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Abstract. Different knowledge representation tasks require different
knowledge representation techniques. Agent designers should therefore
be able to easily exploit benefits of various knowledge representation
technologies in a single agent system.
I describe here a modular agent programming language Jazzyk based
on the programming framework of Behavioural State Machines (BSM ).
BSM framework, and thus also Jazzyk, draws a strict distinction be-
tween a knowledge representational and a behavioural level of an agent
program. It supports a high degree of modularity w.r.t. employed KR
technologies, and at the same time provides a clear and concise seman-
tics.

1 Motivation

No single knowledge representation (KR) technology offers a range of capabil-
ities and features required for different application domains and environments
agents operate in. For instance, purely declarative KR technologies offer a great
power for reasoning about relationships between static aspects of an environ-
ment, like e.g. properties of objects. However, they are not suitable for repre-
sentation of topological, arithmetical, or geographical information. Similarly, a
relational database is appropriate for representation of large amounts of search-
able tuples, but it does not cope well with representing exceptions and default
reasoning. Hence, an important pragmatic requirement on a general purpose
AOP framework is an ability to integrate heterogeneous KR technologies within
a single agent system. An agent programming framework should not commit
to a single KR technology. The choice of an appropriate KR approach should
be left to an agent designer and the framework should be modular enough to
accommodate a large range of KR techniques, while at the same time providing
flexible means to encode agent’s behaviours.

I recently proposed a framework of Behavioural State Machines (BSM ) [13,
12], a general purpose computational model based on the Gurevich’s Abstract
State Machines [4], adapted to the context of agent oriented programming. The



BSM framework is a culmination of our previous efforts ([14] and [15]) to propose
a solid theoretical basis for a lightweight, yet highly modular agent programming
language. It treats heterogeneous knowledge bases of an agents on a par, i.e. does
not prefer one over another thus allowing programmers to exploit strengths of
various KR approaches in an agent system.

The main purpose of this paper is to describe Jazzyk (Section 3), a program-
ming language based on the theoretical framework of Behavioural State Machines
(Section 2), together with details of its implemented interpreter. Development
of the BSM framework is an application driven research, therefore I furthermore
provide a sketch of Jazzbot (Section 4), a case study demo application imple-
mented in Jazzyk. The paper concludes with a discussion of Jazzyk (Section 5),
related work and future development of this line of research (Section 6).

2 Behavioural State Machines

Before introducing the details of Jazzyk, first I briefly introduce its theoretical
basis: the framework of Behavioural State Machines (BSM ). Behavioural State
Machine computational model is heavily inspired by the Gurevich’s Abstract
State Machines [4] framework.

The underlying abstraction is that of a transition system, similar to that
used in most logic based state-of-the-art BDI agent programming languages
AgentSpeak(L)/Jason, 3APL, or GOAL [2, 6]. States are agent’s mental states,
i.e. collections of agent’s partial knowledge bases, or KR modules. The state of
the environment is treated as a KR module as well. Transitions between the
agent’s mental states are induced by mental state transformers (atomic updates
of mental states). An agent system semantics is, in operational terms, a set of all
enabled paths within the transition system, the agent can traverse during its life-
time. To facilitate modularity and program decomposition, BSM provides also
a functional view on an agent program, specifying a set of enabled transitions
an agent can execute in a given situation.

Behavioural State Machines draw a strict distinction between the knowledge
representational layer of an agent and its behavioural layer. To exploit strengths
of various KR technologies, the KR layer is kept abstract and open, so that it
is possible to plug-in different heterogeneous KR modules as agent’s knowledge
bases. The main focus of BSM computational model is the highest level of control
of an agent: its behaviours.

I introduced BSM framework in [12] and [13], therefore some technical details
are omitted here and I mainly focus on a description of the most fundamental
issues. Moreover, the Subsection 2.2 introduces a reformulated version of the
original BSM semantics equivalent to the one originally published in [12] and
[13].

2.1 Syntax

A BSM agent consists of a set of partial knowledge bases handled by so called
KR modules. A KR module is supposed to store agent’s knowledge e.g. about



its environment, itself, or other agents, or to handle its internal mental attitudes
relevant to keep track of its goals, intentions, obligations, etc. However, because
of the openness of the BSM architecture, no specific structure of an agent is
prescribed and thus the overall number and ascribed purpose of particular KR
modules is kept abstract. The formal definitions capture only their fundamental
characteristics.

A KR module has to provide a language of query and update formulae and
two sets of interfaces: query operators for querying the knowledge base and
update operators to modify it.

Definition 1. (KR module) A knowledge representation moduleM = (S,L,Q,
U) is characterized by

– a set of states S,
– a knowledge representation language L, defined over some domains D1, . . . ,Dn

(with n ≥ 0) and variables over these domains. L ⊆ L denotes a fragment
of L including only ground formulae, i.e. such that do not include variables,

– a set of query operators Q. A query operator |=∈ Q is a mapping |=: S×L →
{>,⊥},

– a set of update operators U . An update operator ⊕ ∈ U is a mapping ⊕ :
S × L → S.

KR languages are compatible on a shared domain D, when they both include vari-
ables over D and their sets of query and update operators are mutually disjoint.
KR modules with compatible KR languages are compatible as well.

From the definition we have, that a KR language not including variables is
compatible with any other KR language.

Each query and update operator has an associated identifier. For simplicity,
these are not included in the definition, however I use them throughout the
text. When used as an identifier in a syntactic expression, I use informal prefix
notation (e.g. |= ϕ, or ⊕ϕ), while when used as a semantic operator, formally
correct infix notation is used (e.g. σ |= ϕ, or σ ⊕ ϕ). Additionally, when the
evaluation of a query formula ϕ by a query operator |= on a state σ results in
>, i.e. (σ |= ϕ) = >, we simply write σ |= ϕ, otherwise when (σ |= ϕ) = ⊥, we
use notation σ 6|= ϕ.

Query formulae are the syntactical means to retrieve information from KR
modules:

Definition 2. (query) Let M1, . . . ,Mn be a set of compatible KR modules.
Query formulae are inductively defined:

– if ϕ ∈ Li, and |=∈ Ui corresponding to some Mi, then |= ϕ is a query
formula,

– if φ1, φ2 are query formulae, so are φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ1.

The informal semantics is straightforward: if a ground language expression ϕ ∈ L
is evaluated to true by a corresponding query operator |= w.r.t. a state of the



corresponding KR module, then |= ϕ is true in the agent’s mental state as well.
Note, that non-ground formulae have to be first ground before their evaluation
(Subsection 2.2).

Subsequently, I define mental state transformer, the principal syntactic con-
struction of BSM framework.

Definition 3. (mental state transformer) LetM1, . . . ,Mn be a set of com-
patible KR modules. Mental state transformer expression (mst) is inductively
defined:

1. skip is a mst (primitive),
2. if ⊕ ∈ Ui and ψ ∈ Li corresponding to some Mi, then ⊕ψ is a mst (primi-

tive),
3. if φ is a query expression, and τ is a mst, then φ −→ τ is a mst as well

(conditional),
4. if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦τ ′ are mst’s too (choice and sequence).

An update expression is a primitive mst. The other three (conditional, sequence
and non-deterministic choice) are compound mst’s. Informally, a primitive mst
is encoding a transition between two mental states, i.e. a primitive behaviour.
Possibly labeled compound mst’s introduce modularity and code re-use to the
BSM framework. A standalone mental state transformer is also called an agent
program over a set of KR modules M1, . . . ,Mn.

A mental state transformer encodes an agent behaviour. I take a radical
behaviourist viewpoint, i.e. also internal transitions are considered a behaviour.
As the main task of an agent is to perform a behaviour, naturally an agent
program is fully characterized by a single mst (agent program) and a set of
associated KR modules used in it. Behavioural State Machine A = (M1, . . . ,
Mn,P), i.e. a collection of compatible agent KR modules and an associated
agent program, completely characterizes an agent system A.

2.2 Semantics

The underlying semantics of BSM is that of a transition system over agent’s
mental states.

Definition 4. (state) Let A be a BSM over KR modulesM1, . . . ,Mn. A state
of A is a tuple σ = 〈σ1, . . . , σn〉 of KR module states σi ∈ Si, corresponding to
M1, . . . ,Mn respectively. S denotes the space of all states over A.

σ1, . . . , σn are partial states of σ. A state can be modified by applying primitive
updates on it and query formulae can be evaluated against it. Query formulae
cannot change the actual agent’s mental state.

According to the Definition 1, to evaluate a formula in a state by query and
update operators, the formula must be ground. Transformation of non-ground
formulae to ground ones is provided by means of variable substitution. A variable
substitution is a mapping θ : L → L replacing every occurrence of a variable



in a KR language formula by a value from the corresponding domain. Variable
substitution of a compound query formula is defined by usual means of nested
substitution. Note however, that a variable can be substituted in sub-formulae
of a compound formula only when languages of the corresponding sub-formulae
share the domain of the variable in question. A variable substitution θ is ground
w.r.t. φ, when the instantiation φθ is a ground formula.

Informally, a primitive ground formula is said to be true in a given BSM
state w.r.t. a query operator, iff an execution of that operator on the state and
the formula yields >. The evaluation of compound query formulae inductively
follows usual evaluation of nested logical formulae.

Notions of an update and update set are the bearers of the semantics of
mental state transformers. An update of a mental state σ is a tuple (⊕, ψ), where
⊕ is an update operator and ψ is a ground update formula corresponding to
some KR module. The syntactical notation of a sequence of mst’s ◦ corresponds
to a sequence of updates, or update sets, denoted by the semantic sequence
operator •. Provided ρ1 and ρ2 are updates, also a sequence ρ1 •ρ2 is an update.
Additionally, there is a special no-operation update skip corresponding to the
primitive mst skip.

A simple update corresponds to semantics of a primitive mst. Sequence of
updates corresponds to a sequence of primitive mst’s and is a compound update
itself. An update set is a set of updates and corresponds to a mst encoding a
non-deterministic choice.

Given an update, or an update set, its application on a state of a BSM is
straightforward. Formally:

Definition 5. (applying an update) The result of applying an update ρ =
(⊕, ψ) on a state σ = 〈σ1, . . . , σn〉 of a BSM A over KR modules M1, . . . ,Mn

is a new state σ′ = σ
⊕
ρ, such that σ′ = 〈σ1, . . . , σ

′
i, . . . , σn〉, where σ′i = σi⊕ψ,

and both ⊕ ∈ Ui and ψ ∈ Li correspond to some Mi of A. Applying the empty
update skip on the state σ does not change the state, i.e. σ

⊕
skip = σ.

Inductively, the result of applying a sequence of updates ρ1 •ρ2 is a new state
σ′′ = σ′

⊕
ρ2, where σ′ = σ

⊕
ρ1.

The meaning of a mental state transformer in state σ, formally defined by the
yields predicate below, is the update set it yields in that mental state.

Definition 6 (yields calculus). A mental state transformer τ yields an up-
date ρ in a state σ under a variable substitution θ, iff yields(τ, σ, θ, ρ) is derivable
in the following calculus:

>
yields(skip,σ,θ,skip)

>
yields(�ψ,σ,θ,(�,ψθ)) (primitive)

yields(τ,σ,θ,ρ), σ|=φθ
yields(φ−→τ,σ,θ,ρ)

yields(τ,σ,θ,ρ), σ 6|=φθ
yields(φ−→τ,σ,θ,skip) (conditional)

yields(τ1,σ,θ,ρ1), yields(τ2,σ,θ,ρ2)
yields(τ1|τ2,σ,θ,ρ1), yields(τ1|τ2,σ,θ,ρ2) (choice)

yields(τ1,σ,θ,ρ1), yields(τ2,σ
L
ρ1,θ,ρ2)

yields(τ1◦τ2,σ,θ,ρ1•ρ2) (sequence)



We say that τ yields an update set ν in a state σ under a substitution θ iff
ν = {ρ|yields(τ, σ, θ, ρ)}.

The mst skip yields the update skip. Provided a variable substitution θ, simi-
larly, a primitive update mst �ψ yields the corresponding update (�, ψθ). In the
case the condition of a conditional mst φ −→ τ is satisfied in the current mental
state, the calculus yields one of the updates corresponding to the right hand side
mst τ , otherwise the no-operation skip update is yielded. A non-deterministic
choice mst yields an update corresponding to either of its members and finally
a sequential mst yields a sequence of updates corresponding to the first mst of
the sequence and an update yielded by the second member of the sequence in a
state resulting from application of the first update to the current mental state.

In the Definition 6 we assume that the variable substitution θ is ground w.r.t.
all the formulae occurring in the considered mst τ .

The calculus defining the yields predicate provides a functional view on a
mst and it is the primary means of compositional modularity in BSM. Mental
state transformers encode functions yielding update sets over states of a BSM.
The collection of all the updates yielded w.r.t. the Definition 6 comprises an
update set of an agent program τ in the current mental state σ.

Finally, the operational semantics of an agent is defined in terms of all pos-
sible computation runs induced by a corresponding Behavioural State Machine.

Definition 7. (BSM semantics) A BSM A = (M1, . . . , Mn,P) can make
a step from state σ to a state σ′ (induces a transition σ → σ′), if there exists
a ground variable substitution θ, s.t. the agent program P yields a non-empty
update set ν in σ under θ and σ′ = σ

⊕
ρ, where ρ ∈ ν is an update.

A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSM A, iff for
each i ≥ 1, A induces a transition σi → σi+1.

The semantics of an agent system characterized by a BSM A, is a set of all
runs of A.

Even though the introduced semantics of Behavioural State Machines speaks
in operational terms of sequences of mental states, an agent can reach dur-
ing its lifetime, the style of programming induced by the formalism of mental
state transformers is rather declarative. Primitive query and update formulae
are treated as black-box expressions by the introduced BSM formalism. On this
high level of control, they rather encode what and when should be executed,
while the issue of how is left to the underlying KR module. I.e., agent’s delib-
eration abilities reside in its KR modules, while its behaviours are encoded as a
BSM.

Figure 1 lists a pseudocode of the abstract interpreter cycle straightforwardly
following from the introduced BSM semantics. In a single deliberation cycle 1)
the agent program interpreter computes the update set ν corresponding to the
agent program P according to the Definition 6, 2) non-deterministically chooses
an update ρ from ν, and finally 3) updates the current mental state by applying
the update ρ to it. Under in the yield(. . .), we denote a substitution of the set
of all the free variables used in the encoding of the agent program P.



Algorithm 1 Abstract BSM interpreter
input: agent program P, initial mental state state σ0
σ = σ0

loop
compute ν = {ρ|yields(P, σ, , ρ)}
if ν 6= ∅ then

non-deterministically choose ρ ∈ ν
σ = σ ⊕ ρ

end if
end loop

Additionally, the non-deterministic choice of the abstract BSM interpreter
fulfils the weak fairness condition, similar to that in [11], for all the induced runs.

Condition 1 (weak fairness condition) A computation run is weakly fair if
it is not the case that an update is always yielded from some point in time on
but is never selected for execution.

The BSM framework assumes that the mental state of an agent, including
its environment, changes only between the single executions of the deliberation
cycle. Therefore in order to implement agile agents which act in their environ-
ments reasonably quickly w.r.t. the speed of change of the environment, the
query and update operators should be computable procedures invocations of
which shouldn’t take too long w.r.t. the application domain.

3 Jazzyk, the language and interpreter

In order to practically test the BSM approach to programming agent systems,
I designed and implemented a programming language Jazzyk and an interpreter
for it. Jazzyk closely follows the BSM framework, i.e. 1) the syntax allows for
one to one encoding of mental state transformers in the language and 2) the
interpreter closely follows the BSM semantics with only minor discrepancies
aimed at making the interpreting of programs more efficient. The syntax and the
precise Jazzyk interpreter semantics, as well as all deviations from the formal
semantics are discussed in this section. Finally I also briefly sketch technical
details of the Jazzyk interpreter implementation.

3.1 Syntax

Figure 1 lists the EBNF of Jazzyk, which straightforwardly follows from the
syntax of BSM introduced in Subsection 2.

According to the BSM syntax, a Jazzyk program is a mental state trans-
former. However to allow for such programs, few technical issues have to be
handled as well. The KR modules have to be declared and subsequently bound
to the corresponding plug-ins implementing their functionality in a KR language



program ::= (statement)*

statement ::= module_decl | module_notify | mst

module_decl ::= ‘declare’ ‘module’ <moduleId> ‘as’ <KRModuleType>

module_notify ::= ‘notify’ <moduleId> on

(‘initialize’ | ‘finalize’ | ‘cycle’) formula

mst ::= ‘nop’ | ‘exit’ | ‘{’ mst ‘}’ |

update | conditional | sequence | choice

sequence ::= mst ‘,’ mst

choice ::= mst ‘;’ mst

conditional ::= ‘when’ query_expr ‘then’ mst [‘else’ mst]

query_expr ::= query ‘and’ query | query ‘or’ query |

not ‘query’ | ‘(’ query ‘)’

query ::= ‘true’ | ‘false’ |

<operatorId> <moduleId> [variables] formula

update ::= <operatorId> <moduleId> [variables] formula

formula ::= ‘[{’ <arbitrary string> ‘}]’

variables ::= ‘(’ (<identifier> ‘,’)* <identifier> ‘)’ | ‘(’ ‘)’

Fig. 1. Jazzyk EBNF.

of choice. Before a first update operation is invoked on a KR module, it should
be initialized by some initial state. This state is encoded as a corresponding KR
language formula, i.e. code block. Similarly, when a module is being shut down,
it might be necessary to perform a cleanup of the knowledge base handled by
the module. In order to allow for a KR module initialization and shut-down
(finalization), so called notifications KR modules are introduces. They take a
form of a statement declaring a formula/code block to be executed when the
KR module is loaded (i.e. before the program interpretation) and when it is
being unloaded (i.e. after either a call of special purpose mst ‘exit’, after an
error during program interpretation, or after the last deliberation cycle was per-
formed). Additionally, as a purely technical feature, also a notification after each
deliberation cycle is provided. It should serve to strictly technical purposes like
e.g. possible cleaning of a query cache, in the case a KR module implements such
an optimization technique.

The core of Jazzyk syntax are rules of conditional nested mst’s of the form
query −→ mst . These are translated in Jazzyk as “when <query> then <mst>”.
Mst’s can be joined using a sequence ‘,’ and choice ‘;’ operators corresponding
to BSM operators ◦ and | respectively. The operator precedence can be managed
using braces ‘{’, ‘}’, resulting in an easily readable nested code blocks syntax.
The query formulae are a straightforward translation of BSM query syntax.

Each KR module provides a set of named query and update operators, iden-
tifiers of which are used in primitive query and update expressions. To allow



the interpreter to distinguish between arbitrary strings and variable identifiers
in primitive query and update expressions, Jazzyk allows optional explicit dec-
laration of a list of variables used in them.

A standalone update expression is a shortcut for a BSM rule of the type
> → <update>. An obvious syntactic sugar of “when-then-else” conditional
mst is introduced as well. Moreover, the syntax accepted by the Jazzyk inter-
preter includes a powerful macro language enabling support for higher level code
structures, like e.g. named mst’s with optional arguments. Such extended fea-
tures will be discussed below in Subsection 3.3. Right hand side of Figure 2
provides short example of a Jazzyk program implementing a part of the Jazzbot
agent described later in Section 4.

3.2 Interpreter

The semantics of the Jazzyk interpreter closely follows the BSM semantics shown
in Algorithm 1 with only few deviations: 1) query expressions are evaluated
sequentially from left to right, 2) the KR modules are responsible to provide
a single ground variable substitution for declared free variables of a true query
expression, 3) before performing an update, all the variables provided to it have
to be instantiated. Additionally, query operator invocations are not supposed to
change the agent’s mental state, however this is not possible to ensure technically
on the level of the Jazzyk interpreter implementation.

The above listed simplifications of the original BSM semantics were intro-
duced in order to make the process of agent program interpretation more efficient
and more transparent to the programmer. The most important deviation from
the original BSM semantics is the treatment of variable substitutions. In order
to make evaluation of mst queries straightforward and efficient, a KR module
is required to provide only a single variable valuation for a provided primitive
query formula, if such exists. In the case of more possible valuations of such a
non-ground query formula, the KR module is free to pick a suitable one1.

3.3 Extended features and the interpreter implementation

Jazzyk interpreter was designed to provide a lightweight modular agent oriented
programming language. Except for the vertical modularity, i.e. modularity in
terms of possibility to use, re-use, or replace heterogeneous KR languages to
handle agent’s underlying knowledge bases, Jazzyk implementation support a
horizontal modularity in terms of modularity of the source code. For a robust
programming language it is desirable to provide syntactical means to manip-
ulate large pieces of code easily. Composition of larger programs from smaller
components is a vital means for avoiding getting lost in the so called “spaghetti
code”.

1 As far as the precise mechanism is well documented by the KR language plug-in
developer.



Agent program before preprocessing with
M4 syntax:

declare module brain as ASP
declare module goals as ASP
declare module body as Nexuiz

notify goals on initialize [{
stay healthy. find box.
}]

define(‘perceive’, ‘
when sense body($3) [{$1}]
then add brain($3) [{$2}]

’)

perceive(‘sonar wall’, ‘inFrontOfWall’) ;
when believes goals [{stay healthy}] then {

...
perceive(‘body health X’, ‘health(X)’, ‘X’)
}

Resulting pure Jazzyk program after
macro expansion:

declare module brain as ASP
declare module goals as ASP
declare module body as Nexuiz

notify goals on initialize [{
stay healthy. find box.
}]

when sense body() [{sonar wall}]
then add brain() [{inFrontOfWall}]
;
when believes goals [{stay healthy}]
then {

...
when sense body(X) [{body health X}]
then add brain(X) [{health(X)}]
}

Fig. 2. Example of macro preprocessing. Program is a part of Jazzbot agent.

To support this horizontal modularity, Jazzyk interpreter integrates GNU
M42, a powerful macro preprocessor. Before a Jazzyk program is fed to the
interpretation cycle (Algorithm 1), its source code is fed to GNU M4 preprocessor
to expand and interpret all the M4 specific syntactic constructs. This way, the
language of Jazzyk programs is extended by the full M4 language syntax.

In terms of source code modularity, by integration of GNU M4 macro prepro-
cessor into the Jazzyk interpreter, it gains several important features almost “for
free”: definition of macros and their expansion in the source code, possibility of
a limited recursive macro expansion, conditional macro expansion, possibility to
create code templates, handling file inclusion in a proper operating system path
settings dependent way, limited facility for handling strings, etc.

The Figure 2 provides an example of a macro expansion mechanism. A re-
usable mst perceive is defined and subsequently used in different contexts of an
agent program.

To simplify debugging of agent programs, Jazzyk interpreter implements a
full-featured error reporting following the GNU C++ Compiler3 error and warn-
ing reporting format, what allows an easier integration of the interpreter with
IDE frameworks, or programmers’ editors like e.g. Eclipse, Emacs, or Vim.

Technically, Jazzyk interpreter is implemented in C++ as a standalone com-
mand line tool. The KR modules are shared dynamically loaded libraries in-
stalled as standalone packages on a host operating system. When a KR module
is loaded, the Jazzyk interpreter forks a separate process to host it. The communi-
cation between the Jazzyk interpreter and a set of the KR module sub-processes
is facilitated by an OS specific shared memory subsystem. This allows loading

2 http://www.gnu.org/software/m4/.
3 http://gcc.gnu.org/



Fig. 3. Jazzyk interpreter scheme

multiple instances of the same KR module implemented in a portable way. The
Figure 3 depicts the technical architecture of the Jazzyk interpreter.

The Jazzyk interpreter was implemented in a portable way, so it can be com-
piled, installed or relatively easily ported to most POSIX compliant operating
systems. As of now, the interpreter was ported to Linux and Windows/Cygwin
platforms. The Jazzyk interpreter was published under the open-source GNU
GPL v2 license and is hosted at http://jazzyk.sourceforge.net/. To sup-
port implementation of 3rd party KR modules, I also published a KR module
software development kit including template of a trivial KR module together
with all compile/package/deploy scripts.

4 Jazzbot: demo application

To demonstrate the applicability of Jazzyk language and its interpreter and
to further drive this line of research, we implemented Jazzbot, a virtual agent
embodied in a simulated 3D environment of a first-person shooter computer
game Nexuiz 4.

Jazzbot is a goal-driven agent. It features four KR modules representing belief
base, goal base, and an interface to its virtual body in a Nexuiz environment
respectively. While the goal base consists of a single KB realized as an ASP logic
program, the belief base is composed of two modules: ASP logic programming
one and a Ruby module. The interface to the environment is facilitated by a
Nexuiz game client module.

4.1 Answer Set Programming

Answer Set Programming module [8] provides the bot with non-monotonic rea-
soning capabilities. It is realized by a Jazzyk module which integrates an ASP
solver Smodels [20] with accompanying logic program grounding tool lparse [19].
Hence the syntax and the semantics of logic programs the module handles, i.e.
query/update formulae, is that accepted by lparse and Smodels. Query formulae
query the answer sets (stable models) of the actual logic program in the knowl-
edge base using two query operations: skeptic and optimistic. While the skeptic
query requires a query formula to be true in all the models of the knowledge

4 http://www.alientrap.org/nexuiz



Fig. 4. Scheme of Jazzbot

base, the optimistic one requires only existence of at least one answer set sat-
isfying the given query formula. The ASP KR module implements only a naive
LP update mechanism based on updating facts.

4.2 Ruby

For representation of topological knowledge about the environment we chose
an interpreted object-oriented programming language Ruby5. The Ruby module
features a simple query/update interface allowing evaluation of arbitrary Ruby
expressions. The functionality of the Ruby KR module resembles an interactive
mode of the Ruby interpreter in which a user enters an arbitrary programming
language expression on the command line and the interactive interpreter executes
it and returns its value. The query/update formulae variables are bound to Ruby
global name-space variables.

4.3 Nexuiz

The environment, Jazzbot operates in, is provided by a remote Nexuiz server.
Nexuiz is an open-source 3D first-person shooter computer game based on the
Quake DarkPlaces6 engine. The Nexuiz KR module [10] implements a client
functionality and facilitates the bot’s interaction with the game server. Jazzbot
can exploit several virtual sensors: gps, sonar, eye, compass, surface sensor and
health status sensor, as well as effectors of its virtual body allowing it to move,
jump, turn, use an item, attack, or utter a plain text message.
5 http://www.ruby-lang.org/
6 http://icculus.org/twilight/darkplaces/



Jazzbot is a client-side bot. That means, that in order to faithfully mimic the
human player style environment for the bot, the sensory interface is designed
so, that it provides only a (strict) subset of the information of that a human
game player can access. For instance, Jazzbot can only check the scene in front
of it using the directional sonar sensor. The rendering of a whole scene also
is inaccessible to it, so only a single object can be seen at a time. Similarly
to a human player, Jazzbot can reach only to the local information about its
environment and information about objects which it cannot see, or are located
behind the walls of the space it stands in, are inaccessible to it.

Jazzbot ’s behaviours are implemented as a Jazzyk program. Jazzbot can fulfill
e.g. search and deliver tasks in the simulated environment, it avoids obstacles
and walls. Figure 4 depicts the architecture of Jazzbot and features a Jazzyk
code chunk implementing a simple behaviour of picking up an object by mere
walk through it and then keeping notice about it in its ASP belief base. Note
that all the three used KR modules are compatible with each other, since they
share the domain of character strings. Hence all the variables used in Jazzbot ’s
programs are meant to be character string variables.

5 Discussion

In my view, an agent programming language is a glue for assembling agent’s
behaviours. Furthermore, it should facilitate an efficient use of its knowledge
bases and interface(s) to the environment.

However, a programming language is a software engineering tool, in the first
place. Even though its primary utilization is to provide expressive means for
behaviour encoding, at the same time it has to fulfill requirements on modern
programming languages. Programs have to be easily readable and understand-
able and the language semantics should be transparent to a programmer, i.e. as
clear and simple as possible.

The BSM framework, and in turn Jazzyk, its implementation, is an attempt
to satisfy these requirements in a working system obeying design principles of
simplicity, modularity and semantic transparency.

1. BSM in the core allow implementation of agent programs in a form of simple
non-deterministic reactive behaviours. Their precedence and relations can be
steered by nesting of behaviours (mst’s) and their combinations by operators
of non-deterministic choice and chaining,

2. Jazzyk itself is a lightweight language. To support modularity and further
extensibility, it exploits a power of a macro preprocessor allowing imple-
mentation of code templates and higher level syntactic constructs like e.g.
general purpose perception or goal handlers (as sketched in the Figure 2),

3. finally, the proposed simple semantics of BSM stems from that of Gurevich’s
Abstract State Machines (ASM ) framework, formerly known as Evolving
Algebras. This relationship allows further transfer of ASM extensions and
modeling tools, like logic for ASM to the BSM framework.



It can be argued that Jazzyk is oversimplified and does not follow the popular
tradition of BDI [18] architectures. We already addressed these issues in [14].
There we showed how a BDI agent architecture can be implemented in a modular
way in a framework close to BSM with an advantage, that an agent system
designer has a freedom to implement a model of rationality suitable for the
agent application instead of fixing it in the programming framework.

The syntactical structure of BSM closely resembles the one we introduced in
[15]. BSM framework is indeed an evolution of our previous work. However the
semantics of the language introduced in [15] was not simple enough and did not
allow a straightforward implementation of a transparent language interpreter.
Moreover, the concept of mental state transformer was still quite complex what
led to problems with implementation of source code modularity in the language.

Our research project follows the spirit of [9], where Laird and van Lent argue
that approaches for programming intelligent agents should be tested in realistic
and sophisticated environments of modern computer games. To provide a sub-
stance to claims about practicality and applicability of Jazzyk, similarly to [21],
we put Jazzyk to a test in such a challenging environment and we developed
Jazzbot, a functional demonstration of a non-trivial virtual agent. We report on
the details of the methodology of programming the Jazzbot ’s behaviour and our
experience with it more extensively in [16]. Because of Jazzyk ’s modularity in
terms of employed KR technologies, agent applications, such as Jazzbot, can be
used as a test-bed for investigating applications of various KR technologies in
the domain of agent systems.

6 Related work and conclusion

The landscape of agent programming frameworks is thriving (see e.g. a survey [1],
or [2]). Most of the state-of-the-art frameworks like 3APL [5], Jason [3], GOAL
[6] and other provide a clear semantics of a resulting agent system. However, for
representation of agent’s beliefs, they usually provide a fixed, logic based knowl-
edge representation technique (often Prolog). Following the BDI tradition, from
the relation of agent’s beliefs and goals stems a subsequent need to implement
also the goal base using a related logic based KR technology. Unlike the BSM
framework, which was designed with the motivation to allow a liberal combi-
nation of heterogeneous KR technologies in a single agent system, they do not
allow a straightforward employment of e.g. an object-oriented KR approach (like
Ruby in the case of Jazzbot) in one of an agent’s knowledge bases.

Recently in [7], we showed that GOAL does not strictly commit to a single
logic-based KR technology, such as e.g. Prolog. However, a question remains
how difficult would it be to use heterogeneous KR technologies with GOAL as
it is done in the BSM framework. Because of the model of rationality GOAL
uses (blind commitment), there must be a close relationship between the KR
languages of belief and goal bases. BSM do not require such a relationship to
exist, it is rather a task of a programmer to encode such a relationship whenever



necessary. Macro perceive in the Figure 2 provides such an example: it relates
a perception to its projection in the agent’s belief base.

In [17], authors describe Qsmodels architecture based Quake bots imple-
mented in plain ASP/Smodels. Qsmodels bots use planning as the primary ap-
proach to implementation of behaviours. I rather take a position that logic-based
techniques are better suited for modeling static aspects of an environment, rather
than for steering agents’ behaviours. Unlike Qsmodels planning bot, Jazzbot is
a rather reactive agent with a strong support for deliberative features.

The main contributions of this paper are a detailed description of the pro-
gramming language Jazzyk together with its interpreter and a rough overview of
the functionality of Jazzbot, a case study demonstrating applicability of Jazzyk
language. The Jazzbot project is a driver for my future work. In this context I
will focus on development of techniques for programming agents based on the
template of Jazzbot, so that I can better understand a methodology for program-
ming such systems. The aim is to design at least a fragmentary formal higher
level specification language based on a flavor of modal logic, which would al-
low a straightforward translation (compilation) into raw Jazzyk programs. On
a technical side, to complement the current family of Jazzyk KR modules, we
plan to implement a Prolog module based on SWI Prolog7 and a Scheme module
based on GNU Guile8. We are also working on a module allowing inter-agent
communication via an established MAS platform middleware.
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