFly). The project aims at investigation of problems and research
challenges in the context of agent-based control of teams of cooperative au-
tonomous aircrafts in information-collection missions. The main research foci
of the project include i) modelling and integration of Vertical Take-off and
Landing assets into the AgentFly framework, ii) investigation of prob-
lems of planning in dynamic and resource-constrained environments, and iii)
prototyping and study of the issues in integrated coordination for mixed
information-collection activities in tactical mission scenarios.

The main achievements of the project and innovations include

a) development and implementation of the spatio-temporal trajectory plan-
ning algorithms for Vertical Take-off and Landing assets and their inte-
gration into the AgentFly technological infrastructure,

b) development, implementation and evaluation of multi-agent-task-allocation-
based solver for distributed vehicle routing problem and its utilization for
target tracking and area exploration tasks, and

c) development and implementation of configurable technology for specifica-
tion and simulated execution of missions and mission-centric information
collection tasks.

In this report we provide a detailed account of the work performed in the
context of the project, provide an extensive discussion of the technologies we
proposed, designed and developed, or adapted for the purposes of the project.
Where appropriate, we also provide a thorough evaluation of the proposed
techniques in an example of a simulated ISTAR mission.

5

Chapter 1
Overview

This chapter provides an overview of the the final report for the work per-
formed in the context of the project W911NF-08-1-0521. After an introduc-
tion into the broader context of the project and related research activities
of ATG, we summarize the main objectives of the project and subsequently
introduce and discuss the main achievements of the project team together
with the main results of the project. We conclude this overview with a brief
recapitulation of the project execution from a project-managerial view and
finally outline the structure of the remainder of this report.

1.1 Motivation and context

One of the major research tracks of the Agent Technology Center (ATG)
in the last years is development of novel techniques and approaches for dis-
tributed multi-agent control of Unmanned Aerial Vehicles of various types.
In the past, the achievements of the center in this context included develop-
ment of the AgentFly technology suite, a large-scale simulation framework
for development and evaluation of automatic mechanisms for next-generation
air traffic control. The AgentFly technology provides an infrastructure for a
number of other research projects within ATG, including the here reported
Tactical AgentFly technology.

On the substrate of the AgentFly suite of technologies, our group was
in the past involved in several projects aiming at investigation of information
collection techniques for team of coordinated UAVs. Besides here reported
W911NF-08-1-0521 project, these include:

• Tactical AgentFly phase I (W911NF-08-1-0521_1312AM0), aiming
at investigation of coordinated area surveillance and basic target tracking
techniques supporting ground ISTAR missions,

7

• U-Scout project (BAA 8020902.A), focusing on multi-agent planning and
task-allocation in missions involving a number of Unmanned Ground Ve-
hicles and realistic simulation of physical dynamics thereof,

• Tactical AgentScout (W15P7T-05-R-P209), an on-going project aim-
ing integration of aerial information collection ISTAR-type missions with
different types of ground assets. This project is seen by the ATG, as well as
the funding partner of the here reported Tactical AgentFly project as
a related continuation project. Later in this report we discuss the relation-
ships between the two, as well as the interactions of their corresponding
workpackages and consequences on the here reported project.

We proposed the here reported project as a continuation of our long-term
line of research towards deep understanding of information-collection tasks
performed by a team of coordinated unmanned vehicles.

Finally, ATG currently performs several on-going research activities aim-
ing at transfer of the research results resulting from the above mentioned
projects, including the one reported upon here, and their related technolo-
gies from mid- and large-scale simulations in the AgentFly framework to
real hardware. In particular, there is an on-going project in parts supported
by the Czech ministry of defence aiming at integration real UAV (Procerus)
into the AgentFly-based simulation and thus produce a mixed-simulation
involving both simulated as well as real aircrafts. The objective is to de-
velop a test-bed for multi-UAV air trajectory deconfliction by negotiation.
Another, planned project will aim at transfer of the spatio-temporal planner
for VTOLs (partly reported upon later in this document) to real quad-rotor
UAV provided by UAS Technologies, Sweden, supported in part by the SAAB
funded LinkLab - Center for Future Aviation Systems.

Fig. 1.1 The depiction of the Procerus UAV kit and the LinkQuad quad-rotor VTOL
employed in the on-going research projects of the Agent Technology Center.

8

1.2 Project description

The research project W911NF-08-1-0521 Intelligent Software Agent Control
of Combined UAV Operations for Tactical Missions (Tactical-AgentFly)
aims at exploring the problems of agent-based control of teams of cooper-
ative autonomous aircrafts, such as fixed wing UAVs and other rotorcraft,
in information-collection operations and missions. In particular the research
addresses the following main topics:

1. development of AgentFly model of Vertical Take-off and Landing type
of vehicle,

2. development of multi-agent coordination algorithms for task allocation in
resource-constrained and dynamic environments, with the specific focus
on information collection tasks of ISTAR-type missions, and

3. investigation of challenges of integrated coordination for mixed informa-
tion collection activities.

In the following, we provide a brief summary of the particular project objec-
tives listed per workpackage.

WP1: Modelling Vertical Take-off and Landing Assets

The VTOL capability of rotor-type UAVs provides more flexibility and ef-
ficiency during information collection in urban unknown or partially known
environments. This capability is particularly well suited for use where the
ground surveillance site is remote, hazardous, and/or inaccessible by other
means, while it is very complex to monitor from a high altitude. Rotor- type
of UAVs are also better suited for planning coordinated flight activity of sev-
eral UAVs of such a type in urban areas in comparison to coordinated fight
of fixed-wing UAVs.

Firstly, the Tactical AgentFly project aims at development and subse-
quent integration of VTOL type of assets into the existing AgentFly plat-
form. The second major objective of the project is to propose and develop
suitable algorithms for trajectory planning of VTOL assets and integrate
them with the VTOL model in AgentFly platform.

WP2: Planning in Dynamic and Resource Constrained
Environment

One of the major challenges in autonomous control of teams of multiple UAVs
performing information collection tasks is the adaptation to a dynamic envi-
ronment on the ground. In particular, such a dynamics includes movements
of the ground entities, be it adversarial targets, third-party entities, such as
civilians, and most importantly interactions among the tasks allocated and

9

performed by other members of the team of UAVs. The effects of this en-
vironment dynamics are heavily amplified in scenarios involving constrained
resources, in particular involving e.g., tracking of relatively high number of
targets by a low number of aerial assets.

The main objective of this workpackage was development of techniques
aimed at improving the performance of information collection by a team of
UAVs. More concretely, this workpackage focuses on investigation of, what
we coined M × N tracking scenarios, i.e., performing tracking tasks of M
targets by a team of N UAVs, where M > N , while the speed of the UAVs is
obviously greater than the speed of moving ground targets. One of the aims
was also to investigate the methods of maximizing persistence of tracking of
the objects and identifying how many assets are needed in different types of
tracking scenarios.

WP3: Integrated coordination for mixed information collection
activities

This workpackage aimed at studying mutual interactions between simultane-
ously performed heterogeneous information collection tasks. The workpackage
breaks down to the following three subtopics.

Support for additional classes of information collection tasks. We
proposed to extend the range of considered information collection task types
with additional classes, in particular exploration and search.

Integrated coordination for mixed information collection. The
aim of this subtopic was to study the theoretical interactions between
mixed/heterogeneous information collection tasks performed simultaneously
at the same time. In particular, the idea was to investigate the problems aris-
ing from automated techniques facilitating transparent switching between
different information collection tasks, such as switch from surveillance to tar-
get tracking and back, alternatively a seamless hand-over of a tracking task
from one UAV to another, depending on the local context and aiming and
improving the overall efficiency of the team-performed set of information col-
lection tasks in an operations theatre. In the project, we wanted to explore
the possibilities of taking the interdependencies between various tasks into ac-
count explicitly and implementation of integrated coordination mechanisms
which can produce (near)-optimum allocations for the overall mixed infor-
mation collection task rather than for its individual constituent components
only (as done by current methods).

Mission-centric/oriented information collection. The last, rather
ambitious and speculative, topic of the workpackage WP3 was the objective
to further extend the integrated coordination for mixed information collec-
tion so that the team of UAVs respects the plan of the ground mission it
provides support to, takes a mission plan as an input and uses it for plan-
ning and coordinating information collection so that the information needs

10

of the mission are optimally covered. The activity aimed at research and
possibly prototyping efforts towards considering temporal development and
dependencies between the individual information collection tasks as the mis-
sion progresses. Explicit consideration and exploitation of the mission plan
should enable more efficient allocation of the surveillance resources.

WP4: Testing, demonstration and deliverables

To enable thorough testing and evaluation of the techniques and technological
prototypes developed in the context of this project, we proposed to perform
extensive set of experiments, implement and finally deliver the corresponding
technology demonstrators. Besides the incremental progress and final reports
of the project, the source code of all the implemented software components
and demonstration videos should become separate deliverables of the project.

1.3 Achievements & innovative claims

In the following, we highlight the main results of the individual workpackages.

WP1: Modelling and integration of Vertical Take-off and Landing
Assets

Theoretical contributions:

1. we proposed spatio-temporal trajectory planning algorithm specifically tai-
lored for use by VTOL type assets. The planner takes as an input a set
of waypoints the aircraft should fly through, together with vectors of the
flight in these waypoints and produces a 3D trajectory respecting the phys-
ical constraints of the aircraft e.g., w.r.t. its speed and turning radius in
different speeds. The planning algorithm facilitates a significantly more
efficient flight than similar trajectory planning algorithms for fixed-wing
aircrafts.

Technological prototypes:

1. we implemented the planning algorithm for VTOL assets,
2. the planning algorithm was further extended with the model of VTOL

physical dynamics what led to further improvement of the planner, and
finally

3. we integrated the above mentioned modules into the AgentFly platform
what allows us to implement simulations involving heterogeneous types of
UAVs in integrated mission scenarios.

11

Evaluation:

1. we evaluated the performance of the implemented planner in various sce-
narios, in particular aiming at evaluation of the performance in scenarios
involving several no-flight zones.

WP2: Planning in Dynamic and Resource Constrained
Environments

Theoretical contributions:

1. we devised and designed a general-purpose multi-agent problem solving
architecture specifically aimed at solving multi-agent task allocation and
distributed vehicle routing problems by iterated negotiation employing
Contract-Net protocol,

2. we formulated various information collection tasks, such as surveillance,
tracking and exploration as task allocation problem instances and devised
a method for solving of these using the above described general purpose
multi-agent problem solver, and finally

3. we formulate the problem of tracking multiple mobile targets as a dis-
tributed vehicle routing problem (DVRP) within the above mentioned
general-purpose multi-agent solver (involves a method for sub-optimal
solving instances of the travelling salesman problem).

Technological prototypes:

1. we implemented the proposed multi-agent solver (MAS solver) and inte-
grated it into the AgentFly platform,

2. we implemented the above formulated information collection tasks as prob-
lem instances for the MAS solver, and finally

3. we implemented and evaluated performance of various techniques for
multi-UAV tracking of multiple mobile targets and compared them with
the techniques based on the DVRP method described above. In particular,
for comparison, we implemented the following techniques for tracking of
multiple mobile targets:

a. greedy technique based on an opportunistic selection of aircraft direction
towards the closest region with high uncertainty about target position,

b. a technique based on the randomized traversal of last known positions
of targets, and finally

c. a technique based on iterative solving of multi-vehicle DVRP problem
instances fed with information about last known positions of the tracked
targets and uncertainty distribution of their possible positions as they
progressively evolve over time.

Findings:

12

1. the implemented multi-agent solver for multiple-vehicles routing technique
performs and scales well w.r.t., number of planes with fixed number of
targets,

2. we found that the DVRP-based technique performs fairly well in resource-
constrained multi-target tracking scenarios, though does not scale very
well w.r.t., the growing number of mobile targets. I.e., often the team of
UAVs looses some of the tracked targets due to prolonged periods spent
by flying between them. The M ×N ratio thus varies with the overall size
of the operations theatre.

WP3: Integrated coordination for mixed information
collection activities

Theoretical contributions:

1. we propose a basic mission specification language in terms of sequences of
high-level declarative goals. More concretely, the mission is specified for
individual simulated units in terms of a list of Prolog terms,

2. we propose novel techniques for modular programming of simulated agents
based on our past experience with agent-oriented programming languages
for agents based on the Belief-Desire-Intention (BDI) architecture,

3. we surveyed the state of the art in problems of multi-agent mission plan-
ning and multi-agent plan repair,

4. we made first steps towards formulation of novel techniques for multi-agent
mission plan repair algorithms.

Technological prototypes:

1. we extended the range of information collection tasks in the Tactical
AgentFly simulation platform by implementation of the exploration task.
For performance comparison, we actually implemented exploration task
using the following two methods:

a. Zig-zag technique based on a coordinated traversal of the explored area
in a sweep-style zig-zag pattern from one side to another, and

b. a technique based on formulation of the exploration task as an instance
of the distributed vehicle routine problem and fed into the MAS solver
described in the WP2.

2. we developed the Jazzyk programming language interpreter, an implemen-
tation of the framework of Behavioural State Machines and its integration
with the AgentFly technological infrastructure including:

a. JazzykJVM interpreter, a port of the original Jazzyk language inter-
preter to the Java Virtual Machine platform,

b. a Prolog-based JazzykJVM plug-in, and

13

c. a Java/BeanShell-based JazzykJVM plug-in, furthermore

3. we designed and implemented a framework for configurable mission simula-
tion employing the Jazzyk programming language as a vehicle for encoding
of interruptible hybrid reactive/deliberative behaviours of the individual
simulated agents, and finally

4. we developed an integrated Tactical AgentFly mission scenario involv-
ing the various above mentioned information collection tasks, i.e., area ex-
ploration, surveillance, multiple target tracking and dynamic switching of
these in a running, fully configurable ground mission.

Findings:

1. the evaluation the the implemented exploration information collection
task led to the conclusion that informed exploration techniques (such
as the DVRP-based approach) are significantly faster than uninformed
techniques (such as e.g., the Zig-zag-based approach) in apriori known
structured environment. The performance boost was more than 100% in
comparison of the two.

1.4 Document structure

The remainder of this report is structured as follows. In the following three
chapters, we provide a detailed account of the individual workpackages al-
ways structured into three main parts: 1) summary of the workpackage, de-
tailed description of the technologies and theoretical frameworks involved in
the solution methods and a description of the experiments and evaluation
of the implemented techniques, together with their interpretation. We con-
clude the report by a discussion of the results and elaboration on possibilities
of further improvements of the reported results and inspirations for future
work directions. We finally include two appendices respectively describing the
technological demonstrators included in the final deliverables package and an
overview of the software architecture of the produced simulation platform.

14

Chapter 2
Modelling and integration of Vertical
Take-off and Landing Assets

2.1 Summary of the workpackage

The Tactical AgentFly project aims at development and subsequent in-
tegration of VTOL type of assets into the existing AgentFly platform. The
second major objective of the project is to propose and develop suitable algo-
rithms for trajectory planning of VTOL assets and integrate them with the
VTOL model in AgentFly platform.

The main contribution of our research work in this workpackage is a de-
sign of a spatio-temporal trajectory planning algorithm specifically tailored
for use by VTOL type assets. The planner takes as an input a set of way-
points the aircraft should fly through, together with vectors of the flight in
these waypoints and produces a 3D trajectory respecting the physical con-
straints of the aircraft e.g., w.r.t. its speed and turning radius in different
speeds. The planning algorithm facilitates a significantly more efficient flight
than similar trajectory planning algorithms for fixed-wing aircrafts. Subse-
quently, we implemented the planning algorithm and further extended with
the model of VTOL physical dynamics what led to further improvement of the
planner-fidelity. Finally, we report on the integration of the planner into the
AgentFly platform. To evaluate the quality of the planner, we performed a
set of experiments in various scenarios, which we describe below.

15

2.2 Technology description

2.2.1 Trajectory planning

Model without dynamics

Path planning deals with finding routes between a number of given waypoints
satisfying a set of given constraints. Generally, we deal with a search problem
in a continuous space. In general, this is an intractable problem. To simplify
the task we use regular geometric tessellation lattices (fig. 2.1), where we
allow movements only between centers of neighboring polygons.

Fig. 2.1 Regular maneuvers for 2D Dubins curves with corresponding regular tessellation
lattices (triangular, squarish and hexagonal).

Unlike the other lattices, the hexagonal one (cf. Fig. 2.1) provides the high-
est number of directions to move towards from a given point (keep in mind
that regular lattices allow movements between the centers of neighboring
polygons). The distance between adjacent polygons (hexagons in this case)
is the same. However, by using the hexagonal lattice we can express only 2D
space. In order to extend to the 3D case we use a sequence of parallel planes,
again represented as hexagonal lattices, where the distance between two ad-
jacent planes is the uniform. In our implementation, the distance between
the planes equals the half of the distance between adjacent hexagons.

The planning problem can be defined in the following way. On the input
we have two waypoints (starting and ending), a set of no-fly-zones (NFZs)
and optionally the starting and ending directions. The task is to find a route
from starting to the final waypoint, following the directions (if defined) and
avoiding the NFZs. However, the set of input (starting and ending) waypoints
needs to be modified so that every waypoint belongs to some plane and is
placed into a center of some hexagon. Similarly for directions. NFZs are
computed in such a way that every hexagon which intersects some NFZ is
marked as blocked (otherwise is marked as free). We define several (primitive)
maneuvers (according to planning theory, we can say actions):

16

Fig. 2.2 Directions on Hex grid.

Straight — Moves to adjacent hexagon according to direction (note z-
coordinate of any direction vector is set to 0).

Turn — Changes the direction.
Pitch — Moves to an adjacent upper (resp. lower) flight level (plane).

However, it turned out to be more appropriate to allow movements not only
between adjacent hexagons but also ‘diagonally‘ (cf. Fig. 2.2.1). In a conse-
quence, the turning maneuver can change the aircraft’s direction by π/6, π/3
and π/2 (resp. −π/6, −π/3 and −π/2). Obviously, the distance of ‘diagonal‘
move is

√
3 times larger than the distance between adjacent hexagons.

Additionally, there are several restrictions that we require from the gener-
ated plans. Every turn maneuver must be applied after at least one straight
maneuver. Every pitch maneuver can be applied only between two straight
maneuvers. The planning procedure itself is implemented using the A* al-
gorithm, where the actual distance from the starting waypoint g and the
estimated cost to the ending waypoint (heuristic) h are computed in every
open node. The heuristic h is computed by using Vancouver distance (ana-
logical to Manhattan distance) plus the minimal number of pitch maneuvers
that must be use to ascend (or descend) to the desired altitude. If ‘diagonal‘
moves are allowed, then the heuristic h is inadmissible. Hopefully, the im-
pact of the inadmissibility is low. An example of a valid plan in a hexagonal
grid is showed in fig. 2.3 (note that the perspective is given orthogonally to
hexagonal planes).

Model with simple Dynamics

The model without dynamics we introduced in the previous subsection might
work well only for such VTOLs whose maximal speed is relatively low. To

17

Fig. 2.3 Sample plan on hexagonal grid. Yellow circles represent NFZs. Grey-filled
hexagons represent blocked ones. Blue-filled ones represent a path. Cyan-filled ones repre-
sent a place where turn maneuver applied. Light blue-filled ones represent a place where
pitch-up maneuver applied. Red(Green)-filled ones represent starting (ending) waypoints.

model trajectories more realistically we introduced the speed as a new pa-
rameter. Relying on the common-sense model of mechanics, the minimal turn
radius correlates with the speed. In fact, the minimal turn radius grows
quadratically as the speed grows. We decided to keep the turn maneuver
within the cell, where the direction changes. The turn radius is then com-
puted in the following way (d stands for a distance between adjacent cells
(not ‘diagonal‘), α stands for an angle of direction change):

r =
d

2
cot

α

2

The planning problem described in the previous subsection can thus be
extended in the following way. On the input we have a basic speed model,
where we define maximal acceleration and deceleration, minimal and maximal
speed, minimal and maximal turn speed and minimal and maximal pitch
speed. Maximal turn speed defined in the basic speed model refers to the
smallest turn angle (π/6). Maximal turn speeds for bigger turn angles are

18

updated with respect to previously mentioned physical relation (the minimal
turn radius grows quadratically as the speed grows). On the input we also
have the initial speed interval (in the starting waypoint) and optionally also
the interval into which the speed in the destination waypoint should fall.

Fig. 2.4 Red line shows the part of trajectory (the Turn maneuver), where the speed
cannot be changed.

The following restrictions apply in the resulting model of aircraft dynam-
ics. During the Turn or Pitch maneuvers the speed remains constant (the
aircraft cannot accelerate or decelerate). We assume that Turn (resp. Pitch)
maneuver starts in a hex cell before and ends in a hex cell right after the hex
cell in which the direction (or altitude) was changed (cf. Fig. 2.4).

0 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

v_min

v_max

Track

S
p
e
e
d

Fig. 2.5 A graph showing the aircraft an example of speed intervals in the simple model
of VTOL dynamics. The blue line depicts the minimal speed and similarly the red line
depicts the maximal speed of the aircraft. Note that the maximal speed is limited by 1.0,
minimal speed is 0.0, acceleration is 0.1 and deceleration is -0.1.

Adding the speed as a new dimension into our model might results in an
explosion of the state space. To prevent this we introduce a speed interval
for every node (note that the node is specified only via position and direc-
tion). Speed intervals represent a range of possible speed values (see a simple
example in fig. 2.5). Any limitations of speed (for instance for Turn or Pitch

19

Algorithm 1 Computing a speed interval for a newly opened node.
1: {Upper indices − (resp. +) stand for minimal (resp. maximal) speed values.}
2: if maneuver is straight then

3: v−curr := MAX

(
v−,

√
(v−prev)2 − 2as

)
4: v+curr := MIN

(
v+,

√
(v+prev)2 + 2as

)
5: end if
6: if maneuver belongs to Turn maneuver then
7: if 〈v−prev , v+prev〉 ∩ 〈v−turn, v

+
turn〉 = ∅ then

8: return null {Speed constraint cannot be satisfied for the Turn maneuver}
9: end if
10: v−curr := MAX(v−prev , v

−
turn)

11: v+curr := MIN(v+prev , v
+
turn)

12: end if
13: if maneuver belongs to Pitch maneuver then
14: if 〈v−prev , v+prev〉 ∩ 〈v−pitch, v

+
pitch〉 = ∅ then

15: return null {Speed constraint cannot be satisfied for the Pitch maneuver}
16: end if
17: v−curr := MAX(v−prev , v

−
pitch)

18: v+curr := MIN(v+prev , v
+
pitch)

19: end if
20: return v−curr, v

+
curr

maneuvers) can be handled via intervals quite easily. We can simply check
the current speed interval and speed interval requested by the specific ma-
neuver and if these intervals intersect, then the maneuver can be performed
(otherwise the maneuver cannot be performed), for the formal description,
see Alg. 1. It is sufficient for the generation of the final path (trajectory), but
it is necessary to adjust the speed intervals in every point (hexagon center) of
the trajectory such that the intervals follow the conditions of dynamics. We
proposed a propagation algorithm (see Alg. 2) for such adjusting the speed
intervals. The idea of the algorithm is based on the fact that we have to find
a point (on the trajectory) from where we have to slow down (resp. speed up)
to reach the maximal (resp.) minimal speed given by the limitation (for in-
stance, the speed limitation for the Turn maneuver). After the point is found
we compute the speed intervals in the following points with respect to the
given limitation.

A feasible plan consists, like in the model without dynamics, a sequence of
points (centers of the hexagons) and directions (in these points). Addition-
ally, in this model we assign speeds to these points such that the speeds are
maximal. We can, of course, simply compute time-stamps in these points as
well. Time-stamps are important for plan execution.

20

Algorithm 2 Propagation for speed intervals.
1: {Upper indices − (resp. +) stand for minimal (resp. maximal) speed values.}
2: countmin := 0

3: countmax := 0

4: minspd := v−curr
5: maxspd := v+curr
6: Select the predecessor node as a current node
7: while v−curr < minspd ∨ v+curr > maxspd do
8: Push the current node into Stack
9: if maneuver do not belong to the Turn or Pitch maneuver then
10: maxspd = MIN

(
v+curr,

√
maxspd2 + 2as

)
11: if maxspd 6= v+curr then
12: countmax ++
13: end if
14: minspd = MAX

(
v−curr,

√
minspd2 − 2as

)
15: if minspd 6= v−curr then
16: countmin ++

17: end if
18: end if
19: Select the predecessor node as a current node
20: end while
21: while Stack is not empty do
22: Pop the element from the stack as a current node
23: if maneuver do not belong to the Turn or Pitch maneuver then
24: if countmax > countmin then
25: maxspd :=

√
maxspd2 − 2as, countmax −−

26: else if countmax < countmin then
27: minspd :=

√
minspd2 + 2as, countmin −−

28: else
29: maxspd :=

√
maxspd2 − 2as, countmax −−

30: minspd :=
√

minspd2 + 2as, countmin −−
31: end if
32: end if
33: v+curr := MIN(v+curr,maxspd)

34: v−curr := MAX(v−curr,minspd)

35: end while

2.2.2 Model of helicopter dynamics

The model of helicopter dynamics serves two purposes. Firstly, it is used
as a smoothing method for the resulted plans from the hex-grid planner
(cf. the previous project reports M18 and M21). Secondly, it is used during
the simulation of the helicopter movement. These two cases differ in two
main aspects. The smoothing process runs the model using larger time steps
(improving the computational duration). On the other hand, the simulation
phase may include additional errors in the movement caused by various real-
world effects (e.g. wind, imperfections of the asset hardware, sensory errors
and glitches, biased regulation and others).

21

We consider 6 DOF model consisting of three spatial and three rotational
axes (cf. Fig. 2.6). The spatial position is described by translation vector

p = (x, y, z),

and the rotation is described by three Euler angles ϕ, θ, ψ in a quaternion
form

q = (q0, q1, q2, q3)
T .

Furthermore, both the spatial and the rotational axes are completed by
their first and second derivatives, i.e. velocities and accelerations. Spatial
velocity and acceleration can be simply derived as follows

dp

dt
= v,

p =

ˆ
vdt,

p = p0 + vt.

The spatial acceleration respects the same pattern

dv

dt
= a,

v =

ˆ
adt,

v = v0 + at,

d2p

dt2
= a,

p =

¨
adt,

p = p0+vt+
1

2
at2.

The first derivative of the rotation descried in a quaternion can be de-
rived using differential equation for varying quaternion with angular velocity
described in augmented quaternion ω(t) = (0, ω1(t), ω2(t), ω3(t))

T as follows

22

dq

dt
=

1

2
q ∗ ω,

q =

ˆ
1

2
q ∗ ω,

q = q0 exp

(
1

2
ωt

)
=

= q0 exp

(
1

2
ω0t

)(
cos

(
1

2
|ω123| t

)
,ω123

sin
(
1
2 |ω123| t

)
|ω123|

)T
=

= q0

cos
(
1
2 |ω123| t

)
1

|ω123|ω1 sin
(
1
2 |ω123| t

)
1

|ω123|ω2 sin
(
1
2 |ω123| t

)
1

|ω123|ω3 sin
(
1
2 |ω123| t

)
 .

The inference used definition of quaternion exponential

exp(q)= exp(q0)

(
cos(|q123|)

q123

|q123| sin(|q123|)

)
,

where q123 = (q1, q2, q3)
T . The second derivative is based on vector derivation

of the augmented quaternion describing the angular velocity as follows

dω

dt
= α,

ω =

ˆ
αdt,

ω = ω0 +αt.

Fig. 2.6 Spatial and rotational axes of the model.

23

The mentioned equations describe only dynamics of a mass object in space.
Following formulas describe a simplified physical model of a helicopter based
on the air lift formula

L(η) =
1

2
ρv2SCL(η),

where L[N] is the lift force, ρ[kgm3] is air density, v[ms] is velocity of the rotor
disk causing the lift force, S[m2] is area of the rotor disk, and CL(η) is
coefficient of lift. The lift coefficient CL is a function of the attack angle η of
the rotor blades and it is for the purposes of the model linearized by partially
linear function with an ascending part with coefficient k1 and a descending
part with coefficient k2:

CL(η) =

{
|η| < 1

6π : ηk1,

|η| ≥ 1
6π : (η − 1

6π)k2 +
1
6πk1.

Spatial acceleration of the object with weight m is affected by two forces
(i) gravity, and (ii) the lift force of the main rotor which is parametrized by
the collective rotor tilt ν:

a =

0
0
0
−g

+ q

0
0
0

L(ν)
m

q∗.

Augmented vector a is defined as a = (0,a), q∗ represents an inversion of
a quaternion q, and qpq∗ describes rotation of augmented vector p by a
quaternion q.

The angular acceleration is affected by cyclic rotor tilt in two dimensions
σx, σy and anti-torque tail rotor tilt τ in a following ways

α =

 2Lr(σx)
mr

2Lr(σy)
mr
0

+

 0
0

Lt(τ)
mrt

 .

The radius of the main rotor is denoted as r, distance of the tail rotor from
the main rotor axis is denoted as rt. The lift force of one half of the main
rotor used by the cyclic tilt is denoted as Lr and the lift force caused by the
tail rotor is denoted as Lt. The parameters for the particular lift formulas
differs in area of the rotor S and mean velocity of the rotor v. The caused
lift force of the rotor cyclic is positioned in the center of the rotor radius r

2 .

24

Model stabilization

The only explicit stabilization is used for horizontal stabilization of the model.
The stabilizers ensure the model will always has tendency to stay horizontally
even. The stabilizers are two PID regulators. Each regulator stabilizes the
model in one axis, i.e. roll and pitch. The target state of the model rotation
is zero angles of rotation.

The regulation equations are based on the equation of ideal PID regulators

σx = Ps(0− ϕ) + Is

ˆ
(0− ϕ)dt+Ds

d(0− ϕ)
dt

,

σy = Ps(0− θ) + Is

ˆ
(0− θ)dt+Ds

d(0− θ)
dt

,

the equations are discretized and used in iterative manner. A step character-
istics of the regulator is presented in Figure 2.8.

Fig. 2.7 Step characteristic of roll stabilization using the PID regulator.

Movement regulation

The movement of the model in the main three axes (spatial axes x, y, z and
rotational axis ψ) is handled by four movement PID regulators. On the con-
trary of the stabilization regulators, the movement regulators are designed to
fulfill requested height, velocity, direction, or yaw rotation.

The first regulated value is the height z of the model to target height zt.
It is based on PID regulator described by following relation

ν = Pz(zt − z) + Iz

ˆ
(zt − z)dt+Dz

d(zt − z)
dt

.

25

The affected action control is the collective rotor tilt ν, i.e. strength of the
main rotor climbing/descending. A step characteristics of the height regulator
is presented in Figure 2.8.

Fig. 2.8 Step characteristic of height PID regulator.

The second two regulators affect the cyclic rotor providing horizontal
movement of the helicopter. The formulas for the PID regulator differs in
the used constants and parameters

σx = Pv(vtx − vx) + Iv

ˆ
(vtx − vx)dt+Dv

d(vtx − vx)
dt

,

σy = Pv(vty − vy) + Iv

ˆ
(vty − vy)dt+Dv

d(vty − vy)
dt

.

They regulate the current velocity v towards the target velocity vt in the
required directions to the target point (typically a trajectory waypoint). A
resulting trajectory using all the previous regulators is depicted in Figure 2.9.
The waypoints are switched after reaching a predefined distance to the next
waypoint.

The fourth and last regulator is used for pointing of the head of the model
towards the target point. Although the model can reach any position us-
ing only the previous three spatial axes, the yaw rotation is important if
the model carries an orientation dependent sensor (e.g. a range finder, of a
camera). The torque regulator is also PID and it is defined as

ν = Pr(0− ∠d) + Ir

ˆ
(0− ∠d)dt+Dr

d(0− ∠d)
dt

.

The vector d points towards the target point and ∠d denotes an angle be-
tween the direction vector (e.g. velocity vector) and the vector d. The demon-
stration of the torque regulator is presented in Figure 2.10.

26

Fig. 2.9 Spiral movement of the helicopter using the height and velocity regulators.

Fig. 2.10 Application of the torque regulator.

27

Trajectory smoothing using the model

The model used for the smoothing of the trajectory produced by the hex-
grid planner uses all the introduced regulators together with the model of
helicopter dynamics. The resulting plan trajectory is depicted in Figure 2.11.
The plan begins at ground and increases the height together with forward
movement towards the target. During the flight a no-flight zone is avoided
provided that the hex-grid planner planned the waypoint around the zone.

All the used regulator parameters Ps, Pz, Pv, Pr, Is, ..., Dr were identified
using the Ziegler-Nichols method. The model parameters including weight,
rotor area, distance to the tail rotor and others are based on the Skeldar 200
VTOL UAV from SAAB Aerosystems.

Fig. 2.11 Smoothed plan trajectory using the dynamics model of the VTOL.

2.2.3 Trajectory visualization

A new visualization module had to be prepared to be applicable with the
new trajectory description using the list of VTOL states. The visualization is
based on partially linear description of the trajectory. Each segment between
two waypoints is represented by a cuboid with cut ends under a normal
angle in the waypoint. The angle cuts the segments in the middle and creates
a connection to successive segment. Each segment is visualized in 3D and
creates a tunnel representing the path which is followed by the asset.

An example of a path plan visualized using the presented method is de-
picted in Figure 2.12. The turn maneuvers are represented by arcs (parts
of circles) whose radiuses are computed with respect to cell sizes and turn
angles (as discussed before).

28

Fig. 2.12 An example of the visualization of the new plan representation.

2.3 Evaluation and experiments

We experimentally compared both the models in terms that we wanted to
find out how including a simple dynamics affects the planning process. We
randomly generated 100 points within the area of size (100,70,5), where the
distance between adjacent hexagons was 2 and the distance between planes
(of hexagonal grids) was 1. We also defined 20 cylindrical NFZs, where all
the centers lied within the area and altitude was unlimited. The area served
for restriction of starting and ending waypoints and NFZs, but not for the
planning procedure. It means that any feasible path could leave the area for
a while.

Time [ms] % Solved % Unsolved in 1000ms Median [ms] Nodes per [ms]
basic 102295 99.6 0.4 0 97
dynamic 114742 99.7 0.3 1 94
basic+NFZs 81965 51.3 0.3 0 75
dynamic+NFZs 79857 39.8 0.3 0 70
basic+NFZs+vecs 442023 45.7 6.0 1 64
dynamic+NFZs+vecs 356730 35.5 4.6 1 62

Table 2.1 Comparison of the basic model and the model with a simple dynamics.

For all pairs (i, j) such that j > i we were looking for plans (trajectories)
from i-th to j-th waypoint. It gave us 4950 problems total for a particular
case. We tested our basic model, model with a simple dynamics, firstly with-
out any restriction, then we added NFZs and then we added starting and end-
ing direction vectors. Of course, the waypoints, NFZs and direction vectors
remained the same for all the tested cases. The time limit for every planning
task was set to 1000ms, because for practical purpose, it is quite inappropri-

29

ate to look for the plan longer. The planner was implemented in JAVA SE
1.6. The experiments were performed on Core2Duo 1.86 GHz, 2 GB RAM,
Windows 7.

The results are presented in the table 2.1. At First, it is advisable to men-
tion that when NFZs are added, then some planning tasks become unsolvable
because starting or ending waypoint lies within some of NFZs. It clarifies the
significantly lower number of solved planning tasks, where NFZs are applied.
Moreover, the model with a simple dynamics brings additional constraints
(i.e., the UAV must accelerate to achieve minimal speed for the Pitch ma-
neuver etc.) which resulted in the lower number of solved tasks (according
to these constraints some tasks solvable in the basic model became unsolv-
able). Adding direction vectors caused significant slow down of the planning
process, especially when required ending direction was (almost) opposite to
direction we come from. It also caused that quite a lot of problems were
not solved within the time limit (1000 ms). Considering the comparison of
our two models without any additional restriction (NFZs, direction vectors)
we can clearly see that the total time spent on all the planning tasks were
about 12% higher in the model with a simple dynamics. This slow down was
caused mainly by two factors, maintaining the speed intervals in every node
and slightly longer plans. However, in the other comparisons the total time
spent on all the planning task is not very informative, because in the model
with a simple dynamics we solve much less tasks. On the other hand, we can
compare how many nodes were explored per millisecond (in average). We can
see that in this aspect the model with a simple dynamics does not stay much
behind.

The experimental evaluation is in fact targeted to provide a rough view
how the simple dynamic model can affect the planning process with respect
to solving time. The results gave us a positive outlook, since the running
time needed for solving did not increase much when used the simple dynamic
model. However, we should investigate this more thoroughly in future to
provide more general claims.

30

Chapter 3
Planning in Dynamic and Resource
Constrained Environments

3.1 Summary of the workpackage

The planning and coordination in dynamic resource constrained environment
has been analyzed with respect to scalability and limited resources. The
multi-agent solver has been utilized for cooperative surveillance and tracking
under undervalued numbers of aircrafts towards the numbers of ground tar-
gets. The problem is to find an optimal allocation of the airplanes in cases the
number of the targets exceeds the number of the assets in the dynamically
changing environment. This allocation has to be dynamic (i.e. airplanes have
to hand over the targets when another plain is loosing them) and minimize
the chance of target loss, e.g. maximize the persistence of targets tracking.

We have defined the surveillance and tracking domain in the form of tasks
usable by the distributed allocation architecture (i.e. by the solvers). The ob-
jective function has been designed to fulfill the requirements of the missions.
The algorithms developed has been integrated with the deliberative modules
of the aircraft agents. The algorithms has been extended to be able to han-
dle heterogeneous teams of the assets including CTOL UAVs, VTOL UAVs,
and prospectively also ground units. The implemented algorithms have been
evaluated in AgentFly simulation with hi-degree of environment dynamism.

Firstly, the focus was put mainly on a multi-agent problem solving archi-
tecture based on a task allocation and local resource planning. The archi-
tecture is usable for surveillance and tracking under undervalued numbers of
aircrafts towards the numbers of ground targets. The later task delegation is
used for solution improvement. The multi-agent solver architecture uses the
principles of problem decomposition and delegation to autonomous agents
that solve individually the parts of the problem. The overall solution is then
obtained by merging the individual agents’ results. The solution is improved
using a task sharing approach. The principle is based on delegation of tasks
from a busy agent to a vacant agent using a set of improvement strategies.

31

The algorithms have been implemented with proposed heuristics and
strategies and tested in synthetic environments. In a multi-agent NP-hard
problems (logistics-like), the solver provides solutions with the quality of 81%
compared to the optimal solution on 115 benchmark instances in polynomial
time. Such an efficiency of the algorithms gives us a good reason to believe
that the principles will be usable for other distributed problems including
allocation of aircrafts for surveillance and tracking.

Secondly, the general-purpose multi-agent coordination algorithms with a
sharp focus on heterogeneous teams (i.e., those consisting of various types of
UAVs capable to perform different tasks and/or performing them in differ-
ent environments) was designed and implemented. The main thrust of our
work was the realization of coordination techniques required to successfully
implement the demonstration scenarios.

We have evaluated the multi-agent solver in the various scenarios of coop-
erative surveillance and tracking presented in Section 3.3.1. The experimental
evaluation shows the influence of the team composition and coordination level
to the surveillance and tracking efficiency. The validation in the surveillance
and tracking domain in the form of tasks usable by the distributed allocation
architecture (i.e. by the solvers) has been performed. The stability and self-
balancing ability of the multi-agent solver has been experimentally proved
according to the requirements of the missions.

One of the most important results of the project research track leading
to implementation of multi-target tracking by a coordinated team of UAVs
is the proposal of a multi-agent problem solving architecture based on task
allocation techniques and task decomposition with subsequent merging of
partial results. Firstly, we have focused on the multi-agent problem solving
architecture extension towards MxN surveillance and tracking. We introduced
the techniques of (i) tasking extension, (ii) task injection, and (iii) task groups
implementation and finally we described a set of experimental evaluation
scenarios on which the performance of the individual algorithms should be
evaluated. Secondly, we have implemented the demonstration scenarios and
subsequently performed an evaluation of the proposed techniques on them
together with a subsequent analysis and interpretation of the results.

In the last project period, we have performed further evaluation of multi-
agent coordination algorithms with a sharp focus on heterogeneous teams,
i.e., those consisting of various types of UAVs capable to perform different
tasks and/or performing them in different environments. In particular we were
working on the last MxN project scenario in which we evaluate techniques
for emergent team coordination in contrast to analytical techniques, such as
as greedy target seeking on one side, and (not exclusively) targets clustering
and subsequent vehicle routing among within the cluster.

32

3.2 Technology description

In this section, we focus present a multi-agent problem solving architecture
based on a task allocation and local resource planning. The architecture is
usable for surveillance and tracking under undervalued numbers of aircrafts
towards the numbers of ground targets. The later task delegation is used for
solution improvement. The section is divided into two parts presenting (i)
abstract multi-agent solver, and (ii) its algorithms.

In the second part of this section the extension of the multi-agent problem
solving architecture towards MxN surveillance and tracking is presented. We
introduce the techniques of (i) tasking extension, (ii) task injection, and (iii)
task groups implementation.

Section 3.3 then presents a set of experimental evaluation scenarios on
which the performance of the individual algorithms are be evaluated. The im-
plemented demonstration scenarios and evaluation performed are discussed.

3.2.1 Multi-Agent Solver

Multi-agent planning approaches are used for solving a wide variety of plan-
ning problems. One of the related strategies is a task sharing approach. The
principle is based on passing of tasks from a busy agent to a vacant agent(s).
The process can be summarized in four basic steps:

1. Task decomposition: The tasks of the agents are decomposed into subtasks
and subtasks, which can be shared are selected.

2. Task allocation: The selected tasks are assigned to the vacant agents or
agents, which ask for them.

3. Task accomplishment: Each agent tries to accomplish its (sub)tasks. The
tasks, which need further decomposition, are recursively processed and
passed to other agents.

4. Result synthesis: The results of the tasks are returned to the allocating
agent since it is aware of the way to use it in the context of the higher
tasks.

From the perspective of distributed problem solving, the task allocation and
the result synthesis are the most crucial parts. On the other hand, from the
planning perspective, the other two phases are more important. The allo-
cation problem is usually solved by contraction and negotiation techniques,
which implies problems related to the resource allocation domain, e.g., cross-
booking, over-booking, backtracking, and others. In the allocation phase, a
hierarchy of agents is established, which may not be effective in heterogeneous
multi-agent systems.

33

The decomposition and delegation principle is widely used in agent-based
approaches for problem solving and planning and shows great applicability
to realistic problems.

We can define the abstract multi-agent solver architecture as a composition
of three types of agents (see Figure 3.1):

• Task Agent for preprocessing of the problem. This agent should use do-
main specific heuristic, generic ordering strategy, or randomized method.

• Allocation Agent for problem decomposition and delegation of the sub-
problems to Resource Agents. This agent also maintains the task allocation
and result synthesis.

• Resource Agent for individual resource planning. In case of further de-
composition, the subproblem is handed over to another Task Agent.

Fig. 3.1 An abstract architecture of the agent-based solver/planner.

The multi-agent system built upon this architecture is composed of one
Task Agent, one Allocation Agent and a set of Resource Agents. For complex
hierarchical systems, the abstract architecture can be reflected in the multi-
agent system recursively, it can be reduced (i.e. one agent undertakes a role of
more than one abstract agent type), or it can be parallelized (more abstract
solvers are instantiated with potential overlapped agents – e.g., several Task
Agents or Allocation Agents handling various problems in parallel). In a big
systems, there may arise concurrent interactions that needs to be handled.
The agents’ interactions are guided by the interaction protocols, which are
mostly built on contract net protocol (CNP) [11].

34

3.2.2 Abstract Algorithm

The multi-agent solver uses the principles of problem decomposition and
delegation to autonomous agents that solve individually the parts of the
problem. The overall solution is then obtained by merging the individual
agents’ results. The optimization based on CNP interactions in cooperative
environment is usually described as utilitarian social welfare maximization.
So the abstract algorithm objective function can be defined as maximization
of social welfare, which is

sw =
∑
a∈P

ua, (3.1)

where P = a1, . . . , an is population of agents and ua is utility of agent a. In
our case, the social welfare can be computed as a sum of Resource Agents
utilities that can be defined as

ua =
∑
t∈Ta

(rew(t)− cost(t)) =
∑
t∈Ta

rew(t)− cost(Ta), (3.2)

where T is a set of tasks delegated to the agent a, rew(t) is a reward for
fulfilling task t, cost(t) is a cost of agent a to perform task t, and cost(Ta) is
cost of the overall plan of an agent. The total reward for fulfilling a set of all
tasks T is

rew(T) =
∑
a∈P

rew(Ta) =
∑
a∈P

∑
t∈Ta

rew(t), (3.3)

so the social welfare can be expressed as

sw = rew(T)−
∑
a∈P

cost(Ta) = rew(T)−
∑
t∈T

cost(t). (3.4)

Since the reward k = rew(T) is not generally influenced by the allocation
of tasks to the agents (we assume the same quality of task fulfilling by any
agent), the maximization of social welfare is the same as minimization of
solution cost, e.g.

max sw = max rew(T)−
∑
t∈T

cost(t)

= k −min
∑
t∈T

cost(t)

The objective function of the abstract solver is then

min
∑
t∈T

cost(t), (3.5)

where cost(t) is evaluated by the Resource Agent undertaking task t.

35

Algorithm 1 The abstract algorithm of a multi-agent solver.
Input: Set of tasks T , set of Resource Agents R

Output: T allocated on R

and local plans of Resource Agents exist

function solve(T , R) begin
apply ordering heuristic on T

forall t : T begin
allocateCNP(t,R)
if allocation not successful then

exit with failure or
mark t as not allocated and continue

end
forall r : R begin

apply dynamic improvement strategy
end

end
forall r : R begin

apply final improvement strategy
end

end

function allocateCNP(t, R) begin
forall r : R begin

find winner with the lowest insertion
estimation of t

end
if winner is found then

assign t to the winner
else

allocation not successful
end

end

The abstract algorithm representing the presented multi-agent solver min-
imizing objective function denoted by Equation 3.5 is captured by Algo-
rithm 1. It contains three phases: (i) task preprocessing provided by the Task
Agent, (ii) allocation performed by the Allocation Agent with taking into
account Resource Agents’ computations of insertion costs and (iii) dynamic
and final improvement based on the cooperation of Allocation Agent and
Resource Agents.

The algorithm is based on local optimization of a single task insertion
and improvement. Each iteration of the algorithm provides locally-optimized
solution of resources utilization and order-dependent task allocation. The
algorithm does not use any backtracking mechanism or exhaustive search of
the state space. It has a significant impact on the algorithm’s computational
complexity, but it is susceptible to finding locally efficient solution only. The

36

Algorithm 2 The abstract algorithm improvement strategies.
function improveDW(r,R) begin

t = the worst task of agent r

forall a : Rr r begin
find winner with the lowest costestI of t

end
if costestI of winner is lower then costestR of r then

delegate t from r to winner

end
end

function improveDA(r,R) begin
forall t : tasks of agent r begin

forall a : Rr r begin
find winner with the lowest costestI of t

end
if costestI of winner is lower then costestR of r then

delegate t from r to winner
end

end
end

function improveRA(r,R) begin
forall t : tasks of agent r begin

remove t from agent r

allocateCNP(t,R)
end

end

global solution quality is improved by execution of improvement strategies,
which are:

• Delegate worst (DW) – each Resource Agent identifies its worst task
and tries to delegate it to another agent if the removal cost (savings) is
higher than the insertion cost.

• Delegate all (DA) – each Resource Agent delegates all its tasks (only if
the removal cost is higher than the insertion cost).

• Reallocate all (RA) – each Resource Agent successively removes all its
tasks from the plan and allocates them again using the CNP strategy.
The result of the allocation can be the same as before task removing, or a
change of the position of the task in the current agent plan, or delegation
to another agent.

The Resource Agent has to provide the functions for insertion cost compu-
tation used by the algorithm for determining the winner in the CNP alloca-
tion. The Resource Agent uses a case-dependent resource planning heuristic
for these computations. The functions for allocation are:

37

• insertion estimation costestI – The estimation of the cost of the task
insertion. It represents the increase of the agent’s cost function caused by
undertaking the task.

• insertion costinsert – The real cost of the task insertion. This value is
determined by adding a new task to the plan in the current state. It is
the result of the particular resource planning algorithm of the Resource
Agent.

The opposite functions used by improvement strategies are:

• removal estimation costestR – The estimation of the cost of the task
removing. It represents the decrease of the agent’s cost function caused by
dropping the task.

• removal costremove – The real cost of the task removal. This value is
determined by removing the task from the plan in the current state. It is
the result of the particular resource planning algorithm of the Resource
Agent.

When using standard CNP we require the estimation functions of Resource
Agent to provide the accurate estimations

costestI = costinsert,

costestR = costremove.

The RA estimation functions are admissible only if

costestI ≤ costinsert, (3.6)
costestR ≥ costremove. (3.7)

The improvement strategies described by Algorithm 2 (improveDW and im-
proveDA) uses the task delegation on condition that costestI of winner is
lower than costestR. This can be defined as improvement condition:

∀i, j : costremoveRAi
(t)− costinsertRAj

(t) ≥ 0 (3.8)

for admissible delegation of task t from agent i to agent j. The case i = j is
achievable by improveRA strategy only.

The admissible Resource Agent strategy (its internal heuristics and esti-
mation and allocation functions) has to:

• use admissible estimation functions according to Equation 3.6 and 3.7, and
• fulfill improvement condition defined by Equation 3.8.

The algorithms has been implemented with proposed heuristics and strategies
and tested in synthetic environments. In a multi-agent NP-hard problems
(logistics-like), the solver provides solutions with the quality of 81% compared
to the optimal solution on 115 benchmark instances in polynomial time. Such
an efficiency of the algorithms gives us good reason to believe the principles

38

will be usable for other distributed problems including allocation of aircrafts
for surveillance and tracking.

3.2.3 Cooperative Surveillance and Tracking

The presented multi-agent solver has been used for multiple goals allocation
to the team of heterogeneous agents. The goals represents surveillance and
tracking tasks and the agents represents the unmanned vehicles capable to
provide surveillance, tracking, or both.

We have a set of heterogeneous agent capabilities

C = c1 . . . cn, (3.9)

where each agent a is able to provide a subset of capabilities Ca. We divide
a set of task T to subsets T1 . . . Tn, where the tasks in Ti can be undertook
by agents providing the capability ci and

n⋃
i=1

Ti = T ,

n⋂
i=1

Ti = ∅.

According the agent capabilities, the agents population P can be divided
into sets of Resource Agents able to undertake particular task set, so

Ri = a1 . . . an, ai ∈ P,∣∣∣∣∣
n⋂
i=1

Ri

∣∣∣∣∣ ≥ 0,

and all agents from Ri provide capability ci, i.e. are able to undertake a
task from Ti. The multi agent solver algorithm modification is described by
Algorithm 3.

The allocation is executed for all tasks on different sets of Resource Agents
according their capabilities and the improvement strategies are applied to this
set of Resource Agents as dynamic improvement strategy and to all Resource
Agents in the phase of final improvement strategy application. The functions
allocateCNP, improveDW, improveDA, and improveRA of the Algorithm 1
and Algorithm 2 have to be modified to find the winner agent from the
appropriate set of Resource Agents Ri corresponding to actual task t. It
correspond to infinite cost of insertion estimation of the agent r iff

39

Algorithm 3 The modified abstract algorithm of a multi-agent solver for
heterogeneous agent capabilities and tasks.
Input: Sets of tasks T1 . . . Tn, sets of Resource Agents R1 . . . Rm

Output: all tasks allocated
and local plans of Resource Agents exist

function solve(T1 . . . Tn, R1 . . . Rm) begin
for t : T1 . . . Tn begin

R = Ri, where t ∈ Ti allocateCNP(t,R)
if allocation not successful then

mark t as not allocated and continue
end
forall r : R begin

apply dynamic improvement strategy
end

end
forall r : R1 . . . Rm begin

apply final improvement strategy
end

end

t ∈ Ti, r /∈ Ri. (3.10)

The objective function of the solver (see Equation 3.5) holds even it is not
explicitly handles the heterogeneous tasks and agent capabilities. In case of
multiple capabilities of a Resource Agent the weighting factor for the differ-
ent task prioritization has to be captured by the local agent planner. This
weighting factor has not to be the same for all agents.

This multi-agent solver extension has been used in the implementation
described in Section 3.2.4 with the following setting:

• R1 is a set of high altitude, long endurance UAVs able to provide high-level
surveillance,

• R2 is a set of tactical UAVs able to provide Zig-zag surveillance,
• R3 is a set of micro UAVs able to provide tracking and close surveillance.

3.2.4 Tasking Extensions

We have extended the current principles and implementation of the UAV
tasking system. Firstly, we have enabled injection of tasks directly into the
agent community by sending an explicit topic message and secondly, we have
added an ability to form a distinct groups of the UAVs to conduct different
types of the tasks simultaneously (see Figure 3.2).

40

Fig. 3.2 Common Operational Picture showing two groups of UAVs. One group (U1 and
U2 in the top-left corner) is providing tracking of a ground entity and the other one (U1

and U2 in the center) is doing a wide Zig-zag surveillance over the mission area.

3.2.5 Task Injection

The requirement for more complex autonomous control of the missions even-
tuates a need for tasking of the UAVs not only from the Common Operational
Picture (COP) GUI by the user, but also by a simple-to-use interface usable
within the system. The interface has to be usable both by another agents,
which can require a task to be performed for them, and by low-level system
parts running the scenarios (e.g. by the ScenarioPlayer – a object orches-
trating the course of the scenario, creating the entities, measuring several
parameters, and the like).

Since the COP GUI uses topic messages subsystem for tasking of the UAV
agents, we have reused the principle and adapted the behaviour of the agents
for few of unanticipated cases. The tasking process consists of creation of
a instantiated TaskBatchAssignment data structure that describes a batch
of tasks (a batch can contain more than one tasks for compound tasking).
Afterwards, the instance is sent by a TOPIC_ASSIGN_TASK_BATCH topic by
the topic subsystem. Since the topics are broadcasted, the batch is received
by all the TacticalModules in the pilot agents. Following processing of the
batch respects the algorithms for task handling of the system.

41

3.2.6 Task Groups

For missions where various types of UAVs are required the task groups are
an essential functionality of the system. For an instance, we can have a High
Altitude, Long Endurance (HALE) UAV providing a high-level surveillance
of the target area, two Tactical UAVs (TUAVs) providing Zig-zag surveillance
of the area and several Micro UAVs (MUAVs) providing tracking of various
objects of interest, or providing tight-area surveillance (e.g. of a building
or entry/exit points to/from an perimeter). For such a mission, we need to
be able to distribute the task batches according to the types of the aerial
vehicles.

The general idea of the extension is to provide an additional parameter,
together with each task batch, describing the type of the UAVs which should
perform the batch. In particular, the TOPIC_ASSIGN_TASK_BATCH topic can
be sent with a string identifier of a plane type. The plane type is an Agent-
Fly specification of the airplane by means of the model parameters (includ-
ing safety range, turn and pitch radii, velocity constraints, and others) with
additional TAF parameters (surveillance and tracking altitude, and camera
angle). The type is, on the side of the TacticalModules, checked against
the current plane’s type and the incompatible batches are filtered out. This
principle naturally distributes the task batches according to the plane types
into several groups. Since the differentiation is based on the plane types, the
groups are homogeneous and each consists of several numbers of same UAVs.
In the former example, we would have three groups, one containing only one
HALE UAV, second containing the TUAVs, and the last only the MUAVs.
If the plane type is omitted, the task batch is comprehended like a overall
batch and it is adopted by all the UAVs regardless the type.

Since the algorithm for task allocation of a task batch is distributed and
the initial phase is based on a peer-to-peer communication among the agents
about the same tasks, the groups are formed automatically with a minor mod-
ification of the underneath allocation principles (see Section 3.2.3). Tangibly,
each group identifies its Coordinator agent, and because the agents work only
with the batches filtered for them, they receive only particular tasks from the
batches according to their groups. As each plane can be only of one type, the
groups are disjoint and their conjunction is the overall group.

The COP GUI is updated independently by each Coordinator agent of
each group and batches added using the COP are presumed to be the overall
task batches (performed by all UAVs).

3.3 Evaluation and experiments

The general-purpose multi-agent coordination algorithms has been developed
and evaluated on the series of scenarios introduced in this section. The focus

42

has been put on heterogeneous teams, i.e., those consisting of various types of
UAVs capable to perform different tasks and/or performing them in different
environments.

We carried out a number of experiments in three different setups according
to scenarios and developed algorithms. The overview of the settings is given
on Figure 3.3.

The experiments focus on the level of cooperation in information collection
missions under resource constraints. The team of UAVs provides continuous
coordinated surveillance using technologies and algorithms developed in pre-
vious phases of the project. Moreover, non identified ground units, the targets,
traverse the surveyed area. The goal of the UAVs is to (i) secure continuous
surveillance of the whole area minimizing the information age, (ii) identify
important targets as soon as they enter the area, and (iii) perform tracking
of the targets until they leave the area. The quality of the goals fulfillment
(information age, time of non-tracked movement of a target in the area, etc.)
is evaluated according to the type and intensity of coordination techniques
employed.

A group of 10 moving ground targets (simulated people) was employed.
These simulated people walked in a loop along predefined trajectories through
an urban area. In all scenarios, the group of people and their trajectories were
the same so that the obtained results were comparable.

During the experiments, various numbers of surveying and tracking UAVs
were used to monitor the area and to perform tracking of as many ground
targets as possible. The overall goal was to minimize the average information
age, i.e. the age of the data obtained by surveillance, and the average in-
formation error, i.e. the difference between the actual and the last-observed
positions of moving ground targets. All experiments were executed for the
same amount of simulation time, long enough to ensure sufficient stabiliza-
tion of average values of information age and information error.

3.3.1 Demonstration scenarios

The level of cooperation in information collection missions under resource
constraints will be demonstrated using the following scenarios. The team
of UAVs will provide continuous coordinated surveillance using technologies
and algorithms developed in previous phase of the project. Moreover, non
identified ground units, the targets, will traverse the surveyed area. The goal
of the UAVs will be to (i) secure continuous surveillance of the whole area
minimizing the information age, (ii) identify important targets as soon as
they enter the area, and (iii) perform tracking of the targets until they leave
the area. The quality of the goals fulfillment (information age, time of non-
tracked movement of a target in the area, etc.) will be evaluated according
to the type and intensity of coordination techniques employed. An overview

43

of the demonstration scenarios is depicted in Figure 3.3. We have defined
following scenarios

We have defined the following demonstration scenarios:

1. two homogeneous teams of the UAVs – one for surveillance goal and one
for tracking goal. The surveillance team uses the zig-zag algorithm imple-
mented in the first phase of the project utilizing all members of the team
to minimize information age. Once the team notices new/unserved target,
new tracking task will be generated for the second team.

2. a single heterogeneous team of multiple capabilities UAVs – the scenario is
similar to the previous one, except that every UAV is able to perform both
surveillance and tracking tasks. Initially, all UAVs perform surveillance
as in first scenario. When an UAV notices a non identified ground unit,
target, it switches to tracking this target. The rest of the UAVs adapt their
trajectories to further perform surveillance and minimize the information
age of the covered area among the team members. When the target leaves
the area, the tracking UAV re-joins the surveillance team.

3. heterogeneous team with handover – the scenario is very similar to the
second one, but the team members dynamically balance two concurrent
goals: 1) keeping the continuity of the team surveillance, and 2) tracking
of previously identified targets. The handover of the tracking task, i.e., a
UAV delegates tracking of a target to another UAV, will be executed as the
target moves through the area to minimize disturbances of the individual
UAVs surveillance routes.

4. limited resource tracking – this scenario is different from previous ones. The
goal is to keeping the continuity of tracking ground targets. The problem
is the number of ground targets may exceed the number of plains. If the
target is lost it position is subject of uncertainty and has to be updated as
soon as possible. We use uniform position uncertainty model – the plains
are aware of potential positions of the lost targets and are able to decrease
the uncertainty by making the surveillance over such positions.

3.3.2 Scenario A: Homogeneous teams

Four zones are defined in this scenario (see Figure 3.4): the central and largest
zone A is the principal area of interest where the actual mission takes place.
It is surrounded by four small auxiliary zones B1, B2, B3 and B4 where all
currently idle UAVs are located.

There are two types of UAVs involved in this scenario. The first type can
only perform surveillance while the other can only perform tracking. Each
of the two groups of UAVs need to rely on capabilities of the other group in
order to fulfill their mission.

44

Fig. 3.3 Overview of the demonstration scenarios.

Both surveillance and tracking takes place in zone A. Surveilling UAVs
are deployed throughout the mission. They plan their trajectories such that
zone A is fully covered in terms of surveillance. Upon noticing an unattended
moving target on the ground, the particular surveilling UAV requests the
unassigned tracking UAVs to focus on that target. The unassigned tracking
UAV (located in zone B1, B2, B3, or B4) closest to the ground target un-
dertakes the given task and performs the tracking in zone A until the target
leaves the zone. In such a case the tracking UAV terminates its task and
returns to its default zone B1, B2, B3, or B4 where it awaits future tracking
tasks.

Two sets of experiments were measured for this scenario. In both cases
we investigated how the ratio of numbers of deployed surveilling vs. tracking
UAVs influences the values of obtained average information age (area surveil-
lance) and average information error (target tracking) while the total number
of UAVs remains the same. In the first set of experiments, the total number
of UAVs was 5, in the second it was 10.

The combinations of numbers of surveilling and tracking UAVs for both
cases are listed in Table 3.1.

45

Fig. 3.4 Overview of scenario A – two homogeneous teams of the UAVs.

5 UAVs
surveillance 4 3 2 1
tracking 1 2 3 4

10 UAVs
surveillance 9 7 5 3 1
tracking 1 3 5 7 9

Table 3.1 Scenario A UAVs teams settings.

The results of both setups are presented in Figures 3.5, 3.6 and 3.7, 3.8
respectively.

3.3.3 Scenario B: Single team with multiple capabilities

All UAVs involved in this scenario are capable of both surveillance and track-
ing but they can only perform one of those operations at a time.

There is only one zone defined in this scenario: zone A which is identical
to the zone of the same name introduced in Scenario A (see Figure 3.9). All
UAVs operate within this zone throughout the whole mission.

All available UAVs start out as surveilling UAVs. As any of them locates
an unattended ground target, it requests tracking for that target. In such a
case the surveilling UAV closest to the target switches to tracking mode and
follows the moving target until it leaves zone A upon which the UAV switches

46

Fig. 3.5 Scenario A (5 UAVs) – average information error.

Fig. 3.6 Scenario A (5 UAVs) – average information age.

back to surveillance mode. As the number of surveilling UAVs dynamically
changes due to UAVs undertaking tracking tasks, the UAVs participating in
surveillance (re)plan their trajectories such that they cover the entire zone
A.

Measurements of average information age (area surveillance) and average
information error (target tracking) were performed for various numbers of
UAVs: 2, 3, 4, 5, 6, 8 and 10, allowing us to evaluate the influence of the total
number of UAVs on the quality of both surveillance and tracking of the same
area.

The results are presented in Figures 3.10 and 3.11.

47

Fig. 3.7 Scenario A (10 UAVs) – average information error.

Fig. 3.8 Scenario A (10 UAVs) – average information age.

3.3.4 Scenario C: Heterogeneous team with handover

This mission is derived from Scenario B. All UAVs are capable of both surveil-
lance and tracking and they follow the same logic as in Scenario B. In contrast
with Scenario B, zone A is now split into three smaller sub-zones A1, A2 and
A3 (see Figure 3.12). Each UAV is assigned to one of these smaller zones and
it operates only within that particular zone throughout the mission.

Therefore, when a tracked ground target leaves a particular zone, it is
abandoned by the original tracking UAV and is in turn taken over by another

48

Fig. 3.9 Overview of scenario B – a single heterogeneous team of multiple capabilities
UAVs.

tracking UAV from the zone it has newly entered – unless the target moved
outside all three zones A1, A2 and A3 in which case it is not tracked anymore.

Measurements of average information age (area surveillance) and average
information error (target tracking) were performed for various numbers of
UAVs: 3, 4, 6 and 9.

The results are presented in Figures 3.13 and 3.14.

3.3.5 Scenario D: Limited resources tracking

Limited resource tracking scenario has been tested on three algorithms. There
is a set of (more or less) cooperating plains and a set of randomly moving
ground targets. The number of plains and targets vary from 1 to 10 in the
experiments. The algorithms tested provides various levels of planning and
coordination and we evaluate their robustness to the changing number of
plains and targets. The tested methods are following.

1. Random walk – each plane goes randomly through last known positions of
the targets. There is no cooperation between planes. See Figure 3.15 for
average ground target position information age for various combinations of

49

Fig. 3.10 Scenario B – average information error.

Fig. 3.11 Scenario B – average information age.

number of plains and targets. This method is capable to track 1-2 targets
only regardless of number of plains.

2. Greedy cooperative allocation – each plane finds closest last known position
or position uncertainty area and goes to explore it. The plains use simple
voting method to avoid conflicts in selection of areas. It leads good utiliza-
tion of resources and provides good implicit path conflict avoidance. See
Figure 3.16 for average ground target position information age for various
combinations of number of plains and targets. This method provide ro-
bust n to n tracking with very low communication needs (communication

50

Fig. 3.12 Overview of scenario C – heterogeneous team with handover.

Fig. 3.13 Scenario C – average information error.

is linear to the number of plains). With 8 plains the scenario is saturated
and plains are able to track any number of ground targets.

3. Multi-agent solver allocation – the plains utilize the solver introduced in
Section 3.2.1. The tasks to allocate are last known positions of the ground

51

Fig. 3.14 Scenario C – average information age.

targets and position uncertainty areas. Each plane builds local route for
allocated tasks using nearest-neighbor traveling salesman heuristics (with
quadratic complexity to the number of tasks). Global routes cost mini-
mization is secured by the task allocation algorithm of the solver. This ap-
proach provides efficient dynamic task delegation and effective handovers.
The complexity of this method grows with the number of target points
(i.e. size of area of uncertainty), so in case of high number of lost targets
the communication overhead increase. In such case it should be better to
change the behaviors of the planes to generic area surveillance. See Fig-
ure 3.17 for average ground target position information age for various
combinations of number of plains and targets. This method provide good
n to n + k tracking (4 plains are able to track 5 targets or 6 plains suc-
cessfully track 8 targets in our scenario). With 7 plains the scenario is
saturated and plains are able to track any number of ground targets.

52

Fig. 3.15 Scenario D – average information age for random method.

Fig. 3.16 Scenario D – average information age for greedy method.

53

Fig. 3.17 Scenario D – average information age for DVRP.

54

Chapter 4
Integrated coordination for mixed
information collection activities

4.1 Summary of the workpackage

The main objectives of the workpackage Integrated coordination for mixed
information collection activities were: firstly, to extend our previous work on
multi-UAV surveillance and tracking information collection activities and add
support for tasks such as exploration and search; secondly, we aimed at inves-
tigation of issues arising from execution of mixed/heterogeneous information-
collection missions, i.e., such in which a the individual members of a team
of UAVs dynamically switch between different information collection tasks
during the mission execution; thirdly, we intended to open the problem of
mission-centric information collection, i.e., techniques of dynamic (re-)tasking
of members of a team of UAVs according to the needs of an on-going ground
mission. In the following we summarize the results gained from the work on
this workpackage, the findings and the status of the individual objectives
w.r.t. the work proposed in the original project proposal.

Support for additional classes of information collection
tasks

One of the objectives of this workpackage was to extend the implemented
TAF2 scenarios with new types of information collection tasks and investi-
gate the issues arising from them. In particular, our aim was to implement
coordinated multi-UAV area exploration and coordinated target search.

While we implemented and evaluated the exploration task into the TAF2
software framework and thus contributed to the integrated demonstration
scenario implementation, after an initial problem analysis we concluded that
due to its complexity, the task of implementing the coordinated target search
lies beyond the scope of this project. In fact, we recognized that a proper

55

implementation of coordinated target search problem inherently features an
adversarial-reasoning element, a topic which is beyond the scope of this
project. Instead, the topic of adversarial reasoning and planning became one
of the main foci of the related project Tactical AgentScout, already
discussed earlier in this report. We discuss the details of our approach to
implementation and evaluation of the exploration information collection task
below in Section 4.2.

Integrated coordination for mixed information collection

The main objective of this sub-package was to investigate the techniques
enabling efficient dynamic task switching and transparent coordination of
multi-UAV team performing a mixed-task mission in a theatre. In particu-
lar, we aimed at tackling the interdependencies between various information-
collection tasks and exploiting them in order to produce an integrated co-
ordination mechanism allowing a switch between surveillance and tracking
mode, as well as a seamless handover of target tracking task between differ-
ent UAVs. In both cases we aimed at improving the overall mission efficiency,
i.e., to perform local task switches and target handovers in order to optimize
the overall multi-UAV team performance.

The proposed solution is based on integration of techniques of i) inter-
ruptible hybrid reactive/deliberative agent behaviours and ii) the universal
multi-agent task allocation introduced in the Section [TO DO]. Below in
this chapter, we discuss the details of the employed approach.

Mission-centric/oriented information collection

Finally, one of the most ambitious challenges proposed to tackle in this work-
package was the integrated coordination of mixed-information collection. In
particular, we aimed at development of methods that take a mission plan
as an input and use it for planning and coordinating information collection
so that the efficiency of information coverage of the mission is significantly
improved.

The analysis of this objective led to two vectors of further investigation.
Firstly, we identified a need for an approach/technology enabling highly flex-
ible mission specifications and their subsequent execution according to a pre-
cise semantics by the entities involved in the simulation. Besides capturing
temporal aspects of missions, such a specification technique should ideally
feature a high degree of flexibility w.r.t. the specification granularity and
rigidity respecting varying needs of different mission scenarios. Furthermore,

56

such mission specifications should enable also capturing various contingencies
for alternative mission evolutions, should the situation require such changes.

Secondly, we aimed at development of multi-agent planning and re-
planning techniques enabling planning for mission-specific information collec-
tion support according to the provided mission specification and the contin-
gencies involved therein. This vector of investigation leads to the requirement
to perform a full-fledged multi-agent planning taking a mission specification
as an input. Again, the problem of efficient multi-agent mission planning is
a hot topic of the MAS research, tackling which in a deep manner is beyond
the scope of this project.

The problem of a mission specification language is still an open challenge
of the Artificial Intelligence research community. To tackle this issue, we em-
ployed the state-of-the-art techniques from the field of reactive-planning and
agent-oriented programming. In particular, our approach is based on the the-
oretical framework of Behavioural State Machines developed by Novák in [6]
and further extended in [7]. Concretely, we propose a very basic mission
specification language enabling description of missions in terms of ordered
sequences of high-level declarative goals which a unit involved in the mission
should achieve sequentially. Subsequently, we employed the methodology of
agent-oriented design patters [9] which gave us a flexible tool for encoding a
range of reactive behaviours which guarantee satisfaction of certain run-time
conditions - in this case achievement of the specified high-level declarative
goals. We adopted and further extended the BSM-accompanying program-
ming language called Jazzyk originally introduced by Novák in [7]. Below, in
the Section 4.2 we provide a more detailed account of the BSM framework
and the concrete approach to mission specification language and the tech-
niques used for implementation of the simulated entities in the integrated
demonstration scenario. The described implementation is to be understood
as a prototype design, which we intend to further extend and improve upon
in the context of the related project Tactical AgentScout.

Furthermore, while not fully implementing a multi-agent mission planning
and re-planning framework, we provide a brief survey of the recent state-of-
the-art works of the field. The bulk of the prototyping work in this area was
shifted into workpackages of the related Tactical AgentScout project
where we will further expand this line of research. Below, in the Section 4.2
we summarize the state of the art in multi-agent planning and report on the
advances we did in our studies of multi-agent re-planning and plan-repair. The
provided text is a compilation of an extended version of the corresponding
sections of the M1 report of the Tactical AgentScout project.

57

4.2 Technology description

4.2.1 Coordinated multi-UAV exploration

Fig. 4.1 Depiction of a situation during the DVRP-based area exploration by a team of
5 UAVs. The green lines represent the actual plans of the UAVs. The area in the upper
right segment of the map was already explored by the team. In consequence the team does
not plan to return to this area any more and pays most of its attention to the south-west
segment of the map. The plans include all the important points on the map, i.e., all the
crossroads as well as straight segments of the map of length over 10 metres. The field of
view of a UAV is 50 metres in the simulated scenario.

Our main approach to implementation of the exploration information col-
lection task is based on the utilization of the multi-agent solver introduced is
Section 3.2.1. In particular, we use the solver to compute solutions of the Dis-
tributed Vehicle Routing Problem. The input is the set of all nodes of interest
on the input map and a set of n UAVs. While treating each waypoint request
as an independent task, the agents negotiate among themselves and using the
heuristics described in the previous chapter divide the task among the team

58

members. This method is similar to multi-agent solver allocation method
used in Scenario D for limited resources tracking (see Section 3.3.1). The
surveillance tasks to allocate represents the points of interests on the map.
Each plane builds local route for allocated tasks using the same method as in
tracking scenario – the nearest-neighbor traveling salesman heuristics. Again,
global routes cost minimization is secured by the task allocation algorithm
of the solver. The Figure 4.1 depicts a snapshot of an example exploration
mission employing the multi-agent solver.

Fig. 4.2 Depiction of a situation during the coordination zig-zag exploration of the target
area (the complete map) by a team of 5 UAVs.

In order to perform a thorough evaluation of the proposed exploration
method, we utilize the zig-zag algorithm developed in the first phase of this
project (cf. the corresponding final report). The implementation is flexible
in the number of participating UAVs, which uniformly divide the explored
area among themselves and fly in a coordinated formation through it. The
Figure 4.2 depicts a snapshot during such an multi-UAV exploration mission.

We discuss the details of the evaluation results in the following section.

59

4.2.2 Integrated scenario

As a test-bed scenario enabling evaluation of the prototype of the mission-
centric information collection techniques, i.e., exploration and simultaneous
surveillance and tracking, we developed the following mission specification.

A mission is configure with a number of blue teams, each consisting of
a given number of ground troops, deployed in the area of interest, a team
of UAVs providing airborne support by performing various information-
collection tasks, and a number of insurgents randomly distributed in the
area of interest (red force). Furthermore, the blue force knows the GPS co-
ordinates of their corresponding landing points, the map of the urban area
and the coordinate of a joint meeting point where the team will be lifted-
off at the end of the mission. Finally, the area contains a point of interest
called safe house. The task of the ground blue force is to explore the area
of interest, find the safe house, approach it and secure its perimeter, and
finally, the mission ends with a transport to the meeting lift-off point. The
team of UAVs provides airborne support to the blue ground teams perform-
ing the area exploration, continuous overhead surveillance of the area in a
wider vicinity of the discovered safe-house and most importantly, on request,
the UAVs provides overhead tracking support to blue troops pursuing red in-
surgents throughout the main part of the ground mission, i.e., the approach
and securing of the safe house. Finally, the team of UAVs should provide
surveillance support over the meeting point during the final phase of the
mission.

Exploration phase

The mission starts with a number of blue teams deployed to the area of
interest and the team of UAVs taking off the airport outside the area of
interest. The objective of the initial phase of the mission is to explore the
area of interest and discover the location of the safe house. The safe house
is a fixed location on the map, apriori unknown to the blue force, nor to
the team of UAVs. We assume that the safe house is recognized by the UAV
operator (automatic detection mechanism) continuously analysing the image
stream from the team of UAVs. The red insurgents are randomly scattered
in the urban area of interest, with the highest density around the safe house
(about one third of all the red troops in the actual implemented simulation
scenarios).

Since the location of the safe house is initially unknown to the ground
blue force, the teams secure their deployment locations and wait for the
broadcast signal sent by the UAVs upon discovery of the safe house. The
UAVs actually employ the DVRP-based exploration already introduced above
in Subsection 4.2.1. The Figure 4.3 depicts a snapshot of a situation during
the exploration phase of the mission. The example mission involves two blue

60

Fig. 4.3 Snapshot of a situation during the initial exploration phase of the mission. The
blue teams are waiting for the safe-house discovery, while the team of UAVs explores the
area of interest in a coordinated fashion. The green lines depict the actual plans of the
UAVs, initially covering all the important nodes on the map (crossroads, etc.).

teams deployed at location in the north-west and north-east of the example
map and a team of 3 UAVs performing the area exploration. The blue teams
consists of 10 ground troops each.

Support of an on-going ground mission

The end of the exploration phase and a transition to a mode of active support
of the ground mission by the team of UAVs is marked by the discovery of
the safe house location. The Figure 4.4 depicts exactly this moment in an
example mission.

The main objective of the blue force during the middle phase of the ground
mission is to reach the safe house, secure the are and perform short, further
unspecified operation in the immediate vicinity of the safe house. Further-
more, upon encounter, the blue troops engage the red troops, track them on

61

Fig. 4.4 At the end of the exploration phase, the safe house is found by one of the UAVs.
The discovery of the safe house is a trigger for the blue force to starts its approach towards
the house. On an encounter, during the safe-house approach, the blue troops track and
attempt to capture red insurgents. Whenever such a pursuit is started, the blue troops
involved call for airborne support by the autonomous team of UAVs. The yellow square
depicts the surveillance area around the safe house. The UAVs fly in a zig-zag formation
over the area unless providing a tracking support to the blue force.

the map and finally capture them (note for illustration purposes, that blue
troops are moving about 5% faster than the red troops). During such pur-
suits, the team of UAVs provides on-request tracking support to the involved
blue forces. In fact. during this mission phase, the team of UAVs aims to
continuously perform surveillance of the area in a wider vicinity of the safe
house and some of the team members switch to tracking mode only upon
request from the blue force.

The surveillance of the area is implemented using the already described
zig-zag algorithm implemented in the first phase of the Tactical AgentFly
project.

The concrete implementation of the tracking support by the team of UAVs
utilizes the DVRP-based technique of tracking introduced in the previous
chapter. I.e., the blue force creates a new task in the multi-agent task al-

62

Fig. 4.5 Depiction of a situation during the running mission. The two blue force teams
are approaching the safe-house location, while the UAVs provide airborne information
collection support. The screen-shot depicts a situation in which two UAVs provide tracking
support to the blue force (the green lines depict the tracking target_, while the third UAV
performs zig-zag surveillance of the area around the safe house.

location solver what subsequently leads to negotiation and re-negotiation of
the set of current tasks among the UAV team members. The task allocation
algorithm finally allocates the task to the UAV which can fulfill the request in
the most efficient manner w.r.t. the overall team performance. The remaining
UAVs continue to perform the surveillance task of the area. Note that in sit-
uations when only few UAVs are involved in the ground mission support and
when the blue force pursues a number of targets simultaneously (i.e., infor-
mation collection under constrained resources), the task allocation leads to
“overtasking” of some of the UAVs in the fashion described and evaluated in
the previous chapter. I.e, a single UAV receives a number of tracking targets
which it is supposed to serve simultaneously. The Figure 4.7 depicts such a
situation during the mid-phase of the ground mission.

Upon successful capture of a red insurgent, the tracking request is cancelled
and the involved UAV continues in whatever tasks it is engaged in: either
returns to the surveillance of the safe-house area, or switches to tracking of

63

Fig. 4.6 Another situation during during the running mission. All the UAVs provide
tracking support to the blue force which just arrives to the safe-house location. Some of
the blue troops are still engaged in tracking and capturing the red insurgents. Note, the
UAV nearest the safe house provides tracking support to two targets simultaneously. The
green lines depict the current plans of the UAVs in terms of the next waypoints.

the still active targets allocated to it. In fact, in every moment, the multi-UAV
team renegotiates the task allocation among the team members. This often
leads to re-allocation of tasks, i.e., tracking target handover from one UAV to
another one, or switching between surveillance and tracking between several
UAVs while continuously providing tracking of all the requested targets. This
emergent behaviour is a result of the dynamic re-allocation of the requested
tasks according to the local conditions and the actual mission evolution.

Meeting at the lift-off location

Upon reaching the safe house, the blue teams secure the area in the immedi-
ate vicinity of the target location. They still actively engage the encountered
red troops what eventually leads to clearing and securing the neighbourhood.
After a fixed time spent at the target location, the mission switches to its

64

Fig. 4.7 The blue force captures the safe house. The are in the immediate vicinity of the
safe house is clear of red insurgents and secured by the blue force in a guard formation
around the location. One of the UAVs is still engaged in tracking support to blue troops.
Note the left-most UAV which was just disengaged from a tracking support for a blue troop
and is returning to the area of interest to join the last UAV team member and perform
the surveillance task.

final phase. The blue forces disengage all the, still pursued, red insurgents,
leave the safe house area and head towards a meeting point where they are
supposed to be lifted off after the mission completes. Due to the red troops
disengagement, the UAVs stop all the tracking tasks and head towards a pre-
defined airport location outside the area of interest. The blue team however
requests continuous surveillance of the meeting point. Usually, this task is al-
located to a single UAV which finally continuously circles the target location.
The allocation is again handled by the already discussed multi-agent task al-
location algorithm. So, in fact, the UAV team member finally serving the task
is not pre-determined, nor is it fixed until the end of the mission. However,
the algorithm usually leads to an optimal allocation of a single UAV to the
task. The Figure 4.8 depicts the approach of the blue force to the meeting
point and the single-UAV surveillance of the meeting point area. Finally, the

65

Figure 4.9 depicts the situation at the very end of the mission where all the
blue troops are collected at the meeting point.

Fig. 4.8 In the last phase of the mission, the blue force disengages the operation around
the safe house and heads towards the meeting point with the lift-off (depicted as the green
circle). The troops are independently moving to the meeting point, while the UAVs leave
the theatre and head towards an airport. The blue force asks for a surveillance support
above the meeting point provided by a single UAV.

4.2.3 Mission specification

The above describe mission is just a single instance of a possible mission
implementation. In fact, one of the objectives of this workpackage was to
develop a technology allowing us to specify and subsequently execute a large
range of mission scenarios composed of a number of basic building blocks,
such as exploration, surveillance, tracking on the side of the UAVs, as well
as behaviours including e.g., securing an area, movement to a pre-defined

66

Fig. 4.9 The end of the mission. All the blue troops are in the collection point continuously
guarded by a single UAV, while the remaining UAV team members left the theatre.

location, tracking or evasion on the side of ground forces, be it blue, or red
troops.

While a thorough effort towards a general-purpose mission specification
language is beyond the scope of this project, we designed and implemented
a basic framework allowing us to encode basic sequential specifications of
missions as sequences of higher-level behaviours/tasks the agents and agent
teams should perform. In particular, the mission in our implementation is
specified as a Prolog-style list of, possibly parametrized, achievement goal
specifications, the agents are supposed to be pursue during the mission execu-
tion. In the scenario implementation, the goals are associated with a compos-
able reactive behaviours implemented as a reactive planning policies (cf. the
next subsection). The parameters of the goal symbols are bound to informa-
tion stored in the agent’s belief base.

Example 1. One of the most complex entities involved in the above described
simulated mission are the blue force troops. The following is an example of
the actual mission specification of a single blue team agent:
[

67

wai t_for_target ,
move_to (ta rge t_sa fe_house) ,
c o v e r_pos i t i on ,
f i n a l ([move_to (c o l l e c t i o n_p o i n t) , c o v e r_po s i t i o n])

]

The behaviour of blue force team agent is thus specified to first wait until
the target location of the safe house is broadcast by the team of supporting
UAVs, subsequently move to the safe house, secure the target location and
when the mission turns into the final phase move to the meeting point and
secure the final target location.

Similarly, the mission specification of red insurgents reads either
[s e t t l e]

or alternatively
[hang_around]

The first mission specification is for the insurgents located in the immedi-
ate vicinity of the safe house, and the latter to the agents located randomly
on the map.

The individual behaviours associated with the goals are implemented as
Jazzyk reactive policies described later in this chapter. The goal parameters,
such as the position of the collection_point , or target_safe_house in the case of the
blue force agent are bound to an information stored in the agent’s belief base.
The information about the latter is only broadcasted by the supporting team
of UAVs, so the agent learns the position in run-time.

The above is an example of a possible mission execution. In fact, the mission
specification for each simulated entity, be it a ground agent, or a UAV can
be a sequential composition of a selection from the range of goals the agent
in question is able to achieve. Below we describe how the agents deal with
behaviours which are seen as interruptions to the specified goals, such as red
insurgent pursuit by a blue troop, or fleeing by a red insurgent. These are
implemented as implicit behaviours of the individual agents and do not need
to be specified in the mission description.

4.2.4 Reactive planning as a simulated mission
execution framework

The simple mission specification language described above provides an input
to the simulated agents which in run-time attempt to execute the specified
mission taking into account their own, inherent, behaviour specifications. As
an example of such, take a blue agent which should opportunistically, during
any mission phase, start a pursuit of an encountered red insurgent.

Taking into consideration our past experience with agent-oriented pro-
gramming, we choose the state-of-the-art techniques from the field of re-
active planning and agent-oriented programming languages as the starting

68

point for our implementation of the flexible mission specification and execu-
tion framework. In particular, our design of the fully configurable multi-agent
mission simulation framework is based on the Belief-Desire-Intention (BDI)
agent architecture. The BDI architecture dictates a decomposition of agent’s
knowledge bases into several components storing information the agent has
about its environment, itself and its team peers (beliefs), the information
about its goals (in this case, basically the mission specification together with
the agent’s internally adopted goals) and a representation of the agents plans,
or programs, execution of which ensures establishment of the agent’s goals,
i.e., the agent’s beliefs match its goals in that the agent believes that it had
already achieved the goals eventually in the future.

Concretely, our approach to the design of the flexible mission execu-
tion framework is based on the framework of Behavioural State Machines
by Novák [7, 10] and its associated agent-oriented programming language
Jazzyk. Using this framework, we implemented a modular BDI architecture,
in the was similar to that described by Novák and Dix in [8]. In the following,
we first briefly introduce the framework of Behavioural State Machines and
subsequently describe out adaptation and extension of the original Jazzyk
interpreter, which we developed for the purposed of this project.

Behavioural State Machines

In [7], Novák introduced the framework of Behavioural State Machines
(BSM). BSM framework is a reactive-planning approach to programming
cognitive agents based on the Belief-Desire-Intention hybrid architecture.
The BSM framework draws a clear distinction between the knowledge rep-
resentation and behavioural layers within an agent. It thus provides a pro-
gramming system that clearly separates the programming concerns of how
to represent an agent’s knowledge about, for example, its environment and
how to encode its behaviours. In the core of the framework is a generic re-
active computational model inspired by Gurevich’s Abstract State Machines
[1], enabling for efficient structuring of the program code. This section briefly
introduces the BSM framework. Below, we introduce an extension of the
BSM framework which we developed for the purposes of this project. For the
complete formal description of the BSM framework, see [7].

Syntax

BSM agents are collections of one or more so-called knowledge representation
modules (KR modules), typically denoted by M, each representing a part
of the agent’s knowledge base. KR modules may be used to represent and
maintain various mental attitudes of an agent, such as knowledge about its
environment, or its goals, intentions, obligations, etc. Transitions between

69

states of a BSM result from applying so-called mental state transformers
(mst), typically denoted by τ . Various types of mst’s determine the behaviour
that an agent can generate. A BSM agent consists of a set of KR modules
M1, . . . ,Mn and a mental state transformer P, i.e. A = (M1, . . . ,Mn,P);
the mst P is also called an agent program.

The notion of a KR module is an abstraction of a partial knowledge base
of an agent. In turn, its states are to be treated as theories (i.e. sets of sen-
tences) expressed in the KR language of the module. Formally, a KR module
Mi = (Si,Li,Qi,Ui) is characterized by a knowledge representation language
Li, a set of states Si ⊆ 2Li , a set of query operators Qi and a set of update
operators Ui. A query operator ��� ∈ Qi is a mapping ��� : Si × Li → {>,⊥}.
Similarly an update operator ⊕ ∈ Ui is a mapping ⊕ : Si × Li → Si.

Queries, typically denoted by ϕ, can be seen as operators of type ��� : Si →
{>,⊥}. A primitive query ϕ = (���φ) consists of a query operator ��� ∈ Qi
and a formula φ ∈ Li of the same KR moduleMi. Complex queries can be
composed by means of conjunction ∧, disjunction ∨ and negation ¬.

Mental state transformers enable transitions from one state to another. A
primitive mst �ψ, typically denoted by ρ and constructed from an update
operator � ∈ Ui and a formula ψ ∈ Li, refers to an update on the state of the
corresponding KR module. Conditional mst’s are of the form ϕ −→ τ , where
ϕ is a query and τ is a mst. Such a conditional mst makes the application
of τ depend on the evaluation of ϕ. Syntactic constructs for combining mst’s
are: non-deterministic choice | and sequence ◦.

Definition 1 (mental state transformer). LetM1, . . . ,Mn be KR mod-
ules of the form Mi = (Si,Li,Qi,Ui). The set of mental state transformers
is defined as below:

• skip is a primitive mst,

– if � ∈ Ui and ψ ∈ Li, then �ψ is a primitive mst,
– if ϕ is a query, and τ is a mst, then ϕ −→ τ is a conditional mst,
– if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦τ ′ are mst’s (choice, and sequence

respectively).

Even though it is a vital feature of the BSM theoretical framework, for sim-
plicity we omit the treatment of variables in the definitions of query and
update formulae above. For a full fledged description of the BSM framework
consult [7].

Semantics

The yields calculus, summarised below after [7], specifies an update associated
with executing a mental state transformer in a single step of the language in-
terpreter. It formally defines the meaning of the state transformation induced
by executing an mst in a state, i.e. a mental state transition.

70

Formally, a mental state σ of a BSM A = (M1, . . . ,Mn, τ) is a tuple
σ = 〈σ1, . . . , σn〉 of KR module states σ1 ∈ S1, . . . , σn ∈ Sn, corresponding
toM1, . . . ,Mn respectively. S = S1×· · ·×Sn denotes the space of all mental
states over A. A mental state can be modified by applying primitive mst’s
on it and query formulae can be evaluated against it. The semantic notion of
truth of a query is defined through the satisfaction relation |=. A primitive
query ���φ holds in a mental state σ = 〈σ1, . . . , σn〉 (written σ |= (���φ)) iff
���(φ, σi), otherwise we have σ 6|= (���φ). Given the usual meaning of Boolean
operators, it is straightforward to extend the query evaluation to compound
query formulae. Note that evaluation of a query does not change the mental
state σ.

For an mst �ψ, we use (�, ψ) to denote its semantic counterpart, i.e.,
the corresponding update (state transformation). Sequential application of
updates is denoted by •, i.e. ρ1 • ρ2 is an update resulting from applying ρ1
first and then applying ρ2. The application of an update to a mental state is
defined formally below.

Definition 2 (applying an update). The result of applying an update
ρ = (�, ψ) to a state σ = 〈σ1, . . . , σn〉 of a BSM A = (M1, . . . ,Mn,P),
denoted by s

⊕
ρ, is a new state σ′ = 〈σ1, . . . , σ′i, . . . , σn〉, where σ′i = σi�ψ

and σi, �, and ψ correspond to one and the same Mi of A. Applying the
empty update skip on the state σ does not change the state, i.e. σ

⊕
skip =

σ.
Inductively, the result of applying a sequence of updates ρ1 • ρ2 is a new

state σ′′ = σ′
⊕
ρ2, where σ′ = σ

⊕
ρ1. σ

ρ1•ρ2→ σ′′ = σ
ρ1→ σ′

ρ2→ σ′′ denotes
the corresponding compound transition.

The meaning of a mental state transformer in state σ, formally defined by
the yields predicate below, is the update set it yields in that mental state.

Definition 3 (yields calculus). A mental state transformer τ yields an
update ρ in a state σ, iff yields(τ, σ, ρ) is derivable in the following calculus:

>
yields(skip,σ,skip)

>
yields(�ψ,σ,(�,ψ)) (primitive)

yields(τ,σ,ρ), σ|=φ
yields(φ−→τ,σ,ρ)

yields(τ,σ,ρ), σ 6|=φ
yields(φ−→τ,σ,skip) (conditional)

yields(τ1,σ,ρ1), yields(τ2,σ,ρ2)
yields(τ1|τ2,σ,ρ1), yields(τ1|τ2,σ,ρ2) (choice)

yields(τ1,σ,ρ1), yields(τ2,σ
⊕
ρ1,ρ2)

yields(τ1◦τ2,σ,ρ1•ρ2) (sequence)

yields(τ1,σ,ρ1), ρ2 6=skip
yields(τ1/τ2,σ,ρ1)

(chain preference)

∀ρ1: yields(τ1,σ,ρ1)∧ρ1=skip, yields(τ1,σ,ρ2)
yields(τ1/τ2,σ,ρ2)

(chain preference)

We say that τ yields an update set ν in a state σ iff ν = {ρ|yields(τ, σ, ρ)}.

71

The mst skip yields the update skip. Similarly, a primitive update mst �ψ
yields the corresponding update (�, ψ). In the case the condition φ of a condi-
tional mst φ −→ τ is satisfied in the current mental state, the calculus yields
one of the updates corresponding to the right hand side mst τ , otherwise the
no-operation skip update is yielded. A non-deterministic choice mst yields
an update corresponding to either of its members and a sequential mst yields
a sequence of updates corresponding to the first mst of the sequence and
an update yielded by the second member of the sequence in a state result-
ing from application of the first update to the current mental state. Finally,
not appearing in the original BSM framework by Novák, we added the chain
preference operator / which executes only the first, non-empty (skip) update
yielded in the sequence of mst’s.

The following definition articulates the denotational semantics of the no-
tion of mental state transformer as an encoding of a function mapping mental
states of a BSM to updates, i.e. transitions between them.

Definition 4 (mst functional semantics). LetM1, . . . ,Mn be KR mod-
ules. A mental state transformer τ encodes a function fτ : σ 7→ {ρ|yields(τ, σ, ρ)}
over the space of mental states σ = 〈σ1, . . . , σn〉 ∈ S1 × · · ·Sn.

Subsequently, the semantics of a BSM agent is defined as a set of traces in
the induced transition system enabled by the BSM agent program.

Definition 5 (BSM semantics). A BSM A = (M1, . . . ,Mn,P) can make
a step from state σ to a state σ′, iff σ′ = σ

⊕
ρ, s.t. ρ ∈ fP(σ). We also say,

that A induces a (possibly compound) transition σ ρ→ σ′.
A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSM A, iff

for each i ≥ 1, A induces a transition σi → σi+1.
The semantics of an agent system characterized by a BSM A, is a set of

all runs of A.

Additionally, we require the non-deterministic choice of a BSM interpreter
to fulfil the weak fairness condition, similar to that in [5], for all the induced
runs.

Condition 1 (weak fairness condition) A computation run is weakly fair
iff it is not the case that an update is always yielded from some point in time
on but is never selected for execution.

Jazzyk

Jazzyk is a programming language implementing the computational model
of the BSM framework. Originally introduced in [7], the language comes
with a standalone interpreter which can transparently incorporate a num-
ber of heterogeneous knowledge representation modules ranging from logic-
programming-based, object-oriented programming language interpreters to

72

interfaces to robotic simulators. However, since the A-Globe/AgentFly tech-
nological infrastructure is based on the Java Virtual Machine run-time envi-
ronment, the original language interpreter was not a suitable option for use
in the context of this project. For the purposes of this project, we ported
the Jazzyk programming language to the Java platform and developed a new
incarnation of the Jazzyk interpreter capable of running in the Java Virtual
Machine.The implemented full-fledged language interpreter allowed us to im-
plement the behaviours of agents in our MAS simulation in a highly modular
and flexible manner. The heterogeneity of the BSM /Jazzyk suite allowed us
to exploit the strengths of declarative technologies, such as Prolog together
with object-oriented technologies, i.e., Java language as a natural compo-
nents of a BDI-based architecture for behaviour-rich , heavily deliberating,
yet responsive and reactive agents in our simulated missions.

Language

The original syntax of the Jazzyk language is an instantiation of the abstract
mathematical syntax of the BSM theoretical framework. when then construct
encodes a conditional mst φ −→ τ . Symbols ; and , stand for choice | and
sequence ◦ BSM operators respectively. To facilitate operator precedence,
mental state transformers can be grouped into compound structures, blocks,
using curly braces {. . .}. Since the original BSM framework did not include
the unless operator /, we additionally implemented it in our extension.

Interpreter

Our implementation of the Jazzyk programming language, called JazzykJVM,
was developed in a modern functional-object-oriented programming language
Scala1 which compiles into Java byte code, in result featuring a tight and
transparent integration with the Java infrastructure.

Together with the Jazzyk programming language interpreter, we imple-
mented two general-purpose knowledge representation modules: Prolog mod-
ule and Java module. As the basis for the Prolog module accessible from
the Java platform, we used the tuProlog v2.1.12 developed by Department of
Electronics, Informatics and Systems of Alma Mater Studiorum-Università
di Bologna, Italy. The Prolog module allowed us to exploit the conciseness
and declarative language strengths of logic-programming. The Java module
facilitating object-oriented is based on a Java scripting language interpreter

1 http://www.scala-lang.org/
2 http://tuprolog.alice.unibo.it/

73

BeanShell3. We describe the concrete usage of the modules within our im-
plementation later in this chapter.

To better support source code modularity and re-usability, Jazzyk inter-
preter integrates a Java implementation of the popular GNU M4 4, a state-of-
the-art macro preprocessor. The concrete M4 Java port we used is the MNI
Macro Processor (MMP) package developed by Burkhardt Renz at University
of Applied Sciences, Gießen-Friedberg, Germany.

Macros are a powerful tool for structuring and modularizing and encapsu-
lating the source code and writing code templates. Before feeding the Jazzyk
agent program to the language interpreter, first all the M4 macros are ex-
panded and only afterwards the plain Jazzyk program is fed to the interpreter
for execution.

4.2.5 Mission specification execution

As already indicated in the previous subsections above, the framework fa-
cilitating flexible mission specification and execution is heavily based on ex-
ploitation of the strengths of the framework of Behavioural State Machines
and the associated programming language Jazzyk. In the following, we briefly
describe the agent architecture developed for the purposes of the project
and the details of mission-specific agent behaviour implementation. For il-
lustration purposes, we only provide a description of the implementation of
ground blue-force agents whose implementation features the richest range of
behaviours.

Agent architecture

Above, we already noted that the architectural decomposition of the simu-
lated entities is heavily inspired by the BDI architectural scheme. In partic-
ular, the agents’ belief base is further decomposed into two sub-modules: a
Prolog-based component storing the agent’s information about its environ-
ment and itself, and a Java. The former stores primarily persistent informa-
tion such as the agent’s belief about being (in-)secure, or static information
about the meeting point location, safe house location once received from the
UAV team, etc., together with a logic-based inference engine allowing to draw
deductive conclusions from this information. The second sub-component fa-
cilitates mainly manipulation with information about the topology of the
simulated environment, i.e., the map of the urban area of the operations the-
atre and the related reasoning mechanisms, such as e.g., path planning on

3 http://www.beanshell.org/
4 http://www.gnu.org/software/m4/

74

Ja
v
a

P
ro

lo
g

Belief base

P
ro

lo
g

Goals

Simulation environment

Agent program
Behavioural

State
Machine

Fig. 4.10 Architecture of ground agents in the Tactical AgentFly simulation.

the map graph, etc. The goal base of the agent is implemented by a single
Prolog-based knowledge representation module besides storing the mission
specification and the agent’s implicit goals, such as e.g., the temporary goal
to flee in the face of a blue team, if also facilitates more complex inferences
over the goals. In particular, the mechanism can be used to implement in-
tegrity constraints disallowing two mutually inconsistent goals to be derivable
at the same time. We however did not need such a mechanism in the actually
implemented simulation. The Figure 4.10 provides a schematic overview of
the developed agent architecture.

Agent behaviours & the main program

Agents’ overall behaviours are implemented as a set of self-encapsulated com-
posable behaviours encoded as reactive plans, policies, in the programming
language Jazzyk. The mission specification contains a sequence of high-level
goals, which are associated with a single, or more concrete behaviours in
the agent program. An example of an implementation of such a goal-specific
behaviour is listed in Figure 4.11. The code includes a section for goal de-
liberation, i.e, decision mechanism for recognition that the goal was already
achieved, and the behaviour itself, i.e., the behaviour initialization and a call
to a macro implementing movement along a path between two adjacent nodes
on the street graph.

Additionally, agents often feature implicit behaviours, i.e., such which were
not provided in the mission specification, but the agent adopts their associ-
ated goals because of its own decision in run-time. The Figure 4.12 lists an
example of such a behaviour implementing the tracking of a red insurgent.

75

define(‘MOVE_TO_DESTINATION’, ‘
{

/∗ goal deliberation ∗/
when query goals (Dest) [{ current_goal(move_to(Dest)). }] and

query beliefs (Dest, DNode) [{ location(Dest, DNode). }] and
sense (DNode) [{ self.atNode(DNode) }]

then {
/∗ drop the goal and move on the next mission goal ∗/
update goals [{ shift_mission. }]

} ;

/∗ the behaviour itself ∗/
when query goals (Dest) [{ current_goal(move_to(Dest)). }] then {

when query beliefs (Dest, DNode) [{ location(Dest, DNode). }] and
sense (DNode, ONode) [{ ONode = self.nodeAt()}]

then {
/∗ behaviour initialization ∗/
when query beliefs (ONode, DNode, Path) [{

Path=self.planPath(ONode, DNode)
}]

then update beliefs (Path) [{ switch_path(Path). }]
} else MOVE_ALONG_PATH

}
}

’)

Fig. 4.11 An example of the implementation of a mission-specific behaviour - a transport
towards a given destination.

define(‘TRACK’, ‘
{

when query goals (RedBoy) [{ current_goal(tracking(RedBoy)). }] then {
when sense (RedBoy) [{ self.isAround(RedBoy) }] and

sense (RedBoy, TNode) [{
TNode = self.closestNodeToAgent(RedBoy)

}] then {
act [{ BlueForceHQ.askForAirSupport() }] ,
update beliefs (TNode) [{ going_to([TNode]). }] ,
MOVE_ALONG_PATH

}
}

}
’)

Fig. 4.12 An example of a Jazzyk code implementing an implicit tracking behaviour of a
member of the blue team.

Finally, the behaviours are composed into an agent program. Using the
BSM composition operators, the agent program basically defines the interre-
lationships among the behaviours of the agent. In the case of our implemen-
tation, listed in Figure 4.13, the behaviours are divided into two main groups
composed by a chain preference operator. In result, the agent prefers to exe-
cute movement and tracking deliberation over the standard mission-specific
behaviours, such as tracking, initial waiting for safe house discovery, securing
a given location and tracking.

76

/∗ high−priority un−interruptible behaviours ∗/
{

MOVE_TO_DESTINATION ;
CHECK_TRACKING_NEEDED

}
/∗ chain preference − the behaviours below are executed UNLESS the above are performed ∗/
/

/∗ non−deterministic choice composition of goal−associated behaviours ∗/
{

HOMING ;
WAIT_FOR_TARGET
COVER_LOCATION ;
TRACK

}

Fig. 4.13 An example of the implementation of a mission-specific behaviour - a transport
towards a given destination.

4.3 Evaluation and experiments

The main efforts invested into this workpackage went into prototyping ac-
tivities providing us with proof-of-concepts for various technologies and ap-
proaches described above. As a result, the main contributions of the proto-
typing efforts we achieved was preparation of technological and testing in-
frastructure for deeper investigation and subsequent evaluation of techniques
for multi-agent planning and plan repair in mission-centric information col-
lection tasks involving heterogeneous agents in the context of the the related
continuation project Tactical AgentScout.

Besides the results of the experiments with the new implementation of the
exploration information collection task, as the main results of the prototype
evaluation, we provide the technology demonstrators included as a deliverable
of the project together with this report described later in the Appendix A.

4.3.1 Multi-UAV area exploration

The main result of our evaluation of the two implemented exploration meth-
ods for exploration information collection task is the following claim:

Claim. In structured areas with apriori known structure and possibly irreg-
ularly distributed points of interests, the DVRP-based exploration method
is significantly more efficient than naive implementations such as the zig-zag
algorithm.

The above claim hinges on our experiments described below. Important in this
context is the observation that naive methods, such as the zig-zag algorithm,
uninformed about the topological structure of the target area spend signif-
icant time exploring areas without much information, such as open spaces

77

Fig. 4.14 Area exploration – unexplored points of interests in the time for variable number
of plains using zig-zag exploration algorithm.

Fig. 4.15 Area exploration – unexplored points of interests in the time for variable number
of plains using DVRP-based exploration algorithm.

78

Fig. 4.16 Area exploration – unexplored points of interests in the time for 1 plane using
zig-zag or DVRP-based exploration algorithm.

Fig. 4.17 Area exploration – unexplored points of interests in the time for 3 plane using
zig-zag or DVRP-based exploration algorithm.

79

Fig. 4.18 Area exploration – unexplored points of interests in the time for 5 plane using
zig-zag or DVRP-based exploration algorithm.

Fig. 4.19 Area exploration – time needed for exploration of all points of interests by
varying number of plains for zig-zag and DVRP-based exploration algorithm.

(e.g., desert in our example scenario). Observe also, that the two compared
methods should perform equally in situations when the topology of the target
area is apriori unknown. In such a situation, it makes only sense to feed the
DVRP-based method with odes of interest uniformly distributed on a grid
over the target area.

80

The performance and scalability to the number of plains for both algo-
rithms are shown on Figures 4.14 and 4.15. In both methods, the area is
explored efficiently with about 6 plains. DVRP-based exploration is scien-
tifically better in all configurations. Figures 4.16, 4.17, and 4.18 shows the
comparison of both method for 1, 3, and 5 plains.

The performance of DVRP-based exploration proofs to be better than zig-
zag in our scenario. Figure 4.19 shows the DVRP-based exploration method is
about 100% faster than zig-zag exploration method. Experiment results show
notable steps in the time, where only minimal number of nodes are explored.
It corresponds to the situation, where the plains are flying over desert areas
or making turns on the upper or lover part of the area. These blind steps
are not significant in the results of DVRP-based method, because plains are
optimize their routes across the points of interests. The only exception is a
situation when the route planning heuristics fails to provide non-repeating
route across points of interest (i.e. plain is passing already explored nodes)
or there is need for longer flight over non interesting area (can bee seen for 1
plane in Figure 4.15).

4.4 Towards mission planning and multi-agent plan
repair

As already indicated above, our main achievement along the research tracks
leading to multi-agent mission planning and plan repair was the survey of the
state-of-the-art results in the multi-agent planning research and first steps
towards a theoretical analysis and a framework for multi-agent plan repair.
The prototyping and development work was shifted into the corresponding
workpackages of the related continuation project Tactical AgentScout,
where these became one of the major research foci of the project. In the
following, we include excerpts from the Tactical AgentScout M3 report
as delivered in July 2010.

4.4.1 Multi-agent mission planing: brief survey of the
state of the art

Since the rise of interest in autonomous agents and multi-agent systems dur-
ing the last decade of the last century, the problem of multi-agent planning
and coordination in groups of cooperative self-interested agents stands in the
focus of the AI scientific research community. In the past, the sheer computa-
tional complexity of the problem on one hand and its inherently decentralized
character on the other led to abandoning of the concept of centralized plan-
ning for teams of agents. The first reason is a consequence of the observation

81

that multi-agent planning subsumes the problem of planning for a single
agent, which in itself is computationally one of the most difficult problems
in the field of artificial intelligence. The latter point stems from the obser-
vation that in not fully cooperative settings self-interested team members
should prefer to disclose only as little information as possible about their
internal plans. This in turn discourages applications of classical centralized
planning and leads to just-in-time coordination techniques, such as applica-
tion of Contract-Net Protocols [11], i.e., coordinating only when a real need
arises. While in the meantime a number of more, or less rigorous approaches
based on techniques such as plan merging, plan negotiations, task delega-
tion (cf. e.g., [3]), or distributed continuous plan monitoring and repair [4],
etc., arose, only recently we witness emergence of more compact fundamental
theoretical results and rigorous approaches in the field. One of the most inter-
esting instances are the theoretical multi-agent planning complexity results
by [2]. One of the factors enabling reconsideration of centralized multi-agent
planning for coordination in the AI planning community was the tremendous
increase and ubiquity of widely available computational power which in turn
enables application of state-of-the-art centralized planning algorithms in this
domain.

4.4.2 Multi-agent re-planning and plan repair

Plan repairing is a process of partial adaptation of a plan during its execution
according to new conditions in the environment. The plan has not to be
altered as a whole, but only its local part which is inconsistent with the
new conditions, has to be changed. On the contrary, re-planning is a process
of restarted planning during execution of a plan. The new planning process
starts from the current state under the current context. Re-planning do not
reuse any parts of the old (inconsistent) plan.

The research challenge for the frame of plan repairing and re-planning in-
clude finding answers for questions as: “For what problem types we need plan
repairing and for what re-planning?” The hypothesis supporting plan repair-
ing approach requires local and relatively rare unpredictable effects. The re-
planning approach do not care the amount or impacts of the unpredictable
effects, as the planning process has to be always run from the current state
to the goal state. On the other hand, re-planning requires larger amounts of
information to be shared among the planners (agents) in order to reconstruct
the global state and context of other agents.

Additionally, we hypothesize two other important types of unpredictable
world effects from the perspective of the deliberative/reactive planning sys-
tems and approaches. The first one is a stolid effect and the other one is a
opportunistic effect. A stolid effect causes only a specious plan inconsistency
(e.g. solvable by simple ignoring of the effect) where such effects can be effec-

82

tively tackled by the plan repairing approaches. An opportunistic effect can
even improve the whole plan provided that it is properly exploited. The op-
portunistic effects should be probably more re-planning friendly, as the plan
repairing is a local process and can not simply consider the global state and
the neighboring agents’ context.

For an experimental validation and evaluation of the outlined hypotheses
we have designed a testing scenario in two levels of abstraction. The next
section summarizes the key principles and elements of the scenario.

Plan Repairing Formalization

The research focuses mainly on a direction from centralized simple plan re-
pairing algorithms towards decentralized localized techniques based on multi-
agent principles of negotiation and various kinds of commitments.

The design considers two main blocks of the planner and repairer. The
input of the planner is a planning problem including possible actions (see
below) and the output is a plan for multi-agent system (aka MAS plan, see
below). The repairer requires a MAS plan as an input and returns another
repaired MAS plan. The complete execution process takes a planning problem
Π as an input, output is True if the goal state SGoal was achieved and Fail
if the goal state cannot be achieved. As a side effect of the algorithm the
mission is planned, executed and prospectively a number of times repaired.

The planning function is denoted as plan(...), the plan repairing function is
denoted as repair(...), and a plan simulating function returning a simulated
state after k steps using a plan P is denoted as simulate(...). An action
execution function is defined as:

exec : S × S × S → S,

(σ,Adel, Aadd) 7→ (σ ∪Adel) \Aadd,

where other definitions can be also considered in the future (e.g., (σ,Adel, Aadd) 7→
σ). The state S and action effects Aadd, Adel will be precisely defined in their
respective sections.

Planner

A planning problem Π is defined using a set of agents Ag (defined only using
their actions a, consisting of preconditions pre, add effects, and delete effects
del), states S described using propositional variables of language LWFF , ini-
tial state SInit, and goal state(s) SGoal. A planning problem definition Π
follows:

83

Π = (Ag, S, SInit, SGoal) ,

Ag = (A1, ..., An) ,

Ai = {{pre}a{add}{del}|
a ∈ Labels, pre ∈ LWFF , del ∈ LWFF , add ∈ LWFF ∪ {ε}},

ε = {∅}e{∅}{∅}, e ∈ Labels,
S ⊆ 2LWFF ,

sInit ∈ S,
SGoal ⊆ S.

Input of the planner is a problem Π including the actions. Output of the
planner is a MAS plan. MAS plan is defined as follows:

P = (Pl1, ..., P ln) : ∃m > 0 :

(Pli = a1, ..., am : aj ∈ Ai) ∧
∧ (∃s0, ..., sm : sk ∈ S : sk+1 = sk ⊕ 〈Pl1(k), ..., P lm(k)〉) ∧

∧

∀k : 1 ≤ k ≤ m :

n⋃
j=1

add(Plj(k))

 ∩

n⋃
j=1

del(Plj(k))

 = ∅

 ∧
∧ (s0 = sInit) ∧ (SGoal ⊆ sm) ,

s′ = s⊕ 〈a1, ..., ak〉 ≡ (∀1 ≤ j ≤ k : pre(aj) ⊆ s) =⇒

=⇒

s′ = s \

k⋃
j=1

del(aj)

 ∪

k⋃
j=1

add(aj)

 .

A MAS plan is a global set of linear personal plans Pl. All the personal
plans has the same length m (the empty points of the plan are filled with
ε). A personal plan consists of actions a of appropriate agent A. The global
states s of the system evolution are induced by the MAS plan actions of all
agents〈Pl1(k), ..., P lm(k)〉 for each step k, if so the plan is considered sound.
In each step k the actions of all agents must be consistent, i.e. add and del
sets have to be exclusive. The initial and goal states have to be taken into
account. Update of a state removes all del effects and adds all add effects.

Repairer

A plan repairing problem R is defined using a planning problem Π, resulting
MAS plan P, a fail (unanticipated) state sF , and a fail step k:

84

R = (Π,P, sF , k) ,
sF ⊆ S : sF 6= sk,

k ∈ 1..m.

An input of a repairer (and a repairing algorithm) is a problem R and it
is defined as:

R,∃i : pre(Pli(k)) ⊆ sF .

An output is a repaired sound and consistent MAS plan P ′ defined as:

P ′ : ∃m > 0 : ∃s′0, ..., s′m :

∀i < k : s′i = si ∧
∧sk = sF ;

sk ∼= s′k = SF .

Failures

We define two plan failure reasons:

1. effects of an action failed to modify the state =⇒ scurr 6= ssim.
2. scurr 6= ssim =⇒ precondition of an action is not satisfied

A weak failure of a MAS plan P execution at the step k with current state
scurr is defined as follows:

∃i : add(Pli(k − 1)) 6⊆ scurr ∧
∧∀j > k∀j : pre(Plj) 6⊇ FailResidue,

FailResidue = add(Pli(k − 1)) \ del(Pli(k − 1)) ∩ scurr.

A weak failure means the failure can be a caused by a stolid world effect
or an opportunistic world effect, i.e. It can be prospectively fixed without
decreasing quality (length) of the plan or even exploiting it, the quality of
the plan can increase (the plan can be shortened). If a failure is not weak, it
is strong.

Naive Repairing Algorithm

The simplest algorithm designed uses iterative re-planning of the plan from
the point of the failure. The complexity of the Naive Repairing Algorithm
respects the inner planner complexity. The worst case complexity is PSPACE-

85

complete (since a general planning fits the PSPACE-complete complexity
class).

Blind Repairing Algorithm

The Blind Repairing Algorithm tries to solve a failure by adopting an al-
ternative action(s) solving the failed effects. Firstly it finds agent(s) which
caused the problem (their effects does not meets the simulated state). A after
the agents are found, for each agent an alternative action is tried to be found
(aka the relaxation de-commitment rule). If the personal alternative cannot
be found a wide alternative is tried (another agent can adopt an action which
solves the failure – aka the delegation de-commitment rule). Finally, even if
the wide alternative cannot be found, the problem is ignored to be solved in
the next steps prospectively. If a failure is ignored the repairing algorithm is
called again in the next step by the main simulation algorithm.

The algorithm is not sound in the pure form as it can miss a solution of the
repairing problem. Its modification towards the soundness can be managed
simply by adding a fail-safe call of the Naive Repairing Algorithm if the
algorithm iteratively fails at the goal state.

The non-iterative form of the algorithm has a linear complexity (itera-
tion over the number of the agents). The iterative extension has a minimal
quadratic complexity (number of the agents times the length of the plan).
Maximal complexity reflects the complexity of the Naive Repairing Algorithm
as it can be used as a fail-safe process.

86

Chapter 5
Discussion and conclusion

5.1 Modelling and integration of Vertical Take-off and
Landing Assets

We provided a path (trajectory) planner for VTOLs augmented with speed
limit constraints taking into account a simple model of (VTOL) dynamics.
Simply said, the planner is providing plans the particular VTOL is able to
fly through. The plan execution, e.g., the simulation of VTOL flying, is done
with respect to its stabilization model with regulators that make the VTOL
movement much more realistic. Even though our model does not take into
account other environmental aspects such as wind, the simulation can give
us insights of VTOLs behavior when fulfilling the mission tasks (such as
surveillance). The experimental evaluation we made brought us quite positive
results even though the method we introduced should be investigated more
thoroughly (also from a theoretical point of view) to provide more general
and brighter claims.

5.2 Planning in Dynamic and Resource Constrained
Environments

We have developed multi-agent solver based on task allocation for domains
of tracking, surveillance, and exploration taking into account high dynamism
of the environment and heterogeneous UAVs teams. The performance and
features of this approach has been evaluated in various scenarios and proofs
its applicability in presented domains.

Further improvements can go towards better incorporation of the dynamics
and constraints of the resources (e.g. UAVs and VTOLS) in the solver heuris-
tics. The local agents planners should take into account situational conditions
of the resource, it’s dynamics, and more detailed model of capabilities. The

87

conjunction of the multi-agent solver described in Chapter 3 and the VTOL
trajectory planning with full dynamics modeling described in Chapter 2 may
provide additional improvement of the presented methods.

The high degree of dynamism in presented scenarios provides the need of
frequent planning and allocation requests. Another further improvement may
focus to flexible planning horizon to reduce the computational complexity
of the local path planner. Preliminary experiments promise low impact to
algorithm efficiency when limiting the number of tasks taken into account
by local planners. The definition and implementation of flexible planning
horizon with respect to the properties of tasks should provide reduction of
computational needs.

5.3 Integrated coordination for mixed information
collection activities

We have developed a novel technique for area exploration based on distributed
multi-agent task allocation and evaluated it against a naive uninformed al-
gorithm. Furthermore, we have developed an integrated mission scenario in-
volving multiple phases which demonstrates various types of information col-
lection tasks, such as exploration, surveillance and on-demand tracking. The
fully configurable scenario will allow us in the future to test interaction of
various information collection tasks supporting ground mission.

The inspirations for future work in the context of this workpackage include

1. research towards further extensions and advances on the configurable mis-
sion framework, with a special focus to extend the mission specification
language and execution technology to enable partially ordered mission
plans and contingency plans

2. study of interactions among various mission-level goals w.r.t. the tasking
of the individual team members. This line of research ultimately leads to
deeper investigation of problems involving multi-agent mission planning
and plan repair. We intend to expand on this topic in the on-going research
project Tactical AgentScout.

3. one could investigate coordination multi-agent techniques in conditions of
failing communication. In the here reported project, we assumed perfect
communication links between the agents.

88

References

1. E. Börger and R. F. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, 2003.

2. R. I. Brafman and C. Domshlak. From one to many: Planning for loosely coupled
multi-agent systems. In J. Rintanen, B. Nebel, J. C. Beck, and E. A. Hansen, editors,
ICAPS, pages 28–35. AAAI, 2008.

3. M. de Weerdt and B. Clement. Introduction to planning in multiagent systems. Mul-
tiagent and Grid Systems, 5(4):345–355, 2009.

4. M. desJardins, E. H. Durfee, C. L. O. Jr., and M. Wolverton. A survey of research in
distributed, continual planning. AI Magazine, 20(4):13–22, 1999.

5. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

6. P. Novák. Behavioural State Machines: programming modular agents. In AAAI
2008 Spring Symposium: Architectures for Intelligent Theory-Based Agents, AITA’08,
March 26-28 2008.

7. P. Novák. Jazzyk: A programming language for hybrid agents with heterogeneous
knowledge representations. In Proceedings of the Sixth International Workshop on
Programming Multi-Agent Systems, ProMAS’08, volume 5442 of LNAI, pages 72–87,
May 2008.

8. P. Novák and J. Dix. Modular BDI architecture. In H. Nakashima, M. P. Wellman,
G. Weiss, and P. Stone, editors, AAMAS, pages 1009–1015. ACM, 2006.

9. P. Novák and W. Jamroga. Code patterns for agent-oriented programming. In Proceed-
ings of The Eighth International Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS, 2009.

10. P. Novák and M. Köster. Designing goal-oriented reactive behaviours. In Proceedings of
the 6th International Cognitive Robotics Workshop, CogRob 2008, ECCAI co-located
workshop, July 21-22 in Patras, Greece, pages 24–31, July 2008.

11. R. G. Smith. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Trans. Computers, 29(12):1104–1113, 1980.

89

Appendix A
Demonstators

VTOL Demo

In the first mentioned demonstration, the integration of the newly designed
and implemented VTOL model and hex-grid planner is presented. The demo
is based on the Tactical AgentFly I scenario, where the CTOL UAVs pro-
vided a surveillance mission. Since the VTOL algorithms were implemented
into the AgentFly system, the possible tasks of the VTOLs copy the tasks
available for the CTOL UAVs. They are rectangular zig-zag surveillance with
decentralized partitioning of the area and tracking of a group of ground units.
The demonstration also shows an integration of heterogeneous assets. In one
group, the CTOL UAVs operates and in the other the VTOLs are used and
tasked from the Common Operational Picture interface.

The model of the VTOL uses the presented dynamics simulation. It is
visible especially in the turns where the trajectory controllers tries to hold
the helicopter in the pre-planned trajectory. The planning process of the
VTOLs can be visualized for each helicopter. Besides the trajectory and flight
corridor, also the hex cells expanded in a state-space can be visualized. The
blue hex cells represent elements in the OPEN list and the green hex cells
represent the planned hex-grid plan.

MxN Surveillance Demos

The three MxN Demos present the proposed three algorithms for the area
surveillance (a) Randomized Target Selection Algorithm, (b) Greedy Solver
with Collective Allocation, and (c) Dynamic Vehicle-Routing Problem (DVRP)
Multi-Agent Solver. The demos show various combinations of the number of
the assets providing the surveillance and the ground targets. In the demos,
the mobility model of the ground targets uses a random choice of next direc-
tion in each node of the street graph. It implies, the targets move randomly
through the village staying always on the streets. The UAVs uses a conical

91

sensor with the occlusion simulation. Exclusive of the Randomized Algorithm,
the remaining two methods uses an intra-agent communication channel for
the exchange of the information needed by the algorithms.

Mission-centric Demo

The mission of the Mission-centric Demo begins with a group of hostiles
(Red Forces) and a group of allies (Blue Forces). The hostiles are already in
the village around a safe-house (the safe-house can be randomly placed by
the scenario configuration). Additionally, there are other hostiles randomly
spread over the village (small groups of 1-3 persons). The allies initially come
at an assembly point from an edge of the world. An arbitrary number of
UAVs is also supporting the allies.

The task of the Blue Forces is to cross the village and set an perimeter
around the safe-house. If the allies run into a group of hostiles, they have to
split into two groups (the smaller group must outnumber the hostiles of 1).
The smaller group start to pursuit the hostiles. The hostiles will randomly
flee through the village. The resting group will continue in their mission
towards the safe-house. The fleeing hostiles can be captured by the allies.
Allies without pursued hostiles will try to return to the main group of the
forces. If a pursuing group cannot be further split, it picks only one (sub-
)group of fleeing hostiles and continues the pursuit. The number of the allies in
the main group (securing the perimeter) must not decrease under a constant.
If there are no hostiles around the safe-house, the allies go to an extraction
point. This behavior defines the context for the UAVs supporting the allies.

The mission has five main phases (waiting for the Blue Forces, ingress
with pursuit, setting of the perimeter, regress, final transport). All these
parts are covered by the UAVs with various behavior. In the first phase,
all the UAVs are required to do a area search over the complete area, until
the safe-house is found. When the safe-house is found, the UAV start to do
complete area surveillance (using the Zig-zag algorithm). Then the first group
is designated (all the allies) and the second phase begins. Always, if a new
(sub-)group of the allies is formed (by the splitting), one UAVs is tasked to
start to track the group to provide a tight surveillance of the area around
the (sub-)group. Always, if two groups merges, the UAVs can continue in the
complete area surveillance. In the third phase, the UAVs are tasked to do a
area surveillance in a wider area around the safe-house. In the fourth phase,
one of the UAVs starts to implicitly do a tracking of the only group left (all
the allies) supporting them during the return. In the last fifth phase, all the
UASs are tasked to do the complete surveillance again. The UAVs use the
DVRP-based MxN tracking algorithm if there is more blue ground groups
than the number of the UASs in the area.

The behavior of the units is done by a reactive rule-base system and im-
plemented in the Jazzyk language.

92

Exploration Demos

The last two demos presents the difference between the Zig-zag surveillance
algorithm proposed in the first phase of the Tactical AgentFly project and the
surveillance based on the DVRP Multi-Agent Solver. The scenarios were used
for the experiments comparing the two proposed and implemented methods
in the two phases of the project. The environment setting is based on the
MxN Surveillance Demos, but the ground targets are omitted and the metrics
is based on the absolute number of observed street graph nodes, i.e. the
crossings. The sensor also is conical with the occlusion simulation.

93

Appendix B
Technology overview

The architecture of the system is based on the Java programming language
(additionally, the Jazzyk language is used together with Prolog in the mission-
centric rule definitions). The multi-agent platform A-globe is used as a com-
munication layer and agent handling container for the agents. The A-globeX
Simulation is based on the A-globe Platform and simulates the entities be-
having in the environment (see the FigureB.1).

A-globe

Java Virtual Machine (JVM)

A-globeX Simulation

vehicles

pilot agents driver agentsmodels

environment modelling

motion modelling sensing modellingcommunication

robots watercrafts humans

algorithms

multi-agent techniques

planning coordinationnegotiation reasoning

airplanes

Fig. B.1 The architecture of the A-globeX Simulation Platform

The three surveillance algorithms together with the Mission-centric sce-
nario were implemented in a lightweight wrapper of the A-globeX Simulation.
The wrapper enables simpler entity description and definition of the agent
logic. Additionally, the wrapper acts as an experimental platform. The ex-
periments can be configured and run directly in programming language (in
this case Java) and can be simply chained into more complex experiment
batches. The course of the simulation is optionally controlled from the Time
Provider Agent of the A-globeX Simulation. The agent behavior in the wrap-
per calls using the A-globe Topics sub-system the Tactical Module in the

95

AgentFly system. The plane behavior computes the positions of the planes
and helicopters in the space and reports it back to the agent behaviors in the
wrapper.

Visualization of the scenarios is based on a 3D Visio tool integrated with
the entity behaviors of the A-globeX Simulation. As a 2D output, it is used
a lightweight visualization package of the wrapper using Java2D extension
with accelerated drawing.

96

