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Abstract With the growing complexity of multi-agent applications and
environments in which they are deployed, there is a need for development
techniques that would allow for early testing and validation of application
design and implementation. This is particularly true in cases where the
developed multi-agent application is to be closely integrated with an
existing, real-world system of multi-agent nature.
Drawing upon our previous experiences with development of complex
multi-agent applications, we propose simulation-aided design of multi-
agent systems (SADMAS), a methodology tightly integrating simulations
of the target system into the MAS application development process. In its
heart lies the use of mixed-mode simulation, a simulation where parts of
the deployed application operate in the target environment and parts re-
main simulated. We argue, that employing SADMAS process contributes
to reduction of risks involved in development of complex MAS applic-
ations, as well as it helps to accelerate the process. Besides describing
the capstones of the SADMAS approach and consequences of its applic-
ation, we also illustrate it’s use on a case-study of a next-generation
decentralised air traffic management system.

1 Introduction

In today’s world, we are increasingly surrounded by and reliant on complex sys-
tems and infrastructures. Often, these systems behave far from the optimum or
even highly undesirably. Roads in our cities are congested, plane trips frequently
delayed, computer networks routinely overrun by worms and electricity grids fail
in split-second cascade reactions. Our systems have become massively interwoven
and interdependent, making both highly positive and negative chain reactions
possible in critical systems. They have also grown increasingly decentralised, in-
terconnected and autonomous, with more and more decisions originating at the
level of individual subsystems rather than being strictly imposed top-down.

The paradigm of multi-agent systems is being increasingly successfully ap-
plied in modelling and engineering of complex distributed systems. Examples of
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current and future applications of the paradigm include e.g., civilian air traffic
with the requirement to double the capacity of the airspace within next ten
years; smart energy grids automatically balancing energy production and con-
sumption between interconnected yet independent producers and consumers;
disaster and emergency management operations, which in the future will rely
on the coordination of heterogeneous ad-hoc teams of semi-autonomous robotic
entities and networks of unattended sensors; or intelligent buildings comprised
of large numbers of interconnected autonomous sensors and actuators adapting
to the activities of their human occupants.

Development and deployment of such complex multi-agent systems is a chal-
lenging task. Large numbers of spatially distributed active entities characterised
by complex patterns of mutual interaction and feedback links give rise to dy-
namic, non-linear emergent behaviours which are very difficult to understand,
capture and, most importantly, control. We argue that because of the complexity
of the above-described types of applications, it is no longer possible to develop
such systems in a linear, top-down fashion, starting from a set of requirements
and proceeding to a fully developed solution. Instead, more evolutionary, iterat-
ive methodologies are needed to successfully approach the problem of develop-
ment of complex multi-agent systems.

In this paper, we give a preliminary outline of the simulation-aided design
of multi-agent systems (SADMAS) approach, a development methodology rely-
ing in its core on the exploitation of a series of gradually refined and accurate
simulations for testing and evaluation of intermediary development versions of
the engineered application. In particular, we propose and argue in favour of us-
ing mixed-mode simulations in which the implemented application is evaluated
against a partly simulated environment. I.e., some aspects of the test environ-
ment are real parts of the target system while some remain simulated. Over
time, the extent of the simulation will be decreasing until the application fully
interacts with the target system itself. We argue that this approach helps to ac-
celerate the development of complex multi-agent applications, while at the same
time keeps risks and costs associated with destruction or loss of the tested assets
low. Our goal is not to give the ultimate answer to the problem of developing
complex systems, but rather to synthesise our past experiences with building
such systems and to initiate a discussion on the role simulations can play in
making engineering of such systems more efficient.

In the following section, we introduce the conceptual framework, the pro-
cesses of the SADMAS approach, and discuss the scope of its applicability. Sub-
sequently, Section 3 distills our past experiences with the early version of the
SADMAS approach. We put forward a set of methodological principles to be
respected during application development, in order to facilitate successful ap-
plication of the SADMAS methodology. Finally, in Section 4, we discuss tool
support for the SADMAS approach, in particular the core features an ideal
simulation platform facilitating the introduced methodological principles should
provide. Finally, sections 5 and 6 conclude the paper by a discussion of related
work and some final remarks.
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Throughout the paper, the discourse is accompanied by a running example
exemplifying the main principles of the SADMAS approach in a case-study ap-
plication in the air-traffic management domain developed in our research centre.
Before diving into the core of the paper, let us first introduce the case-study
problem.

Running case study: free-flight-oriented air traffic control

The ever-growing volume of air traffic is approaching the stage when the cur-
rent techniques for its management begin to constrain its further expansion. The
main limiting factor is congestion of the predefined, reserved flight corridors used
by air traffic controllers for long-distance routing of flights in the airspace. Addi-
tional grand challenge stems from the need to integrate autonomous unmanned
aerial assets with manned air traffic. Small unmanned aerial vehicles (UAVs) are
often used for tasks such as policing and emergency area surveillance, and need
to be able to operate near airports with heavy civilian air traffic. Current air
traffic management systems cannot efficiently support integration of such UAVs
and at the same time handle future higher traffic densities. Sophisticated, intel-
ligent technology is needed to enable further growth of the global, manned and
unmanned air traffic.

A promising solution concept is represented by the free-flight-oriented ap-
proach which suggests moving away from the current centralised traffic control
based on the predefined flight corridors towards decentralisation. In the extreme,
the free-flight air traffic control should be based on on-line negotiation schemes
and consequently moved on board of the (un-)manned aircrafts. This radical
shift is expected to provide a more efficient use of the available airspace and
improve support for dynamic flight trajectory re-planning, as well as collision
avoidance. Autonomous decision making in such scenarios is especially import-
ant in the case of dynamic, partially unmanned operations in police and military
settings.

As the running example for the following discourse, we will use AgentFly ap-
plication, an agent-based free-flight-oriented air traffic management and control
system developed in Agent Technology Centre of the Czech Technical Univer-
sity in Prague [17,13]. The aim of the project is to i) propose and implement
decentralised flight control algorithms, subsequently ii) evaluate them in an ex-
perimental planning system for civilian air traffic control simulating the real
traffic in the US National Airspace (NAS), and finally also iii) port and evalu-
ate the proposed control algorithms on board of real aircrafts of different types
(fixed-wing aeroplanes, as well helicopters).

2 Simulation-aided design of multi-agent systems

At the core of the SADMAS approach lies use of multi-agent simulations for
iterative application evaluation. Results of the evaluations subsequently serve as
a driver for further advancement of the process. In the following, we introduce
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Figure 1. Conceptual scheme of the SADMAS approach.

the core concepts of the approach, sketch the application development process
it induces and finally elaborate on conditions for its applicability.

2.1 Core concepts

SADMAS approach revolves around the following three multi-agent concepts:

target system: a real-world system which should be controlled by means of
the developed multi-agent application;

multi-agent simulation: an agent-based simulation of the target system. In
general, the simulation can have different (a) level of abstraction (how much
is the target system simplified) and (b) scope of abstraction (which parts of
the target system are simplified);

multi-agent application: a decentralised, multi-agent software system designed
to control some (or all) aspects of the target system.

2.2 Development process

One of the main problems of using simulations as an intermediate tool for testing
and evaluation of implemented application, which is nothing particularly novel
per se, is maintenance of relevance of the simulation with the target system.
In result, it might easily happen that while the implemented application runs
smoothly in the simulated environment, it breaks down upon its deployment in
the target system. We argue, that one of the main reasons for such failures is
breaking of relevance of the simulation to the target real-world system. As an
example of such a failure, consider a situation when in the simulation of an air
traffic management system developers assume perfect communication links used
in the multi-agent negotiation. Even though the assumption is not unreasonable
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as such, the real reliability of communication links could be e.g., 95%, the actual
deployment of the application validated against such a simulation could result
in severe problems late in the deployment stages of the project. Since it is often
extremely difficult, if not plainly impossible, to detect all such misalignments
right at the beginning of the project, the development process should ensure
that they are discovered as soon as possible in early stages of the development
process. The SADMAS approach is based on incremental development of the
application hand-in-hand with a series of ever more accurate simulations it is
evaluated against. On the top level, the overall process of developing a multi-
agent application using the SADMAS approach consists of the following steps:

1. Collect the (multi-agent) application requirements, assuming it will control,
or interact with, the physical (multi-agent) system.

2. Repeat the following steps iteratively:
(a) Choose the appropriate simulation level of abstraction and application

feature coverage for the particular process iteration. The choice of the
appropriate level of abstraction of the application iteration directly res-
ults in determining which parts of the simulation will be replaced with
interfaces to the real-world target system.

(b) Building upon the simulation from the previous iteration of the pro-
cess, construct a refined multi-agent mixed-mode simulation (cf. Subsec-
tion 4.4) of the target system. The simulation should focus on the critical
features of the iteration, such as the nature of inter-agent interactions
and interaction with the environment so that it respects the chosen level
of abstraction of the process iteration.

(c) Based on the requirements collected in (1) design and develop the ap-
plication (multi-agent control mechanism) w.r.t. the chosen application
feature coverage.

(d) Test, debug and evaluate the application (or application variants) de-
veloped in (2c) on the multi-agent simulation constructed in the step
(2b).

(e) Iteratively repeat the steps (2c) and (2d) until sufficient level of applic-
ation reliability w.r.t. the chosen set of features on the chosen level of
abstraction is reached.

3. Once the simulation is either completely replaced with the physical target
system, or sufficiently tested, perform final evaluation and verification of
the application directly interacting with the target system and deploy the
application.

From some point on in the development process, the simulation refinement should
result in replacement of some aspects of the simulation with direct interfaces
to the target system. I.e., with the advancing stage of the application devel-
opment, it is increasingly tested against relevant aspects the real-world target
system. The consecutive replacement of aspects of the simulation with interfaces
to the physical target system leads to subsequent refinements and adaptations
of the mixed-mode simulations eventually resulting in complete replacement of
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the initial simulation of the target system with the system itself. By keeping the
tight alignment between the intermediate states of the system simulation and
the application, the process ensures, resp. maintains relevance of the developed
application w.r.t. the target system and the chosen level of abstraction at the
process iteration.

In many cases, the implementation of the step (2c) will not lead to a straight-
forward process. Rather, in order to find the proper set of partial solutions to
cover the target feature set at the appropriate level of abstraction, the developer
will be often forced to implement several versions of the application. Only after
performing the evaluation step (2d), on the basis of the collected experimental
results the implementer is able to decide which solution version will be carried
to the next iteration of the process. Thus, the proposed approach is not strictly
linear, such as e.g., the waterfall model inspired processes.

Figure 2 visualises the iterative process described above and highlights the
role of mixed-mode simulation in the overall architecture. In order to ensure
that the application can be ported seamlessly through the series of ever more
accurate simulations without significant additional expenses, the design of the
multi-agent application has to meet several requirements which we expand upon
later in Section 3.

2.3 Scope of applicability

In order for the SADMAS approach to be applicable to a particular problem
domain, it is critical to analyse the relationship of the target system vs. the
requirements on the developed application. In particular, the target system in
which the application will be deployed has to be of multi-agent nature and should
manifest some kind of emergent, collective behaviour on its own. Furthermore, we
assume that the developed application will be deployed in hardware and situated
in the target system. Due to its reliance on safe simulation-based evaluation, the
SADMAS approach is particularly suitable for applications in which at least one
of the following conditions hold

– the cost of an individual HW unit is high, and risk of a failure that may
result in loosing an asset is not negligible;

– application testing may result in undesirable, possibly harmful changes of the
environment, such as when the safety of material resources and/or humans
would be endangered;

– the cost of running the HW experiments is high and proportional to the
number of deployed assets; or finally

– the application operates in an environment which strongly influences the
behaviour of the application, i.e., it is difficult and/or costly to set up test
conditions so that all critical aspects of the application can be evaluated.

Example problem domains, target systems, potentially suitable for application
of the SADMAS methodology include air traffic, public transport system, energy
grids including consumers and producers, or peer-to-peer file sharing network,
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Figure 2. Relation and processes between the components components of the SAD-
MAS approach.

etc. The possible developed applications in such domains include automated
aircraft, resp. vehicle flight planning and collision avoidance mechanisms, con-
trol and management mechanisms for negotiating electricity consumption and
production between entities on the smart grid.

The scope of simulations used as the intermediary testing platform would
typically differ between different stages of the development process. The devel-
opment may initially be done completely in an isolated simulation, while later its
parts would be replaced by the real-world system and eventually, in the ultimate
deployment setup, the application would solely interact directly with the target
system.

AgentFly case-study analysis: Let us analyse the AgentFly case-study using the
core concepts of the SADMAS approach. The target system is clearly the NAS air
traffic system and the related infrastructure. Let’s simplify the problem and con-
sider only unmanned aeroplanes. These assets usually operate in geographically
bounded environments containing various special-use air-zones, termed no-fly
zones. The operation of an aircraft is determined by i) the take-off location,
ii) the landing location and iii) set of time-space geographical waypoints, e.g.,
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specifying a surveillance pattern. The multi-agent application comprises the set
of autopilot control algorithms on board of each asset. The application should
control the movements of a number of aircrafts along collision-free trajectories
that pass through the specified geographical waypoints, while avoiding the no-fly
zones. The functionality of the application can be decomposed into two layers:

– individual planning layer aiming at planning a smooth 4-dimensional (space
and time) trajectory passing through the waypoints for the aircraft; and

– multi-agent planning layer aiming at collision avoidance of a set of aircrafts,
i.e., detecting potential future collision and using peer-to-peer negotiation in
order to determine the set of deconfliction manoeuvres.

The application further needs to fulfil a number of non-functional requirements,
in particular i) near-real-time responsiveness, ii) scalability to a very high number
of assets and iii) reliability. These requirements make it impossible to design the
application in isolation from the target system.

3 Design considerations of the SADMAS approach

The SADMAS application development process leads to several issues, which
should be considered and tackled early on in the development process. Below, we
introduce some of the most important ones. Concretely, we discuss the bottom-
up system evolution, an important stance to be adopted in the development
process. We continue with stressing the need to support elaboration tolerance
both of the application design, as well as the mixed-mode simulation used for
evaluation of the application iterations. Finally, we conclude with a set of issues
ensuring cross-platform portability of the application w.r.t. the target deploy-
ment infrastructure.

3.1 Bottom-up system evolution

Ideally, the SADMAS process will proceed from testing of the first application
prototype against a full environment simulation, through replacements of the
rudimentary and simpler interfaces to the physical target system, eventually to
replacement of the simulation with the target system itself. In consequence, the
design of both the application and the simulation cannot be based on a blueprint
resulting from a green-field-style top-down analytical procedure. The discussion
of the scope of applicability of the SADMAS process (Subsection 2.3) implies that
typically, the nature of the implemented application will be such that it is being
constructed into an existing target system, rather than being developed from
scratch including its environment. In result, the overall behaviour of the applic-
ation, together with the target system cannot be characterised in separation and
must be considered as a whole. As an example, consider the running example,
the AgentFly air traffic management system, which will be typically seamlessly
deployed into the already set up and strictly regulated airspace infrastructure.
From the point of view of a single agent within the system, an unmanned aircraft,
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the behaviour of the other aircrafts is a part of the environment behaviour. How-
ever, these aircrafts are in fact components of the implemented application on
par with the agent in consideration. The iterative SADMAS process is based on
tight coupling between the application and simulation development and stresses
growing accuracy of the simulation w.r.t. the target system. I.e., it supports the
bottom-up approach to maintaining the relevance of the simulation to the de-
ployment environment by gradual replacement of ever more significant parts of
the simulation with the real-world APIs. Thus it provides a solid support for the
evolutionary application development principle.

In AgentFly: The planning and collision avoidance application in AgentFly has
been designed in an evolutionary manner respecting the bottom-up approach to
interaction with the environment. The principle objective was to delegate the
aircraft planning autonomy on board of the UAVs and thus minimise the role of
the centralised point of control. Several variants of the negotiation mechanism
used for collision avoidance have been developed (including the pair-wise and the
multi-party negotiation schemes) and evaluated on a high-fidelity simulation of
UAV flight and sensor behaviour. Experiments on a range of synthetic, as well as
real-world inspired scenarios provided empirical evidence that the simpler and
more robust pair-wise collision avoidance algorithms are sufficient even in the
most extreme cases.

3.2 Elaboration Tolerance

As a consequence of the SADMAS process, at any specific development itera-
tion, the application and simulation releases must be frozen and ideally further
iterations should not require change reverse, or backward modifications of the
features implemented in previously frozen releases. The strong emphasis of the
process on evolutionary development implies that already the initial applica-
tion design and layout provides sufficient flexibility w.r.t. future changes and
adaptations. I.e., more than with other application development methodologies,
SADMAS approach calls for strong emphasis on elaboration tolerance of both,
the design, as well as the actual implementations of the application and the
simulation. Paraphrasing the origin of the term in [12], a design is elaboration
tolerant to the extent that it is convenient to modify it to take into account new
phenomena or changed circumstances. In particular, transposed to multi-agent
application development domain, this leads to a requirement that the design
should be based on component-based practises with well-thought-of set of APIs,
that, ideally, do not change during the development process.

While nowadays the call for flexibility of software design is relatively obvious
and straightforward (mostly due to maintenance reasons), often it is difficult
to ensure the flexibility w.r.t. right kind of future modifications. Without going
deeper into this issue, we see a potential for methodological support assisting
multi-agent systems programmers and designers to understand the elaboration
tolerance implications on their designs in order to assist them to make the right
and informed decisions in the early stages of the application development process.
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In AgentFly: The planning algorithms developed in AgentFly project [18] have
been designed so that they perform general, yet extremely efficient on-the-fly
planning in complex 4D space (spatio-temporal planning). While this design
decision did not break elaboration tolerance and kept options open w.r.t. the
potential uses of the algorithms in various types of aircrafts, at certain stage we
realised that the data structures used in planning algorithms were too closely
linked with the implemented planning algorithms tailored for Cartesian 3D co-
ordinates. At the point, when the systems needed to scale up to the level of US
National Airspace, there was a requirement to upgrade the planning algorithms
from Cartesian coordinates to GPS coordinate system, which however turned
out to be a major issue. Due to the efficiency requirements, elaboration toler-
ance have not been met and was not foreseen in this aspect of code development.
This design issue finally resulted in major implementation difficulties as large
portions of the already constructed application had to be modified accordingly.

3.3 Cross-platform portability and deployment issues

As a consequence of the gradual shift of the series of mixed-mode simulations
towards interfacing with the real-world target system, the SADMAS process also
dictates gradual transfer of the application from synthetic settings to deployment
on the target platform. In particular, e.g., in the air-traffic management domain
this means gradual porting of the core algorithms for collision avoidance from
synthetic personal computer environment to the actual hardware platform where
it will be finally deployed, i.e., the embedded computers running on board of
the target aircrafts. In order to ensure that such a gradual deployment of the
application to the real-world system is possible, several additional design and
implementation considerations should be respected.

Technically, the elaboration tolerant application development must be sup-
ported from early stages on. The decisions include appropriate choices of pro-
gramming platforms, tools and supporting infrastructure so as to aim at max-
imum cross-platform portability of the application, as well as the relevant aspects
of the mixed-mode simulation.

As far as the application design is concerned, we argue that in the multi-
agent systems context, the initial application design should strive for maximum
decentralisation of decision making of the application components, the agents.
I.e., the multi-agent application logic has to be implemented so that it respects
the actual constraints and properties of the target system, such as bandwidth,
latency, etc.

In order to comply with general real-time properties of many real-world ap-
plication domains, full asynchronicity of the application components, the agents,
should be striven for whenever possible. Even though in general it is non-trivial
and even relatively difficult to implement and especially debug asynchronous
systems, we argue, these difficulties must be overcome in order to be able to
routinely propose and implement elaboration tolerant multi-agent application
designs. We see a great potential in methodological guidelines and design pat-
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terns aiming at assisting developers to work out fully asynchronous multi-agent
systems.

Finally, the design of the mixed-mode simulation must enable and facilitate
the iterative gradual replacement of individual modules with interfaces for inter-
action with the real-world system. It should ensure from the project beginning
on that the individual interfaces to the environment are clearly separated and
defined in a general way so that they closely correspond to the respective aspects
of the target real-world system. This clear separation and modularisation will
later in the process enable the gradual and piece-wise replacement of the API’s
to simulated modules with interfaces to the actual sensors and actuators of the
application to the target system.

Again, while each of the above considerations belongs to standard best prac-
tises of engineering of complex software systems, often they are not respected,
or difficult to consider in development utilising simulations. It is important to
consider in the earliest stages of application development the relevance of not
only the application design w.r.t. the target system, but also of the design of
the multi-agent simulation w.r.t. the target system. It is thus vital to keep a
strong separation between the design of the application w.r.t. the design and
implementation of the simulation itself. Only this way the developer can avoid
the situation when the implemented application works flawlessly when evalu-
ated against a complex simulation, however breaks down when finally deployed
to the target system. Often the primary problem lies not in the design of the
application itself, but in the level of abstraction assumed by the design of the
simulation which simplified some crucial aspect of the target system too far from
the real-world conditions.

In AgentFly: The main constraint in the design of the autonomous collision
avoidance system is the bandwidth and reliability of aircraft-to-ground commu-
nication links, which prevents deployment of a centralised solution. The collision
avoidance mechanism was therefore designed in a fully decentralised manner.
Although each negotiation is managed by a master plane, this plane is chosen
dynamically from within the collision pair and/or group. From the beginning,
the mechanisms was designed as fully asynchronous and its computational and
memory requirements were kept in line with the parameters of aeroplane’s on-
board computers. Altogether, these made the process of migrating the mechan-
ism from simulated aircrafts to real hardware UAV platforms relatively straight-
forward.

4 Requirements on a SADMAS platform

One of the key components of an ideal pragmatic SADMAS toolkit is a platform
for construction, calibration and execution of the series of mixed-mode simula-
tions used for evaluation of the iterations of the developed application. In the
following, we discuss some of the properties such a platform should feature in
order to facilitate the SADMAS process.
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4.1 Adjustable simulation fidelity

The simulation has to accurately and reliably replicate those aspects of the
target system that are critical for the real-world operation of the developed
application. Key aspects that need to be modelled include computation and
communication capabilities of the target system, such as throughput limitations,
communication delays, and communication link failures. In the case of multi-
robot applications, interaction with the environment, i.e., sensors, actuators and
physics of the component on which the application is to be deployed, need to
be also modelled with sufficient fidelity, as it is done in robotic simulators (e.g.,
[11]).

High-fidelity simulations require high amount of resources, both at run-time
but also at the design time when a sufficiently detailed model of the target
system has to be designed, implemented and properly calibrated. The level of
abstraction chosen for the simulation should be balanced with i) the ability
to scale to the required size of the target systems and ii) obtain enough data
about the behaviour of the target system to facilitate precise calibration of the
simulation model. Depending on the focus of the application, the level of detail
required may vary for different aspects of the target system and/or different
parts of the simulation. Multi-scale simulation techniques [10] can be employed
for this purpose.

In AgentFly: The lesson learnt from AgentFly development was that the gran-
ularity of the simulation does not need to be defined a priori and that it is
rather important to decide upon the right level of fidelity for specific scenarios.
Low simulation granularity does not make it believable and would not facilitate
the application migration from the simulation environment to the final system.
On the other hand way too high fidelity may become a resource overkill (both
financially, as well as w.r.t. human resources involved). For the original AgentFly
simulation, the application was modelled as a collective of micro UAVs flying in
perfect conditions. At that stage, the development team was putting its focus
into the fidelity of the physical dynamic model of the flying asset. In later stages,
during AgentFly extension to support air traffic management in the US National
Airspace, the fidelity of the simulation had to be refined towards providing i) a
high precision aeroplane model based on the Total Energy Model of the BADA
(Base of Aircraft DAta) aeroplane performance standards (cf. [7]), ii) full mod-
els of the geographical environment including landing, take-off locations, no-fly
zones and special purpose air traffic sectors; and finally iii) full models of the
weather. The design of the home-developed simulation platform A-globe Simu-
lation [15] turned out to be flexible enough to accommodate the corresponding
adjustments of the simulation without major frictions.

4.2 Rich Environmental Modelling

The problem domains SADMAS approach is suitable for usually concern agents
situated in and interacting with a real-world physical environment. An ideal
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Figure 3. Left: rich environment model in Tactical-AgentFly simulation. Right: dy-
namic partitioning of the environment in AgentFly simulation.

SADMAS simulation platform has to provide abstractions and run-time support
for simulating rich virtual environments. Depending on the type of application,
different modes of interaction with environment have to be accommodated, in-
cluding perception (via sensors) and acting (via actuators) in the environment,
possibly also agent mobility within the environment. Possibly, some applications
may require modelling of the environment dynamics itself (e.g., weather), and
this might also need to be simulated with sufficient precision.

Rich environmental models are supported by robotic simulation platforms
and engines for simulating digital virtual worlds. However, most existing pop-
ular multi-agent-based simulation platforms (e.g., [5,20]), so far only focus at
highly abstracted environments (graphs, grids), though recently support for GIS
concepts has been added. Structurally complex environments involving object
such as buildings are still generally unsupported in general-purpose multi-agent-
based simulation platforms.

In AgentFly: Important part of air traffic simulation is a detailed modelling of
the landscape, the ground terrain and also weather, in particular wind. In the
simulation used for testing collaborative UAV-based surveillance control mech-
anisms [13], we had to model urban terrain, sensors and both the physical, as well
as logical movement of ground units. Figure 3 provides a snapshot of the simu-
lation visualisation involving the urban environment with a number of ground
agents and two UAVs collaboratively performing surveillance and tracking tasks
over the area.

4.3 Simulation scalability

In many application domains, with the advancing SADMAS process iteration,
the size of the simulated target (sub-)system will significantly grow. To accom-
modate to the variable simulation size, an ideal SADMAS simulation platform
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design should emphasise scalability. Both, in terms of growing number of entit-
ies and components of the multi-agent application, as well as the increasing size
and accuracy of the simulated environment. To support the scalability on the
simulation model level, the platform should therefore also support scalability
w.r.t. the growing number computational resources.

The multi-agent-based approach to simulation provides natural decomposi-
tion of the computation process. However, there are two main factors that may
prevent scalability of the simulation. Firstly, it is the super-linear growth in
communication requirements between agents with their growing number, and
secondly, naive employment of the centralised environment simulation design.
The first factor is application-specific and closely linked to the way individual
agents in the target system interact with each other during their operation;
there are no universal techniques by which the problem can be generally ad-
dressed. The bottleneck represented by the centralised environment simulation
design could be eliminated by distribution of fragments of the simulation, i.e.,
partitioning the environment into a number of zones which are each hosted on
a separate computational core. Distributed agent-based simulations are a relat-
ively new concept and platform support for them is relatively limited. We can
distinguish between two types of distribution: i) agents only and ii) agents and
environment distribution. The latter is more complex because it requires par-
titioning the environment state and correctly synchronising it across multiple
machines.

In AgentFly: As a part of the collaboration with the FAA (US Federal Aviation
Administration), it was requested to model the entire US National Air Space
traffic comprising of approximately 75,000 flights a day. Due to high-fidelity of
the simulation required (cf. the above subsections), simulating such a number
of flights turned out to be impossible on a single machine. A fully distributed
simulation was therefore developed, where both the application logic and simu-
lation of the environment was distributed. In the latter case, this was achieved
by dynamically partitioning the environment into a number zones. The Figure 3
depicts the dynamic fragmentation of the environment where each zone was ded-
icated to a single host computer. With the growing number of simulated aircrafts
in the airspace, the environment was re-fragmenting and re-distributing in order
to ensure load-balancing of the entire distributed simulation among the hosts of
the computational cluster running it.

4.4 Mixed-mode support

Mixed-mode simulation, the core element of the SADMAS approach, denotes a
simulation with a capability to replace part of the simulation by the respective
physical component whose state, its sensory inputs and actuator outputs, are
reflected back into the simulation using a phantom simulated entity. Mixed-mode
simulation enables a series of intermediate steps in the validation of the developed
application, between a fully simulation-based evaluation and evaluation on a fully
deployed application. In a mixed-mode simulation, parts of the application logic
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Figure 4. AgentFly UAV hardware platforms. Left, Procerus fixed-wing aircraft with
the development toolkit; Right, LinkQuad vertical take-off and landing quad-rotor
aircraft.

can be tested on a real hardware platform in situations which involve multiple
entities (e.g., an autonomous car driving through a congested city), without the
need to have all the entities physically available. The latter could be either too
costly, or potentially dangerous either for the assets involved, or the deployed
environment itself.

Mixed-mode simulation might be the only way to evaluate the developed
application (prior to a full-scale deployment) in scenarios where the target sys-
tem is beyond our control and cannot be easily used for evaluation, such as
e.g., in urban traffic or human crowds. A fundamental requirement that mixed-
mode execution thus imposes on the simulation platform is the ability of the
simulation to run in, at least, real-time (i.e., one wall-clock second corresponds
to one simulation second). The agent-based tools and platforms would need to
support various levels of state synchronisation so that an easy plug-and-play,
resp. replace-and-forget functionality is provided.

In AgentFly: AgentFly has been successfully tested on physical hardware plat-
form, Unicorn UAV test platform by Procerus Technologies [19] and we are
currently working on porting the relevant application fragments to the Link-
sys LinkQuad vertical take-off and landing aircraft (cf. Figure 4). We already
performed a series of successful experiments with AgentFly planning algorithms
running on the platforms and we are currently adapting the AgentFly simula-
tion platform to be able to accommodate a mixed-mode simulation with several
physical flying assets (2 Unicorn UAVs and 1 LinkQuad aircrafts)

The second AgentFly mixed-mode line of evaluation is w.r.t. the large-scale
air-traffic management systems of the US National Airspace. There we are work-
ing towards mixed-mode mixed-mode simulations of the domain populated with
a number of computational models of the controllers, with several controllers
instantiated with real human air traffic controllers provided by FAA.
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4.5 Evaluation modes

The SADMAS process is in its heart evaluation-driven. I.e., it dictates advance-
ment to the next development process iteration only when the actual release
performs sufficiently well against the current choice of implemented features and
level of abstraction embodied in the iteration of the mixed-mode simulation. Dif-
ferent modes in which the simulation is used result in several different simulation
execution modes which should be supported by an ideal SADMAS simulation
platform:

single instance mode: the goal is to execute a single simulation run in a min-
imum time. This requirement arises whenever the simulation is used during
interactive development and testing of the application. In this case, minim-
isation of simulation time improves the productivity of the programmer.

batch mode: the goal is to execute a batch of simulation runs as fast as pos-
sible. This need arises when performing extensive simulation-based evalu-
ations which involve simulating the system in different configurations.

real-time mode: the goal is to execute the simulation in real-time. This final
requirement arises when performing mixed-mode simulation against the real-
world target system.

If a single host is incapable of running the simulation sufficiently fast, the only
way to perform the single instance and real-time modes is by distributing the
simulation over multiple machines. We discuss the system distribution above, in
Subsection 4.3.

As long as a single simulation instance can fit into a memory of a single
machine, the batch-mode evaluation is often best performed by not distributing
the simulation run, but fitting as many, possibly smaller-scale, simulation runs
on a single host. Our experience shows, that such a setup generally leads to lower
overheads, while we were still able to retrieve reasonable experimental data from
the batch-mode simulations; though this might not hold universally.

In AgentFly: The actual development and debugging of AgentFly relied on the
single-instance execution mode. The need for batch-mode evaluation arose and
became prominent in testing efficiency of the developed collision avoidance meth-
ods. The capability of the multi-agent application has been tested on a series
of super-conflict scenarios in which a number of aircrafts are set to collide in
a single space point. In these scenarios, various aspects of the application per-
formance were tested, such as i) total length of the flight trajectory, ii) flight
safety expressed in the number of near misses, iii) bandwidth requirement or iv)
total computational time. For such experimental setups involving real hardware
assets, the possibility of employing mixed-mode simulations is crucial in order
to minimise the potential risks of the project.

5 Discussion and related work

Some of the issues raised in the Section 3 on application design considerations
have been addressed in the field of agent-based software engineering. Example

16



methodologies include Adelfe [3], a methodology for the design of adaptive soft-
ware situated in unpredictable environments. Gaia [21], general methodology
that supports both the micro-level, agent structure, as well as the macro-level,
agent society and organisational aspects of agent development. Prometheus [14]
methodology provides hierarchical structuring mechanisms which allow design
to be performed at multiple levels of abstraction. Such mechanisms are crucial to
the pragmatics of large-scale complex systems development. Tropos [4] method-
ology puts major focus on agent-oriented requirements engineering perspective.

Though some of the agent-oriented software engineering methodologies provide
support for evolutionary application development, they assume the testing is
done directly against the target environment. They do not explicitly support
simulation-based development cycle in which the testing of the developed multi-
agent application is first done on simulations of the target system. We argue, that
the here introduced methodology of Simulation-Aided Design of Multi-Agent
Systems is orthogonal to the existing methodological approaches and can be
relatively easily combined with them. While traditional multi-agent systems de-
velopment methodologies are to be applied to the overall application design, the
SADMAS approach rather guides developers through the intermediary develop-
ment life-cycle of the project and ensures that 1) the application is continuously
evaluated against relevant and sufficiently accurate simulated environments, and
as a consequence of this, 2) attention is paid to the relevance of the application
w.r.t. relevant aspects of the environment continuously throughout the applica-
tion life-cycle. Here we speak about both knowingly crucial issues and aspects
of the target system, as well as those which are potentially crucial, however not
easily recognised as such in the early phases of application development.

Although, to our knowledge, no general-purpose simulation-oriented agent-
based software-engineering methodologies exist, the SADMAS idea has been
partially applied in specific sub-domains. A good example is the Anthill frame-
work [1] for design, implementation and evaluation of peer-to-peer applications
based on ideas such as multi-agent and evolutionary programming. Besides the
air traffic domain referenced throughout the paper, some of the core ideas of the
SADMAS approach have also been employed in the general traffic and trans-
portation domains, e.g., for designing agent-based demand-responsive transport
coordination mechanism [8], for increasing maritime security [9] and for design-
ing multi-agent control of smart grids [16]. In none of the above cases, however,
the mixed-mode simulation technique has been used.

Regarding the relationship to general-purpose software engineering meth-
odologies, to an extent, the SADMAS process is similar to Test-Driven Devel-
opment [2], although SADMAS comes with a significantly more complex test
evaluation mechanism employing a simulations. To an extent, the stress of the
SADMAS approach on frequent evaluation against more and more accurate sim-
ulation models of the target system integrates elements of continuous integra-
tion [6] approach.

Let us finish with a remark on the cost-effectiveness of the SADMAS ap-
proach. At the first sight, the implementation of mixed-mode simulations in-
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creases the overall cost of development due to introduction of an additional
development step which brings in rather non-trivial costs. The additional costs
of mixed-mode simulation can be hardly expressed a priori and are very ap-
plication domain specific. However, we argue that in the cases when the risks
involved throughout the application development life-cycle are relatively high,
the SADMAS approach can significantly reduce the overall project risks, and
safe costs in the face of severe costs in the case of project failure due to either
loss of physical assets, or harm done to the target system possibly involving
humans (cf. also Section 2.3).

6 Conclusions and outlook

With the increasing size and complexity of environments and target systems
with which multi-agent applications have to interact, there is a growing need to
support incremental, evolutionary development processes. In particular, in the
context of engineering of large-scale complex and non-linear systems, where all
the consequences of individual design decisions are hard to predict a priori, there
is a need to rapidly evaluate the individual design and implementation decisions
without requiring full-scale deployment to the target real-world environment.
Such support can be provided by having a multi-agent-based simulation of the
target environment available and using it as a testbed during the development
of the application. With the advancing application development stages, mixed-
mode simulations should be used as an intermediate step between application
validation against pure simulation and full deployment to the target system.
The Simulation-Aided Design of Multi-Agent Systems approach proposed in this
paper builds on these ideas and in certain application domains has a potential to
significantly reduce risks involved and even speed up the development process.
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