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The Metis research project aims at supporting maritime safety and security by facilitating
continuous monitoring of vessels in national coastal waters and prevention of phenomena, such
as vessel collisions, environmental hazard, or detection of malicious intents, such as smuggling.
Surveillance systems like Metis typically comprise a number of heterogeneous information
sources and information aggregators. Among the main problems of their deployment lies
their scalability with respect to a potentially large number of monitored entities. One of
the solutions to the problem is continuous and timely adaptation and reconfiguration of
the system according to the changing environment it operates in. At any given timepoint,
the system should use only a minimal set of information sources and aggregators needed to
facilitate effective and early detection of indicators of interest.

Here we describe the Metis system prototype and introduce a theoretical framework for
modelling scalable information-aggregation systems. We model information-aggregation sys-
tems as networks of inter-dependent reasoning agents, each representing a mechanism for
justification/refutation of a conclusion derived by the agent. The proposed continuous recon-
figuration algorithm relies on standard results from abstract argumentation and corresponds
to computation of a grounded extension of the argumentation framework associated with the
system. Finally, we demonstrate the flexibility of the presented framework by extending the
proposed algorithm to adapt to context-dependent changes in information sources availability,
as well as shifts in system’s focus according to its context.

Keywords: applications of argumentation technology; context-aware configuration &
reconfiguration; information-aggregation agents; heterogeneous information sources;
grounded semantics; maritime traffic surveillance;

1. Introduction

The Metis project (2, 6) studies techniques supporting development of large-scale
dependable systems of systems which aggregate multiple sources of information,
analyse them, compute risk factors and deliver assessments to system operators.
Systems-of-systems are large-scale integrated systems that are heterogeneous and
independently operable on their own, but are networked together for a common
goal (7). Here, we introduce the Metis project’s prototype application, which ap-
plies the developed concepts to the domain of maritime security and aims to provide
advanced situation awareness capabilities for monitoring maritime traffic in national
coastal waters. Our focus here is on supporting continuous reconfiguration, that is,
efficient adaptation to changes in its environment.
The Metis system is a large-scale surveillance system operating in a mixed phys-

ical and software environment. It comprises a number of cooperative agents serving
as information sources and aggregators. Typically, these would be either situated
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physical agents, such as cameras, satellites or human patrols, or software compo-
nents interfacing various public, or proprietary databases, web resources, etc.
In the implemented prototype scenario similar to the one implemented and

demonstrated to industrial partners of the project in spring and autumn 2013,
Metis aims at detection of ships suspected of smuggling illegal contraband dur-
ing their approach to the port under surveillance. For every vessel in the zone of
its interest, the system accesses the various information sources and subsequently
processes the extracted information so as to finally identify vessels which require
operator’s attention. The available sources provide information about the ships,
including their identifications, crew, ports-of-call, various physical characteristics,
possibly even digest of news articles reporting on events involving the vessel, or the
crew. Quite often, such information would yield inconsistent, or even contradictory
information, which needs to be cross-validated and processed in order to infer the
most likely values. The resulting information is aggregated by a hierarchy of infor-
mation aggregators so that the system is ultimately able to determine whether a
particular vessel should be considered a smuggling suspect, or it is able to justify
that it is innocuous given the available information. In the prototype scenario, the
individual aggregators are represented by various information-fusion components
operating over a shared data warehouse, but could include also external agents,
such as human experts.

Metis should be deployable both on land, as well as on board of independently
operating ships. As a consequence, querying individual information sources and
subsequent information aggregation could incur non-negligible financial and com-
putational costs. While accessing a publicly available Internet resource via a fixed
broadband connection can be relatively cheap, the bandwidth of satellite commu-
nication links used on board of maritime vessels is limited and data transfers incur
external costs, too. Similarly, accessing proprietary industrial databases, or utilisa-
tion of physical agents, such as aerial drones, or imaging satellites can incur rather
significant costs to the system’s operation. Hence, using all available information
sources and information fusion components is not always feasible. The problem of
configuration and dynamic reconfiguration according to the current system’s needs
can be thus formulated as follows:

Which information sources and aggregators should be active over time so as to facil-
itate an early detection of malicious intents in the most efficient manner?

To answer this question we will use tools and methods derived from argumenta-
tion theory. Abstract argumentation theory (1) studies logical reasoning solely in
terms of inter-relationships of arguments, abstract entities representing inference
mechanisms, not unlike opaque information aggregators of the Metis system. In a
consequence, the argumentative approach provides a solid basis for modelling in-
formation processing systems in terms of interrelated arguments which support, or
attack each other.
Here, we propose an approach to (re-)configuration of large-scale information-

aggregation systems by modelling the interactions between the individual compo-
nents in terms of an argumentation framework. This paper builds upon and signif-
icantly extends the results presented in (12). After introducing the basic concepts
(Section 2) and a preliminary analysis of evolutions of information-aggregation sys-
tems, in Section 4, we present the problems of configuration and reconfiguration
of information-aggregation systems to account for changes in their environments.
Subsequently, in Section 5, we show that suitable system configurations correspond
to the concept of grounded extensions of an associated argumentation framework
and provide an algorithm for continuous reconfiguration of information-processing
systems with respect to the changes in their environment. The solution concept
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viewed through the optics of abstract argumentation is closely related to standard
results in logic programming, so the relationship opens the door for further study
of reconfiguration in relation to standard results in logic programming. Finally, in
Section 6 we extend the reconfiguration algorithm to account for context-dependent
availability of information sources in the system and dynamic changes in system’s
focus according to context-dependent query specification. The results introduced in
Section 6 comprise a major advancement over the results presented in (12). A dis-
cussion of on-going and future work along the presented line of research concludes
the paper.
Throughout the discourse, in a series of example expositions indicated under the

heading Metis x.y, we describe the relevant parts of the Metis system and identify
a class of relevant solution concepts. These expositions present simplified example
fragments of the delivered prototype and are aimed at supporting the discourse as
a running example.

Metis 1.1 In the prototype scenario, Metis should continuously monitor vessels in
the coastal waters in the Dutch Exclusive Economic Zone, source information about
them and process it, so as to finally identify vessels which are suspect of smuggling.
Upon detection of a suspicion, the system should notify the user, a Netherlands
Coastguard officer, who then decides on the following course of action. Such can
include for instance sending a coast-guard boat patrol to check the situation, engage
additional, possibly costly, information sources like a satellite high-resolution video
feed, or a human expert, or can even alert and engage police, or other entities
concerned with public security. To put the scenario in perspective, note that the
monitored area covers more than 63 000 km2 and typically contains around 3-
4 000 vessels at any given moment in time.
To illustrate the functionality of Metis, in the system exposure we consider

the following simplified fragment of the prototype scenario. Information-sources
available to the system comprise a local copy of IHS Fairplay (4) database and
web-portals of MyShip.com (11), MarineTraffic.com (10) and its Ports of Call
database storing the harbours the ship visited in the recent past. There are also
two physical sensors: a receiver for Automatic Identification System (AIS) (3, 5)
messages, the vessels transmit themselves, and radar providing kinematic signa-
tures of vessel tracks. Besides cross-validation and probabilistic inference over the
received data, the individual information-processing components also derive meta-
information about quality, certainty and trust of the aggregated information.

2. Information-aggregation systems

An instance of a multi-agent surveillance system such as Metis, comprises a set
of information processing agents and a shared database. Information source agents
operate in a dynamic environment and feed a shared data store which is further
processed by a set of information aggregator agents. The system’s objective is to
determine the truth value of a set of distinguished indicators, information elements
corresponding to some non-trivially observable properties of the monitored entities,
such as whether a vessel is a smuggling suspect.
We model an abstract information-aggregation system as a tuple S = (A,D)

comprising a finite set of information processing agents and a database schema,
respectively. A shared data store of the system is represented by a 3-valued database
schema D comprising a finite set of propositional variables over the domain Dom =
{>,⊥,∅} representing true, false, and unknown valuations respectively.

Remark 1 : In practice, Dom could include an arbitrary number of distinct crisp
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valuations as far as Dom remains finite. The actual Metis system exposure indeed
assumes such an extended domain of the database schema.

Without loss of generality, we do not distinguish between different interpretations
of the unknown value ∅: no information and value existent, but unknown (8). A
database snapshot (database) D : D → Dom of the schema D at a given timepoint
is a ground interpretation of variables of D. That is, each variable of D takes a
truth value from the domain Dom. Let D|x denote the valuation of a variable x in
D and D∅ be a database snapshot with all variables valued as unknown.
The information processing agents A = {A1, . . . , An} of the system are mod-

elled as function objects over interpretations of the schema D, formally A : (D →
Dom)→ (D → Dom) for each A ∈ A. Usually, an information processing agent is
not interested in the complete set of D-valuations to transform it to a new set of
D-valuations: only a part of the database variables and their values are of its inter-
est and dependent upon their values will be used to change the value of some other
variables. Therefore, we assume that there is a specific subset of input values that
is considered by agent A, denoted by inA ⊆ D and a specific set of variables (possi-
bly) updated by A, denoted by outA ⊆ D. Using inA and outA, we can consider an
agent A as a function mapping partial interpretations into partial interpretations.
Formally:

A : (D → Dom)|inA → (D → Dom)|outA

Let D be an arbitrary snapshot of D and let D|inA and D|outA denote value
assignments to variables of inA and outA, respectively. Then A maps the snapshot
D to a snapshot D′ = A(D) as follows:

(1) D′|outA = A(D|inA);
(2) for every x 6∈ outA, D′|{x} = D|{x}.

That means that only the bindings of the variables in outA might have been changed
by an information processing agent A. We model a special type of information
processing agents, information sources, as standard agents, however, with an empty
set of input variables inA = ∅ and a non-empty set of output variables outA 6= ∅.
We denote the set of all information-source agents within a system by Asrc .

Metis 2.1 In the prototype scenario (Figure 1), Metis features 7 information-
source agents (white), including 3 physical sensors (dotted) and 4 non-trivial
information-aggregation agents (grey).
The system contains a CheckDefault aggregator agent. This agent consults the

local physical AIS sensor and cross-validates the self-transmitted vessel identity
with those listed in the IHS FairPlay database. The identity of a ship is the value
of a variable aisD , the outcome of checking an IHS FairPlay database is stored
in the variable fpID . So, inCheckDefault = {aisID , fpID}. If there is a mismatch, the
aggregator will set the variable isSuspectID to true, if there is a match, this variable
is set to false. So, outCheckDefault = {isSuspectID}.
In a similar fashion, upon failure to match the identities of the vessel, the system

performs a deeper check of the vessel’s identity (CheckSpoofing) in order to deter-
mine whether it does not actively spoof it. If that is indeed the case, the system
escalates to the highest-level information-aggregator CheckSmuggling consulting the
most extensive set of information sources and aggregators and performing the deep-
est analysis of the vessel’s background so as to assess its potential involvement in
smuggling. The TrackAnalyser processor matches the vessel’s kinematic track signa-
ture from the Radar sensor to the vessel type retrieved from AIS. Should the vessel
turn out to be a suspect smuggler according to the Metis’s analysis, the valua-
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agent in out
AIS ∅ aisID∗, aisType′
FairPlay ∅ fpID∗

MyShip ∅ myShipID†

MarineTraffic ∅ mtID†

MarineTraffPorts ∅ portCalls‡
Radar ∅ track′

Patrol ∅ isSpoofingID‡

TrackAnalyser marked ′ vesselType‡

CheckDefault marked ∗ isSuspectID†

CheckSpoofing marked † isSpoofingID‡
checkSmuggling marked ‡ isSmuggling

Table 1. Metis system agents

Figure 1. Metis system interdependencies.

tion of isSmuggling information element is communicated to the system operator
via a GUI warning. Note, all the involved agents assume a domain of the underly-
ing database extended with enumerations of possible identities, etc., and can also
produce unknown valuation ∅ for each of their output variables.

3. Configurations and database evolution

A set of information processing agents of a system gives rise to the notion of system
configuration. Formally, a configuration C ⊆ A of a system S = (A,D) is a set
of information processing agents active in S in a given point in time. From now
on, unless explicitly stated otherwise, we consider only non-trivial configurations
C 6= ∅. Notation for input and output variables of an agent naturally extends to
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configurations, that is inC =
⋃
A∈C inA and outC =

⋃
A∈C outA. The notion of an

update of a database snapshot given a configuration of agents can be easily defined
as follows:

Definition 3.1: Let C ⊆ A be a configuration of a system S = (A,D) and D a
database snapshot of the schema D. Then the database D′ is said to be an update
of D by C, denoted by C(D) = D′, iff

(1) every change in D′ w.r.t. D can be attributed to an information processing
agent, i.e., for each x ∈ D, such that D|x 6= D′|x, there exists an agent
A ∈ C with x ∈ outA and D′|outA = A(D|inA).

(2) an update does not change the database snapshot only if no agent A ∈ C
is able to make a change, i.e., D′ = D only if for every agent A ∈ C,
A(D|inA) = D|outA.

If D|outA 6= D′|outA = A(D|inA), we also say that the update was co-induced by
the agent A.

Note that here we give priority to an agent in a configuration that is able to
change the current database snapshot. Moreover, each variable x modified in the
update D′ w.r.t. its original value in D, is a result of a (single) computation of some
agent A in the configuration C. This does not imply that an update D′ = C(D) is
the result of at most one information processing agent A ∈ C, it only implies that
there is no interference between agents in C during an update.
Instead of referring to configurations of agents, we might also refer to an update

D′ of D by means of a partial database Du. The information in this partial database
Du should override existing information inD only if the information inDu is known,
i.e., the value of a variable x in Du is either > or ⊥:

Definition 3.2: Let D be a database and Du be a partial database. We say that
D′ is an update of D by a partial database Du, denoted by D′ = D ⊕ Du, iff
whenever Du|x is defined, we have D′|x = Du|x and D′|x = D|x otherwise.

Given a configuration C of agents and an update D′ = C(D) of D, it might
be that agents in C might be used to update D′ too, resulting in a new update
D′′ = C(D′). This gives rise to the notion of an evolution of a system S under a
configuration C ⊆ A:

Definition 3.3: Let S be a system, D0 be a database snapshot and C ⊆ A a
configuration. An evolution of a system S under a configuration C ⊆ A from D0

is an infinite sequence of database snapshots λD = D0, . . . , Dk, . . ., such that each
Di+1 = C(Di) is an update of Di by C, for all i ∈ N0. The evolution λD is called a
C-evolution of S from D0 on.

In general, given a configuration C and an initial snapshot D0 there might be
many different evolutions λD starting from D0, depending upon the agents active at
every update of the current snapshot. So an evolution of a system can be considered
a non-deterministic process. Among these evolutions, there are special evolutions
that interest us: these are the evolutions that from some point k on don’t change.
Such evolutions we deem stable:

Definition 3.4: Let λD = D0, . . . , Dk, . . . be a C-evolution of S. We say that λD
is stable if there exists a constant k ≥ 0 such that

(1) D0, . . . , Dk is an initial segment of λD;
(2) for all possible C-evolutions λ′D = D′0, . . . , D

′
k, D

′
k+1, . . . such that D′j = Dj

for j ≤ k, i.e., λ′D and λD share the same initial segment D0, . . . , Dk, we
have D′k+i = Dk+i = D′k for all i ≥ 1.
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The state Dk is also known as the stable state in the evolution λD = D0, . . . , Dk, . . ..

Stable evolutions also can be identified with their finite initial segment
D0, . . . , Dk. There is an easy characterisation of stable evolutions using the def-
inition of a database update:

Proposition 3.5: Let λD = D0, . . . , Dk, . . . be a C-evolution. Then λD is stable
iff there exists some finite k such that C(Dk) = Dk.

Proof : The only-if direction is trivial, so assume that C(Dk) = Dk. Then, for
all A ∈ C we have A(Dk|inA) = Dk|outA. This means that for any C-evolution
λ′′D starting from Dk we have λ′′D = Dk, Dk, . . . , Dk, . . .. Hence, for every evolution
λ′D = D′0, . . . , D

′
k, D

′
k+1 sharing D′0 = D0, . . . , D

′
k = Dk with λD, we have Dk′+1 =

C(D′k) = Dk. Hence, λD is stable. �

The evolution of a system strongly depends on both the nature of the active
configuration, as well as the particular order in which the agents of the configuration
work over the database. So, even if a C-evolutions from a given snapshot D0 turn
out to be stable, it might be that there are several distinct stable states reached by
these C-evolutions from the same initial snapshot D0. In general, this is not what
we want: given any initial situation, we want to draw a definite set of conclusions
from it. Therefore, we would like to characterise C-evolutions from a certain initial
snapshot that not only are stable, but at their points of stability turn out to reach
the same stable state, whatever initial snapshot we take. The following definition
ariculates this intuition formally:

Definition 3.6: Let C ⊆ A be a configuration of a system S = (A,D). We say
that C is normal iff

(1) for every database snapshot D0 all C-evolutions of S from D0 stabilise and
(2) all the stable states achieved by these stable C-evolutions from D0 are

identical.

More formally, a configuration C of agents is normal if for every initial database
snapshot D0 and every evolution λiD = D0, D

i
1, . . . D

i
k, . . . starting from D0, there

exists a finite constant ki such that C(Di
ki
) = Di

ki+1 and for all i 6= j, Di
ki+1 =

Dj
kj+1 = Di

ki
. The unique stable state reached by such a normal configuration C

from an initial snapshot D0 is denoted by C∗(D0).
Clearly, not all configurations of any information-aggregation system are normal.

To see this, consider the following example:

Example 3.7 A solution to a configuration problem does not always exist. For
instance, consider three agents A1, A2 and A3. Suppose that A1 is an information
source agent where outA1

= {x}. A1 is able to set x to >. A2 and A3 are information
processing agents, where inA2

= outA3
= {x} and inA3

= outA2
= {y}. It holds

that

A2(x 7→ ⊥) = y 7→ > (1)

A2(x 7→ >) = y 7→ ⊥ (2)

while

A3(y 7→ >) = x 7→ > (3)

A3(y 7→ ⊥) = x 7→ ⊥ (4)
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Let C = {A2, A3} be a configuration. Let D0 be the snapshot after A1 provides a
crisp value to x. Then there exists no stable C-evolution starting with D0 as the
updates from D0 oscillate between x, y being true and x, y being false. Hence, the
configuration C = {A2, A3} is not a normal configuration.

As we already pointed out, the precise operational semantics of application of
a configuration to an information-system’s database snapshot remains abstract. In
particular, the configuration execution model is not precisely defined in terms of
ordering of the individual agents, as well as in terms of possible effects concur-
rent execution might have on the underlying database. Since our study relates to
design of information-aggregation systems which lend themselves to an analytical
insight, the following questions are central and of natural interest to guide design
of information-aggregation systems with a more transparent system evolution se-
mantics:

What are the conditions which need to be imposed on information-aggregation systems
and their underlying databases, so that existence of non-trivial normal configurations
is guaranteed?

More specifically, ignoring the restrictions imposable on database snapshots, we are
interested in the question:

What are the properties of information-aggregation systems which guarantee that re-
gardless of the database snapshot of the system, there exists a non-trivial normal
configuration?

Tackling the above questions in their generality is beyond the scope of this paper.
Instead, to give a baseline for our further analysis below we introduce a constrained
class of information-aggregation systems with a property that they always enjoy
normality. More specifically, these systems have the property that given an arbitrary
configuration C of information-aggregation agents, whenever the information source
agents have "produced" an initial database snapshot D0, any C-evolution from D0

will result in the same stable state. We delve into the details and rationale of such
configurations below.

Definition 3.8: We say that an information-aggregation system S = (A,D) is
simple and stratified iff

(1) there exists a stratification of A, that is a partitioning of A into a sequence
(A0, . . . ,Ak) of strata (layers) , where A0 = {A ∈ A | inA = ∅} and
Ai = {A ∈ A | inA ⊆ out⋃

j=1..i−1Aj} for all i = 1, . . . , k; and
(2) S is simple in that for every every variable X ∈ D there is at most one

agent A ∈ A such that X ∈ outA.

As it turns out, these conditions are sufficient to guarantee normality of config-
urations:

Proposition 3.9: Let S = (A,D) be a simple and stratified system. Then every
configuration C of information processing agents in S is normal w.r.t. any initial
database D0 produced by the information source agents A ∈ A0.

Proof : The proof follows by induction over the number k of layers in the stratifi-
cation (A0, . . . ,Ak) of A. Let k = 0. Then the only agents we have are information-
source agents. So by assumption, every configuration comprising only information-
source agents is stable as it can’t update the database any more, since their out-
puts are already reflected in it. Hence, given any initial database snapshot D0,
C(D0) = D0, proving that every such configuration is normal.
Assume the induction hypothesis to hold for any stratification (A0, . . . ,Aj) with
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j ≤ k. Let S be a system with k+1 layers in its stratification, let C be an arbitrary
configuration of agents an D0 be an initial database snapshot. Let C = C≤k∪Ck+1,
where C≤k contains all agents in C that occur in the layers 1 up to k and Ck+1

contains all agents in the k + 1-th layer. By induction hypothesis, we know that
C≤k is normal since it reduces to a configuration in a simple an stratified system
S′ = (

⋃
i≤kAi,D) with k layers. Hence, C∗≤k(D0) = D∗ is well-defined. Now let

|Ck+1| = m and consider an arbitrary Ck+1-evolution λD = D∗, D∗1, . . . D
∗
m, . . .

starting with D∗.
First, we show that Ck+1(D

∗
m) = D∗m. We can divide D∗ into two disjoint parts

D∗ = D∗in ∪ D∗out where D∗out = D∗|(
⋃
A∈Ak+1

outA) and D∗in = D∗ − D∗out. Note
that, by simplicity of S, all parts outA are disjoint. Now the effect of any agent
A ∈ Ck+1 is restricted to a possible modification of D∗|outA only, without affecting
D∗in. In particular, for any agent A ∈ Ck+1 its effect on D∗ is limited to D∗|out(A)
which will be changed to A(D∗|in(A)). Therefore, after at most m updates, the
cumulative effect of all updates by agents A in the configuration Ck+1 equals D∗m =
D∗in ∪ (

⋃
A∈Ck+1

A(D∗|in(A))) and any A ∈ Ck+1 applied to D∗m will result in D∗m
again. Since, given D∗, D∗m is uniquely defined, any Ck+1 evolution λD is normal
w.r.t. the initial database D∗ reaching the unique stable state D∗∗ = D∗m.
Secondly, we show that D∗∗ is the unique stable state any C-evolution λD will

evolve to starting from an initial snapshot D0. To prove this, we define D∗∗j to be
that part of the state D∗∗ that contains only bindings for variables1 in the layers
0 up to j, i.e., variables occurring in in(A) ∪ out(A) for any agent A ∈

⋃
i≤j Ai.

For j = 0, D∗∗0 = D0 is the unique stable state any C-evolution λD will evolve
to. Assume that for j ≤ k, any C-evolution will evolve to the unique state D∗∗j .
Then for j = k any C-evolution evolves to D∗∗k . But then we must have D∗k = D∗∗k ,
implying thatD∗in = D∗∗k . Now assume that there is another stable stateD∗∗∗ 6= D∗∗

reachable by a C-evolution λ′D from D0. By induction hypothesis, we have D∗in =
D∗∗k = D∗∗∗k . But then we must have D∗∗ = D∗in ∪ (

⋃
A∈Ck+1

A(D∗|in(A))) = D∗∗∗,
contradiction. Therefore, D∗∗ is the unique state every C-evolution from D0 will
evolve to. Therefore, any C is normal w.r.t. any initial database snapshot D0. �

While simple stratified systems represent a rather constrained and narrow class
of information-aggregation systems, they are still a very useful subclass of systems.
For instance most deployed sensor networks fall into this class of systems due to
their uni-directional flow of information and relative simplicity of information fusion
mechanisms.

Metis is a security-related information-aggregation system. Such knowledge-
intensive systems are designed by encoding human expert knowledge into the struc-
ture of the system. In practice, however, we observe that domain experts tend to
articulate their knowledge in terms of hierarchically structured information flows
and cascading inference and filtering processes. This provides an intuitive justifica-
tion for the stratified design of such systems. Complementary, the requirement of
simplicity of a system as expressed in the above definition embodies the intuition
that the easiest way to resolve conflicts is by doing so explicitly. That is, in the
case there might be a conflict between two operating aggregators over a valuation
of some variable, this should be resolved already in the design phase by explicitly
splitting the computation of the two aggregators into two separate variables and
designing an independent third aggregator capable to resolve such conflicts either
by fusing their outcomes, deciding which of them takes precedence, or otherwise.
More formally, whenever x ∈ outA1

∩ outA2
for two distinct agents A1, A2, we can

1Without loss of generality we may assume that for all variables X ∈ D it holds that there exists an agent
A ∈ A such that X ∈ in(A) ∪ out(A).
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rename x in outA1
to x1, similarly rename x to x2 in outA2

and introduce a new
agent Ax with inAx = {x1, x2} and outAx = {x}. Ax then embodies the fusion of
x1 and x2 into a single variable without a possibility of a conflict over x in S.
In the remainder of this paper, we flesh out the above introduced intuitions about

systems’ evolutions and design requirements which need to be imposed on them in
order to facilitate “well-behaved” information aggregation. In particular, we discuss
the issues stemming from embedding of information-aggregation systems in envi-
ronments which might have their own dynamics. An example of such might be a
mixed physical and IT infrastructure-related context our Metis prototype system
operates in. Subsequently, we introduce and apply optics of abstract argumenta-
tion on the functionality of such information-processing systems. Along the way,
we re-introduce the framework of information-processing systems as laid out above,
this time in terms of argumentation frameworks. We demonstrate that the parallels
between the two are useful as they allow us to relate the information-aggregation
processes to reasoning, inference and conflict-resolution mechanisms of argumen-
tation approaches. As a side effect, we lift the constraint of system’s simplicity
introduced in Definition 3.8 and show how we can arrive to sound conclusions of
the information-aggregation processes in systems like Metis. Furthermore, as we
will show, argumentation optics allows us to straightforwardly capture the notion
of justification of a system’s conclusion regarding a variable of interest, a query.

4. Configuration and reconfiguration problems

In this section we formulate the problems of configuration and reconfiguration of
information-aggregation systems. Before that, however, we introduce and illustrate
the concept of an environment such a system is to be embedded in. The notion of
environment provides a connection of the system to the ground reality, the source
of data the system processes and upon which it infers its conclusions.

4.1. System and its environment

An information-aggregation system, such as Metis, is situated in a dynamic envi-
ronment which changes over time. It reads values from it, monitors it, and derives
non-trivial information on the basis of the collected evidence. We model an envi-
ronment as a database schema E over crisp truth values {>,⊥}.
A system S = (A,D) can be embedded in an environment E when the two

database schemas coincide in exactly the variables produced by the information-
source agents of S. That is, each variable x ∈ outA of an agent A ∈ A with inA = ∅
is included in the environment too, i.e., x ∈ E ∩ D and we denote DEin = E ∩ D. A
variable x ∈ DEin in a database snapshot D of S reflects the state of the environment
E iff D|x 6= ∅ implies D|x = E|x. We say that the system S is embedded in
E iff computations of all the information-source agents reflect the state of the
environment. That is, for all A ∈ A with inA = ∅ all variables from outA in the
snapshot A(D) reflect E.
The dynamics of the environment is captured by its evolution over time mod-

elled as a (possibly infinite) sequence λE = E0, . . . , Ek, . . . of database snapshots.
To ensure correspondence between an evolution λE of the environment E and an
evolution λD = D0, . . . , Dl, . . . of a system S = (A,D) embedded in E , we require
that there exists a sequence of indices i0, . . . , im, . . . ∈ N0, such that the variables
from DEin in Di with i ∈ ij . . . (ij+1 − 1) reflect the environment state Ej for j ≥ 0.
That is, at every such a distinguished timepoint, the system is embedded in the
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D0,E0 D1 D2 D3,E1 D4 D5,E2 D6

aisIDE aisID aisID aisIDE aisID

aisTypeE aisType aisType aisTypeE aisType aisTypeE aisType

fpID fpID fpID fpID fpID fpID

isSuspectID isSuspectID isSuspectID isSuspectID

trackE track trackE track

isSuspectType isSuspectType isSuspectType

Figure 2. An example evolution of the Metis system database. Only variables valued > are listed. The
variables marked E are read from the corresponding environment update.

current state of the environment.

Metis 4.1 A configuration capable to produce the system evolution depicted in
Figure 2 could include the agents AIS, FairPlay, CheckDefault, Radar and TrackAnal-
yser agents executed subsequently in that order up to the database snapshot D4.
That is, D0 is produced by execution of AIS, D1 by execution of FairPlay, D2 by
CheckDefault, D3 by Radar and D4 by TrackAnalyser. Subsequently, D5 is produced
by a re-execution of AIS, which produces an unknown valuation ∅ for the aisID
variable which leads to derivation of ∅ also for the isSuspectID variable when finally
D6 is produced by re-execution of CheckDefault. The environment of the system
evolves in a sequence E0, E1, E2 and its changes are reflected in the evolution of
the system’s database snapshots. Assuming all the not-mentioned variables in the
environment do not change, the system is embedded in it exactly at points marked
by the environment updates.

4.2. Configuration problem

Assessments of a surveillance information-aggregation systems like Metis could
have real-world repercussions. For instance, after deriving that a vessel could be
a smuggling suspect, a warning would be indicated to the operator, who might
then consider contacting the vessel himself, possibly even sending a patrol to the
location. Such actions, however, need to be justified in the operational scenario. In
a consequence, any crisp conclusion computed by the system must be explainable
and defensible by inspecting the structure of inferences from basic evidence in the
environment. In turn, we are interested in system configurations, which can either
crisply answer distinguished queries, such as suspicion of smuggling, or, if that is not
possible, the operator needs to be sure that there is no such configuration given the
current state of the environment and the system’s implementation. In the following,
we implicitly assume that the system is embedded in an environment state reflected
in its current (initial) database snapshot.

Definition 4.2: Given a tuple C = (S, φ,D), with S = (A,D) being an
information-aggregation system, φ ∈ D a query variable, and D being an initial
snapshot of D, the information-aggregation system configuration problem is to find
a normal configuration C, a solution to C, such that all evolutions of S rooted in
D stabilise in a snapshot C∗(D) and C satisfies the following:

(1) φ ∈ outC , i.e., C contains at least one agent A ∈ C capable to derive
φ. We also require that the resulting query solution is a crisp valuation
C∗(D)|φ 6= ∅ computed by the configuration C;

(2) for each variable x ∈ inC , also x ∈ outC and C∗(D)|x 6= ∅; and finally
(3) there is no configuration C ′ with C ⊂ C ′ satisfying (1) and (2), such that

C ′∗(D)|φ 6= C∗(D)|φ.

Condition (1) of the definition above stipulates that the solution configuration
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indeed provides a valuation of the query. Condition (2) formalizes the intuition that
the query solution can be traced back to the evidence from the environment and
computations of a series of crisp variable valuations by the individual agents of the
system, that is a justification for the query solution. Finally, condition (3) ensures
that there is no doubt about the computed query solution. In that sense, C is a
minimal sufficient support of the query answer.
Definition 4.2 is agnostic of the structure of the underlying system. In a conse-

quence, as we already pointed out in the previous section, in general, a solution to
a configuration problem does not always exist.

4.3. Reconfiguration problem

Through information-source agents, a dynamic environment serves as the main
driver of change within the system. Situating the configuration problem into a
changing environment, repeated configuration becomes a means for continuous
adaptation of the system to the updates coming from its environment.

Definition 4.3: Given a tuple R = (λE ,S, φ), where λE = E0, . . . , Ek, . . . is an
evolution of an environment E , S = (A,D) is an information-aggregation system
embedded in E , and φ ∈ D is a query variable, the information-aggregation recon-
figuration problem is a search for a sequence of configurations C0, . . . , Cl, . . ., such
that each Ci is a solution to the configuration problem Ci = (S, φ,Di) for i > 0,
where Di = C∗i−1(Di−1) ⊕ Ei|DEin and D0 = D∅ ⊕ E0|DEin . We say that a se-
quence of configurations C0, . . . , Cl, . . . is a weak solution to R, iff Ci is a solution
to Ci = (S, φ,Di) if it exists and can be arbitrary otherwise.

Informally, a reconfiguration problem solution is a sequence of configurations
producing a database evolution reflecting the changes of the system’s environment.
The sequence of configurations in a weak solution to the reconfiguration problem
captures the intuition that the system tries its best to compute a query solution
upon each environment update, which, however, not always exists.

Metis 4.4 Consider the Metis prototype scenario introduced in the previous expo-
sitions. An example configuration problem could be C = (SMetis, isSmuggling , D3).
As stated, there is no solution to C. This would only exist if all the information-
source agents provide a reading of their output variables. Then, the solution would
comprise all the agents of the system.

5. Solving configuration and reconfiguration problems using argumentation
theory

The individual agents of an information-aggregation system perform inference over
valuations of their input variables, premises, and thus provide support to the output
variables, conclusions. In effect, they can be treated as blackbox modules embodying
a support for for their output variables, or can produce an output in conflict with
outputs of other agents within the system. Thus, their interrelationships embody
the flow of information within the system in terms of mutual support of conflict.
Dung’s theory of abstract argumentation (1) is a formal model revolving around

analysis of mutual support and the structure of conflicts between abstract argu-
ments in favour, or against some conclusion. Hence, the framework of abstract argu-
mentation provides a natural model of computation of information-aggregation sys-
tems. Here, we propose an approach to solving (re-)configuration problems rooted in
sceptical semantics of argumentation. The terminology introduced below is adapted
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from (1).

Definition 5.1: Let S = (A,D) be a system and D be a database snapshot of D.
We construct a configuration argumentation framework CAF = 〈A,≺〉 associated
with S over D as follows:

• arguments correspond to information processing agents A and embody a set of
interrelations among variables of the schema D. The input variables inA provide
the basis for inferring the conclusions outA of the argument A ∈ A. We say that
an argument is valid w.r.t. a database snapshot D iff A(D|inA) ⊆ D and for all
variables x ∈ inA, we haveD|x 6= ∅. Informally, a valid argument is supported by
a given database snapshot in that the input/output characteristics of the internal
computation of the agent is truthfully reflected in the database. From now on,
we will use the notions of an argument and an agent interchangeably according
to the context.

• we say that a valid argument A ∈ A attacks another argument A′ ∈ A denoted
A′ ≺ A, on a variable x ∈ outA ∩ outA′ w.r.t. a given database snapshot D iff
A(D|inA)|x 6= ∅ and A(D|inA)|x 6= A′(D|inA′)|x. That is, the agent A derives
a crisp valuation for x which disagrees with the one derived by the agent A′. We
also say that A is a counter-argument to A′, or that A is controversial. Finally,
an argument A ∈ A attacks a set of arguments C ⊆ A iff there exists A′ ∈ C
attacked by A.

Note, the attack relation is defined only for valid arguments supporting their
conclusions by crisp valuation of their input. The conclusion, however, does not
necessarily need to be crisp itself. Also, the attack relation is not symmetric in that
a valid argument supporting a crisp conclusion can attack an argument providing
unknown valuation to the same conclusion, but not vice versa.

Metis 5.2 In the case of the example system depicted in Figure 1, an attack in a
particular argumentation framework associated with a Metis system in some state
might arise in the case the agents Patrol and CheckSpoofing produce two different
crisp valuations for the variable isSpoofingID . This situation could realistically arise
in the case when for instance the information provided by AIS and FairPlay agents
cannot be cross-validated by that retrieved from other external databases (MyShip
or MarineTraffic) and thus CheckSpoofing agent concludes that the ship might be
spoofing its identity. At the same time, a coast-guard patrol boat, or a UAV sent
to inspect the ship would actually confirm the identity of the vessel to be that
retrieved from AIS.

Definition 5.3: Consider a fixed argumentation framework CAF associated with
a system S = (A,D) over a database D. A configuration C is said to be conflict-
free if there are no agents A,B ∈ C, such that A attacks B w.r.t. CAF . A valid
argument A ∈ A (agent) is acceptable to C iff for each A′ ∈ A in the case A′ attacks
A, then there exists another argument A′′ in C, such that A′ is attacked by A′′ all
w.r.t. the database snapshot D.

In security-related information-aggregation systems, such as Metis, any com-
puted assessments need to be justified in order to preserve presumption of innocence
of the monitored entities. That is, the resulting crisp valuation must be traceable
to and justifiable by the evidence coming from the environment. Reasoning of such
a system is sceptical in that only conclusions which the system is sure about can
be inferred, given the environment evidence and the system’s design. The notion of
a grounded extension of an argumentation framework based on a fix-point seman-
tics captures this intuition. Besides being capable to articulate their conclusions to
its users, these should also be susceptible to providing insights for the structural
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explanations, justifications, of the conclusions. The notion of grounded extension
provides a basis for our analysis.

Definition 5.4: A grounded extension of an argumentation framework CAF =
〈A,≺〉, denoted GECAF , is the least fix-point of its characteristic function FCAF :
2A → 2A defined as FCAF (C) = {A | A ∈ A is acceptable to C}. GECAF is
admissible, i.e., all arguments in GECAF are also acceptable to GECAF over D,
and complete, i.e., all agents which are acceptable to GECAF , also belong to it.

A grounded extension of CAF always exists and FCAF is monotonous with re-
spect to set inclusion. In general, an argumentation framework can have multiple
grounded extensions, a property undesirable to security-related systems, where as-
sessments should be unambiguous. Dung in (1) shows that argumentation frame-
works without infinite chains of arguments A1, . . . , An, . . ., such that for each i, Ai+1

attacks Ai, have a unique grounded extension. A way to ensure that property, con-
sistent with our earlier observations about systems like Metis, is to consider only
stratified systems. That is those, for which there exists a stratification, a decompo-
sition into a sequence of strata (layers) A = A0, . . . ,Ak as defined in Definition 3.8.
Furthermore, we say that A is the most compact stratification of S iff all agents be-
long the lowest possible layer of A. Formally, for all stratifications A′ of S, A ∈ Ai
implies A ∈ A′j with j ≥ i.
The following proposition establishes the correspondence between solutions to

configuration problems for stratified systems and grounded extensions of their con-
figuration argumentation frameworks.

Proposition 5.5: C ⊆ A is a solution of a configuration problem C = (S, φ,D)
with a stratified system S if and only if C is also the grounded extension of CAFC

(i.e., C = GECAFC
), an argumentation framework associated with S over the

database C∗(D) with φ ∈ outC .

Proof :
=⇒: if C is a solution of C, by definition we have that i) C is normal, ii) each

argument within C is valid and iii) φ ∈ outC . In a consequence, the computation of
GECAF = F ∗CAF (∅) follows in system’s layers (strata) from the information sources
to ever higher ones exactly copying the inductive argument presented in the proof
of Proposition 3.9. Note, there is no execution of the involved agents, their output
only needs to be checked against the database snapshot C∗(D), which, however,
is already a result of their execution. Since C is a solution to C, the computation
must include also computation of a valuation for the query variable.
⇐=: we need to show that C = F ∗CAF (∅) is i) normal, ii) φ ∈ outC , iii) all input

variables of agents in C are crisply valued, and iv) there is no larger configuration
C ′ producing a different valuation for φ than C does.

(i) The proof of C’s normality follows the inductive argument laid down in the
proof of Proposition 3.9. Thanks to the insight that there is always a unique
grounded extension of a stratified argumentation framework, we have that
the computation of F ∗CAF (∅) forms a stable evolution of S from D onwards,
moreover, all possible evaluations of agents from the individual layers must
lead to the same outcome;

(ii) φ ∈ outC holds by assumption;
(iii) all inputs to all arguments in C are indeed crisply valued thanks to the

requirement of an argument to be valid and non-controversial in order to
be considered acceptable to F ∗CAF (∅); and finally

(iv) C = F ∗CAF (∅) is a fix-point of FCAF , hence it is also the maximal set of
conflict-free arguments in CAFC.
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Proposition 5.5 can be applied to static databases only. Note, execution of agents
considered for acceptance to a candidate solution does not modify the database
fragment computed in previous iterations, which also remains stable in further com-
putation. In turn, a naive configuration algorithm utilising Proposition 5.5 would
iteratively proceed in three steps following the inductive argument presented in
the proof of Proposition 3.9. In every i-th iteration it would i) execute all the
agents from stratum Ai of the most compact stratification of S, ii) select the non-
controversial ones, and finally iii) add them to the candidate solution. To ensure
non-validity of arguments from higher strata that utilise controversial inputs de-
rived in this iteration, these should be set to ∅.
The naive algorithm, while correctly computing a solution to a given configura-

tion problem, is rather inefficient in terms of the overall run-time cost. It targets
computation of a grounded extension of the whole framework, instead of only an-
swering the query of the given configuration problem. Firstly, in the initial iteration
the algorithm considers and executes all information-source agents. Besides that,
it potentially executes also information processing agents, which do not contribute
to answering the query. In both cases it thus incurs unnecessary run-time cost. In
fact, only arguments relevant to derivation of the configuration problem query need
to be considered.
Let S = (A,D) be a stratified system and φ ∈ D be a query. The agents relevant

to φ include Aφ(∅) = {A ∈ A | φ ∈ outA}. Given a set of agents C relevant to
φ, all the agents computing the input for those in C are relevant to φ too, i.e.,
Aφ(C) = {A ∈ A | outA ⊆ inC}. The set of all agents relevant to φ is the (unique)
fix-point of Aφ(∅) denoted A∗φ. The following proposition formalizes the intuition.

Proposition 5.6: Let C = (S, φ,D), CAFC and C = GECAFC
be as in Propo-

sition 5.5. Then C ∩ A∗φ is also a solution to C.

Proof : Observe, that since C is a solution to C, every fragment C ′ ∈ C which still
satisfies φ ∈ outC′ and the condition that for each variable x ∈ inC′ , also x ∈ outC′
with C∗(D)|x 6= ∅ must also be a solution to C. From the definition of A∗φ and the
fact that C is a normal configuration the two conditions are satisfied in C ∩ A∗φ.
Finally, since C is already a solution to C, by definition no agent from C \ A∗φ
attacks the valuation of C∗(D)|φ, hence C ∩ A∗φ also satisfies the condition (3) of
Definition 4.2. �

Finally, the naive algorithm does not terminate early enough, but rather com-
putes the grounded extension to its full extent, despite the fact that in the course
of its computation it might turn out that the query is i) either already derived in
a justified manner, or that ii) its computation is hopeless. The former is relatively
easy to detect. After all the agents relevant to φ were considered for inclusion to the
candidate solution, further computation will consider only irrelevant arguments as
implied by the proof of Proposition 5.6 above. To detect the latter case, we need to
closely inspect the current candidate solution with respect to the interdependencies
among the agents of the system. Given a configuration C, let’s define Aφ

∗
(C) as

the fix-point of the operator Aφ(C) = C ∪ {A ∈ Aφ | inA ⊆ outC and inA 6= ∅}.
Aφ
∗ is complementary to Aφ in that given a configuration C, it collects all agents

dependent solely on the output of C and thus works bottom-up along the system’s
strata, while Aφ worked top-down from the query down to the relevant information
source in the system’s bottom layer. Consequently, Aφ

∗
(FCAF (C)) contains C, to-

gether with all the arguments which can be still eventually considered for accepting
to the candidate solution in future iterations of FCAF . In the case φ ∈ outAφ

∗
(C)
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Algorithm 1 Algorithm computing weak-solutions to a reconfiguration problem
Require: R = (λE ,S, φ) with environment evolution λE = E0, . . . , Ek, . . ., a

stratified system S = (A,D) and a query φ ∈ D

1: C ← ∅; D = D∅
2: loop (start with j = 0)
3: D⊕ ← the next environment update Ej |DEin
4: (C,D)← Configure(C,D ⊕D⊕)
5: if φ ∈ outC then inform operator about φ and D|φ
6: end loop (increment j)

7: function Configure(C,D) . returns (Configuration,Database)
8: C ← C ∩ F ∗CAF (∅)
9: loop

10: Cacc ← {A ∈ (A∗φ) \ C | A is safely acceptable to C}
11: if Cacc = ∅ or φ 6∈ outAφ

∗
(C∪Cacc)

then return (C,D)

12: select A ∈ Cacc

13: D ← A(D) if D|inA changed since the last execution of A
14: if A attacks {A′1, . . . , A′k} ⊆ C then
15: C ← C \ {A′1, . . . , A′k} and set x 7→ ∅ for all x on which A attacks

C
16: else C ← C ∪ {A}
17: end loop
18: end function

ceases to hold during computation, the algorithm can terminate, since none of the
arguments capable to compute the query solution can be added to C in the future.
A straightforward corollary of this line of reasoning is the following proposition,
which formalizes the relationship between the operator and the structure of the
grounded extension.

Proposition 5.7: Let C = (S, φ,D), CAFC and GEC be as in Proposition 5.5.
We have, φ ∈ outGEC

if and only if φ ∈ outAφ
∗
(FCAF (C)) for every C ⊆ GEC.

Finally, the naive algorithm considers arguments for accepting to the candidate
solution in sets, subsets of the system’s layers. Considering arguments for accep-
tance one by one would facilitate even earlier detection of hopeless computations
and thus further reduction of run-time costs. It could even consider arguments
across strata, however, in that case, in line with the sceptical inference strategy,
the accepted arguments can only use input variables which are a part of the already
stabilised fragment of the database. An alternative definition of (safe) acceptability
of an argument A to a conflict-free configuration C is when all its input variables
are i) crisply valued, ii) already derived by C, and iii) there are no arguments out-
side of C which can potentially threat the valuations of its input variables. More
formally, we require i) inA ⊆ outC , ii) there is no x ∈ inA with D|x = ∅, and iii)
there is no A′ ∈ A \ C, such that inA ∩ outA 6= ∅. Evaluation of this alternative
definition of acceptability does not require execution of the agent A and thus can
be used in the context of an evolving database, as is the case in Metis.
Algorithm 1 provides a pseudocode for continuous reconfiguration of information-

aggregation systems based on the above principles. Upon every environment up-
date, in a step j, the algorithm tries to compute the minimal solution to the cur-
rent configuration problem. Either it succeeds and informs the operator about the
query solution, or detects that a solution can’t be computed and proceeds. Function



December 23, 2014 13:44 Argument & Computation reconf-alg-tarc-cr

Argument & Computation 17

Configure computes the grounded extension of the current configuration prob-
lem Ci = (S, φ,D⊕Ei|DEin) restricted to the arguments relevant to φ and considers
potentially acceptable arguments individually one by one.
Given a configuration, without executing the agents, the algorithm strips C of

all arguments which might need reconsideration (line 8), due to the last environ-
ment update (line 4), or because they depend on such arguments. Starting from
an empty candidate solution C, in every iteration, the algorithm firstly identifies
among the arguments relevant to φ (Proposition 5.6) those potentially acceptable to
C (line 10). Before considering their execution, it checks whether a solution can still
be computed and should this not be the case, it terminates the procedure. To detect
the condition, it exploits the principles presented in Proposition 5.7. Further, the
algorithm selects a potentially acceptable information processing agent A (line 12)
and executes it (line 13). In the case A does not attack the current candidate solu-
tion C (line 14), it is accepted to C (line 16). Otherwise, the arguments attacked
by A were previously accepted to C prematurely and thus need to be removed. We
also need to set the variables on which they disagree to ∅ so as to ensure that all
agents dependent on controversial valuations will be deemed non-valid in the future
iterations (line 8). To further reduce the run-time costs incurred by the algorithm,
we assume that each agent keeps track of changes to its input, so the algorithm
executes it only in the case its re-execution is really needed (line 13).
For simplicity, we do not specify the particular strategy in which the poten-

tially acceptable arguments are selected from Cacc (line 12). One possible heuristic
strategy could be to pick the arguments which can result in a conflict with other
arguments first. This would lead to an early detection of hopelessness of the compu-
tation of a solution to the given configuration problem. Another strategy could be
to select the arguments in a greedy manner according to estimation of the run-time
costs incurred by executing the argument agent.

Metis 5.8 Consider the example configuration problem C = (SMetis,
isSmuggling , D∅ ⊕ E1). In subsequent iterations, Algorithm 1 could execute the
agents as follows. The + superscript marks agents accepted to the candidate solu-
tion: AIS+, FairPlay+, MyShip, CheckDefault+, MarineTraffic+, etc. However, already
after execution of MyShip, it would detect hopelessness of further computation and
would terminate. The valuation of myShipID is vital to computation of the query
solution.

Let us conclude the section with a brief remark on explanations, or justifications,
which can be extracted from grounded extension of configuration argumentation
frameworks as solutions to configuration problems. As articulated in Algorithm 1,
provided a system infers a solution to a given configuration problem, it should in-
form the operator about its query answer. One of the benefits of exploiting the
argumentation optics on system reconfiguration is that the grounded extension re-
duced to only relevant arguments directly provides also a notion of justification
of the system’s conclusions. In particular, it only includes the arguments support-
ing the query answer, while excluding all the irrelevant ones. Given a stratified
system, the query answer can thus be justified by a tree of crisp valuations of
the database’s variables connected by the information processing agents providing
the relationships between them. Assuming that from the perspective of its user,
a coast guard officer in the case of Metis, the system is designed intuitively and
the information-aggregation agents embody a relatively encapsulated and single-
purpose computation procedure, ideally, these relationships will be comprehensible
and plausible explanations of the query answer for the system’s user. In effect,
instead of focusing on the conflict-resolution strengths of Dung’s abstract argu-
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mentation approach, we exploit the mutual support relationships we enforced by
requiring argument validity as a precursor for acceptability to the grounded exten-
sion.

6. Context-dependent information sources and queries

Information source agents of a system provide an interface to the system’s environ-
ment. Algorithm 1 presented in the previous section assumed that all information
sources are constantly available. While this assumption is plausible for automatic
sources such as physical sensors (e.g., a thermometer, or a radar), other information
sources might not be always available and can be only utilised depending on the
system’s context. As a consequence of the need to handle also such information
sources with context-dependent availability, the system should be able to regularly
retrieve the currently available information sources and perform its computation
over these sources only.

Metis 6.1 Since Metis should be deployable also on board of a sea going ship,
access to information sources such as coast guard patrol rapports, or unmanned
aircraft is reasonable only with an explicit approval of a human officer and also only
when in the range of utilisation of such a sensor, such as close to major harbours.
Also, some sensors, such as stationary cameras are typically available at harbour
entrances, but not on arbitrary locations along the coastline.

The main purpose of information processing systems is to perform continuous
surveillance of their environment and attempt to infer valuation of a distinguished
indicator, a query. However, queries of the system can also be a subject to change
over time as the system’s focus shifts according to the particular context of the
monitored entities. To account for such dynamic changes of the information pro-
cessing system’s focus, the system needs to be able to accept changes in its currently
relevant query and perform computations relevant to the actual query in a timely
manner.

Metis 6.2 In the specific example of Metis, a sea-going ship continuously moves
in the zone of under system’s surveillance. While detection of smuggling intent
of a given ship might be highly relevant while the vessel is approaching a major
harbour, near a protected natural habitat, the system might focus rather on its
cargo and kinematic behaviour in order to detect whether it might pose a hazard
to the environment, or whether it might be involved in malicious activities, such as
dumping garbage or chemical waste to the sea.

Algorithm 2 reformulates and extends Algorithm 1 to facilitate continuous re-
configuration of information-aggregation systems with information sources with
context-dependent availability, as well as with dynamic, context-dependent queries.
We expose Algorithm 2 as an event-driven algorithm sequentially reacting to three
main types of events which can occur. Most importantly, upon an update of the
system’s environment (line 3), the algorithm effectively reconfigures the system by
first retrieving the environment database update and subsequently invoking the
function Configure from Algorithm 1, thus updating the system’s configuration.
If necessary, the algorithm informs the system user about the computed answer to
the currently relevant query. Note, the configuration function is, however, always
invoked only on the currently relevant fragment of the original system S relevant to
the currently enabled information sources Aenabled and the currently relevant query
φ. The fragment is precisely defined as Aφ

∗
(Aenabled ). That is, all the information
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Algorithm 2 Event-driven algorithm computing weak-solutions to a reconfigura-
tion problem with context-dependent queries and information sources availability.
Require: R = (λE ,S, φ) with environment evolution λE = E0, . . . , Ek, . . ., a

stratified system S = (A,D) and an initial query φ ∈ D

1: C ← ∅; D ← D∅; Aenabled ← Asrc ;
2: forever handle events (start with j = 0)
3: on environment update (increment j)
4: D⊕ ← the next environment update Ej |(DEin ∩ inAenabled

)

5: (C,D)←Configure(C,D) over the fragment S ′ = (Aφ
∗
(Aenabled ),D)

6: if φ ∈ outC then inform operator about φ and D|φ
7: on info-sources update
8: Aenabled ←RetrieveCtxEnabledSources()
9: recompute Aφ

∗
(Aenabled )

10: on query update
11: φ←RetrieveCtxQuery()
12: recompute Aφ

∗
(Aenabled )

13: end
14: end

processing agents depending on the currently enabled information sources and at
the same time relevant to the actual query.
Upon detecting a contextual change in either the currently available information

sources (line 7) or the currently relevant query (line 10), the algorithm retrieves the
set of enabled information sources or the query, and subsequently recomputes the
currently relevant fragment Aφ

∗
(Aenabled ) of the system S.

Finally, observe that the retrieval of an environment update D⊕ (line 4) is re-
stricted only to the currently available information sources and in result, the system
ignores the changes of the environment which it can’t observe.

7. Discussion and final remarks

Above, we presented an approach for modelling information-processing systems
geared towards continuous surveillance of a mixed physical and software environ-
ments largely inspired by Dung’s approach to argumentation (1). We also demon-
strated usefulness of modelling such systems in terms of arguments and analysing
their interrelationships with respect to potential conflicts between outputs of their
computations. The conceptual formal framework provides a sound and flexible basis
for a rigorous formulation of (re-)configuration problems and their various exten-
sions as also demonstrated in Section 6, where we present an approach to handle not
only the dynamics of an environment, but also that of the system itself, as dictated
by its changing context. We argue that sceptical semantics of argumentation frame-
works is a natural fit for modelling systems like Metis and our approach paves the
way for further study of their properties, as well as development of algorithms for
their continuous adaptation on a the solid basis of the existing body of research in
argumentation theory and logic programming.
In our future work we intend to explore these relationships, specifically to study

further extensions of reconfiguration problems, including optimisation of run-time
costs with respect to explicit costs incurred by the system computation, or re-
configuration with respect to ageing information in the system’s database. In the
argumentation-relevant terminology, this means studying extensions of abstract ar-
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Figure 3. Metis system screenshot. The background map imagery, courtesy of c© 2013 Google, c© 2013
Aerodata International Surveys, Data SIO, NOAA, U.S. Navy, NGA and GEBCO.

gumentation to include notions of a cost of an argument and its inclusion in an
extension, or time-dependent strength of argument’s attacks, etc. Further inspira-
tions stemming from the dynamic nature of such systems also invite to study links
between their evolution and standard results from theories of evolving knowledge
bases (e.g., (9)), logic program updates, belief revision, etc. In particular, among
other challenges, we are also interested in dynamic run-time changes of the sys-
tem’s structure, in other words dynamic changes of the underlying configuration
argumentation framework. We also aim at studying extensions and applications of
the presented approach towards lifting structural constraints imposed on systems,
such as stratification and inclusion of cyclic, or more involved dependencies among
information aggregation agents.
Throughout of the presented paper, we introduced example fragments inspired by

the actual implementation of Metis demonstrators delivered to the Metis project’s
industrial partners in spring and autumn 2013. Figure 3 provides a screenshot of
the operator’s view in the prototype. It shows several vessels (circular glyphs) in
a selected monitored coastal area with indication of the most likely values of their
selected attributes. The pop-up inspection window shows the likelihoods of the
vessel satisfying the target indicators, such as suspicion of a smuggling intent, or
environmental hazard as discussed throughout this paper. An extended account of
the Metis system functionality as of 2014 and AI-related technologies employed in
its implementation can be found in (13).
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