
Probabilistic Behavioural State Machines

Peter Novák

Department of Informatics
Clausthal University of Technology

Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany
peter.novak@tu-clausthal.de

Abstract Development of embodied cognitive agents in agent oriented
programming languages naturally leads to writing underspecified pro-
grams. The semantics of BDI inspired rule based agent programming
languages leaves room for various alternatives as to how to implement
the action selection mechanism of an agent (paraphrased from [5]).
To facilitate encoding of heuristics for the non-deterministic action selec-
tion mechanism, I introduce a probabilistic extension of the framework
of Behavioural State Machines and its associated programming language
interpreter Jazzyk. The language rules coupling a triggering condition
and an applicable behaviour are extended with labels, thus allowing finer
grained control of the behaviour selection mechanism of the underlying
interpreter. In consequence, the agent program not only prescribes a set
of mental state transitions enabled in a given context, but also specifies
a probability distribution over them.

1 Introduction

Situated cognitive agents, such as mobile service robots, operate in rich, unstruc-
tured, dynamically changing and not completely observable environments. Since
various phenomena of real world environments are not completely specifiable, as
well as because of limited, noisy, or even malfunctioning sensors and actuators,
such agents must operate with incomplete information.

On the other hand, similarly to mainstream software engineering, robustness
and elaboration tolerance are some of the desired properties for cognitive agent
programs. Embodied agent is supposed to operate reasonably well also in con-
ditions previously unforeseen by the designer and it should degrade gracefully
in the face of partial failures and unexpected circumstances (robustness). At the
same time the program should be concise, easily maintainable and extensible
(elaboration tolerance).

Agent programs in the reactive planning paradigm [15] are specifications of
partial plans for the agent about how to deal with various situations and events
occurring in the environment. The inherent incomplete information on one side,
stemming from a level of knowledge representation granularity chosen at the
agent’s design phase, and striving for robust and easily maintainable programs
on the other yield a trade-off of intentional underspecification of resulting agent
programs.

Most BDI inspired agent oriented programming languages on both sides of
the spectrum between theoretically founded (such as AgentSpeak(L)/Jason [2],
3APL [3] or GOAL [4]) to pragmatic ones (e.g., JACK [16] or Jadex [14]) fa-
cilitate encoding of underspecified, non-deterministic programs. Any given sit-
uation, or an event can at the same time trigger multiple behaviours, which
themselves can be non-deterministic, i.e, can include alternative branches.

A precise and exclusive qualitative specification of behaviour triggering con-
ditions is often impossible due to the, at the design time chosen and fixed, level
of knowledge representation granularity. This renders the qualitative condition
description a rather coarse grained means for steering agent’s life-cycle. In such
contexts, a quantitative heuristics steering the language interpreter’s choices be-
comes a powerful tool for encoding developer’s informal knowledge, or intuitions
about agent’s run-time evolutions. For example, it might be appropriate to exe-
cute some applicable behaviours more often than others, or some of them might
intuitively perform better than other behaviours in the same context, and there-
fore should be preferably selected.

In this paper I propose a probabilistic extension of a rule-based agent pro-
gramming language. The core idea is straightforward: language rules coupling
a triggering condition with an applicable behaviour are extended with labels
denoting a probability with which the interpreter’s selection mechanism should
choose the particular behaviour in a given context. The idea is directly applicable
also to other agent programming languages, however here I focus on extension of
the theoretical framework of Behavioural State Machines [10] and its associated
programming language instance Jazzyk, which I use in my long-term research.
One of elegant implications of the extension of the BSM framework is that
subprograms with labelled rules can be seen as specifications of probability dis-
tributions over actions applicable in a given context. This allows steering agent’s
focus of deliberation on a certain sub-behaviour with only minor changes to the
original agent program. I call this technique adjustable deliberation.

After a brief overview of the framework of Behavioural State Machines (BSM)
with the associated programming language Jazzyk in Section 2, sections 3 and 4
introduce P-BSM and Jazzyk(P), their respective probabilistic extensions. Sec-
tion 5 discusses practical use of the P-BSM framework together with a brief
overview of related work. Finally, a summary with final remarks concludes the
paper in Section 6.

2 Behavioural State Machines

In [10] I introduced the framework of Behavioural State Machines. BSM frame-
work draws a clear distinction between the knowledge representation and be-
havioural layers within an agent. It thus provides a programming framework
that clearly separates the programming concerns of how to represent an agent’s
knowledge about, for example, its environment and how to encode its behaviours
for acting in it. This section briefly introduces the BSM framework, for simplic-

ity without treatment of variables. For the complete formal description of the
BSM framework, see [10].

2.1 Syntax

BSM agents are collections of one or more so-called knowledge representation
modules (KR modules), typically denoted by M, each representing a part of
the agent’s knowledge base. KR modules may be used to represent and maintain
various mental attitudes of an agent, such as knowledge about its environment, or
its goals, intentions, obligations, etc. Transitions between states of a BSM result
from applying so-called mental state transformers (mst), typically denoted by
τ . Various types of mst’s determine the behaviour that an agent can generate.
A BSM agent consists of a set of KR modules M1, . . . ,Mn and a mental state
transformer P, i.e. A = (M1, . . . ,Mn,P); the mst P is also called an agent
program.

The notion of a KR module is an abstraction of a partial knowledge base of
an agent. In turn, its states are to be treated as theories (i.e., sets of sentences)
expressed in the KR language of the module. Formally, a KR module Mi =
(Si,Li,Qi,Ui) is characterised by a knowledge representation language Li, a set
of states Si ⊆ 2Li , a set of query operators Qi and a set of update operators
Ui. A query operator ��� ∈ Qi is a mapping ��� : Si × Li → {>,⊥}. Similarly an
update operator ⊕ ∈ Ui is a mapping ⊕ : Si × Li → Si.

Queries, typically denoted by ϕ, can be seen as operators of type ��� : Si →
{>,⊥}. A primitive query ϕ = (���φ) consists of a query operator ��� ∈ Qi and a
formula φ ∈ Li of the same KR module Mi. Complex queries can be composed
by means of conjunction ∧, disjunction ∨ and negation ¬.

Mental state transformers enable transitions from one state to another. A
primitive mst �ψ, typically denoted by ρ and constructed from an update op-
erator � ∈ Ui and a formula ψ ∈ Li, refers to an update on the state of the
corresponding KR module. Conditional mst’s are of the form ϕ −→ τ , where
ϕ is a query and τ is a mst. Such a conditional mst makes the application of
τ depend on the evaluation of ϕ. Syntactic constructs for combining mst’s are:
non-deterministic choice | and sequence ◦.
Definition 1 (mental state transformer). Let M1, . . . ,Mn be KR modules
of the formMi = (Si,Li,Qi,Ui). The set of mental state transformers is defined
as below:

– skip is a primitive mst,
– if � ∈ Ui and ψ ∈ Li, then �ψ is a primitive mst,
– if ϕ is a query, and τ is a mst, then ϕ −→ τ is a conditional mst,
– if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s (choice, and sequence

respectively).

2.2 Semantics

The yields calculus, summarised below after [10], specifies an update associated
with executing a mental state transformer in a single step of the language inter-

preter. It formally defines the meaning of the state transformation induced by
executing an mst in a state, i.e., a mental state transition.

Formally, a mental state σ of a BSM A = (M1, . . . ,Mn, τ) is a tuple
σ = 〈σ1, . . . , σn〉 of KR module states σ1 ∈ S1, . . . , σn ∈ Sn, corresponding
to M1, . . . ,Mn respectively. S = S1 × · · · × Sn denotes the space of all mental
states over A. A mental state can be modified by applying primitive mst’s on
it and query formulae can be evaluated against it. The semantic notion of truth
of a query is defined through the satisfaction relation |=. A primitive query ���φ
holds in a mental state σ = 〈σ1, . . . , σn〉 (written σ |= (���φ)) iff ���(φ, σi), oth-
erwise we have σ 6|= (���φ). Given the usual meaning of Boolean operators, it is
straightforward to extend the query evaluation to compound query formulae.
Note that evaluation of a query does not change the mental state σ.

For an mst �ψ, we use (�, ψ) to denote its semantic counterpart, i.e., the
corresponding update (state transformation). Sequential application of updates
is denoted by •, i.e. ρ1 •ρ2 is an update resulting from applying ρ1 first and then
applying ρ2. The application of an update to a mental state is defined formally
below.

Definition 2 (applying an update). The result of applying an update ρ =
(�, ψ) to a state σ = 〈σ1, . . . , σn〉 of a BSM A = (M1, . . . ,Mn,P), denoted by
s
⊕
ρ, is a new state σ′ = 〈σ1, . . . , σ

′
i, . . . , σn〉, where σ′i = σi�ψ and σi, �, and

ψ correspond to one and the same Mi of A. Applying the empty update skip on
the state σ does not change the state, i.e. σ

⊕
skip = σ.

Inductively, the result of applying a sequence of updates ρ1 •ρ2 is a new state
σ′′ = σ′

⊕
ρ2, where σ′ = σ

⊕
ρ1. σ

ρ1•ρ2→ σ′′ = σ
ρ1→ σ′

ρ2→ σ′′ denotes the
corresponding compound transition.

The meaning of a mental state transformer in state σ, formally defined by the
yields predicate below, is the update set it yields in that mental state.

Definition 3 (yields calculus). A mental state transformer τ yields an up-
date ρ in a state σ, iff yields(τ, σ, ρ) is derivable in the following calculus:

>
yields(skip,σ,skip)

>
yields(�ψ,σ,(�,ψ)) (primitive)

yields(τ,σ,ρ), σ|=φ
yields(φ−→τ,σ,ρ)

yields(τ,σ,ρ), σ 6|=φ
yields(φ−→τ,σ,skip) (conditional)

yields(τ1,σ,ρ1), yields(τ2,σ,ρ2)
yields(τ1|τ2,σ,ρ1), yields(τ1|τ2,σ,ρ2) (choice)

yields(τ1,σ,ρ1), yields(τ2,σ
L
ρ1,ρ2)

yields(τ1◦τ2,σ,ρ1•ρ2) (sequence)

We say that τ yields an update set ν in a state σ iff ν = {ρ|yields(τ, σ, ρ)}.

The mst skip yields the update skip. Similarly, a primitive update mst �ψ yields
the corresponding update (�, ψ). In the case the condition of a conditional mst
φ −→ τ is satisfied in the current mental state, the calculus yields one of the
updates corresponding to the right hand side mst τ , otherwise the no-operation

skip update is yielded. A non-deterministic choice mst yields an update corre-
sponding to either of its members and finally a sequential mst yields a sequence
of updates corresponding to the first mst of the sequence and an update yielded
by the second member of the sequence in a state resulting from application of
the first update to the current mental state.

Notice, that the provided semantics of choice and sequence operators implies
associativity of both. Hence, from this point on, instead of the strictly pairwise
notation τ1|(τ2|(τ3|(· · · |τk))), we simply write τ1|τ2|τ2| · · · |τk. Similarly for the
sequence operation ◦.

The following definition articulates the denotational semantics of the notion
of mental state transformer as an encoding of a function mapping mental states
of a BSM to updates, i.e., transitions between them.

Definition 4 (mst functional semantics). Let M1, . . . ,Mn be KR modules.
A mental state transformer τ encodes a function fτ : σ 7→ {ρ|yields(τ, σ, ρ)} over
the space of mental states σ = 〈σ1, . . . , σn〉 ∈ S1 × · · · × Sn.

Subsequently, the semantics of a BSM agent is defined as a set of traces in the
induced transition system enabled by the BSM agent program.

Definition 5 (BSM semantics). A BSM A = (M1, . . . ,Mn,P) can make a
step from state σ to a state σ′, iff σ′ = σ

⊕
ρ, s.t. ρ ∈ fP(σ). We also say, that

A induces a (possibly compound) transition σ
ρ→ σ′.

A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSM A, iff for
each i ≥ 1, A induces a transition σi → σi+1.

The semantics of an agent system characterised by a BSM A, is a set of all
runs of A.

Additionally, we require the non-deterministic choice of a BSM interpreter to
fulfil the weak fairness condition, similar to that in [7], for all the induced runs.

Condition 1 (weak fairness condition) A computation run is weakly fair iff
it is not the case that an update is always yielded from some point in time on
but is never selected for execution.

2.3 Jazzyk

Jazzyk is an interpreter of the Jazzyk programming language implementing the
computational model of the BSM framework. Later in this paper, we use a
more readable notation mixing the syntax of Jazzyk with that of the BSM mst’s
introduced above. when φ then τ encodes a conditional mst φ −→ τ . Symbols ; and
, stand for choice | and sequence ◦ operators respectively. To facilitate operator
precedence, mental state transformers can be grouped into compound structures,
blocks, using curly braces {. . .}.

To better support source code modularity and re-usability, Jazzyk interpreter
integrates a macro preprocessor, a powerful tool for structuring and modularising
and encapsulating the source code and writing code templates.

For further details on the Jazzyk programming language and the macro pre-
processor integration with Jazzyk interpreter, consult [10].

3 Probabilistic BSMs

In the plain BSM framework, the syntactic construct of a mental state trans-
former encodes a transition function over the space of mental states of a BSM
(cf. Definition 4). Hence, an execution of a compound non-deterministic choice
mst amounts to a non-deterministic selection of one of its components and its
subsequent application to the current mental state of the agent. In order to
enable a finer grained control over this selection process, in this section I intro-
duce an extension of the BSM framework with specifications of a probability
distributions over components of choice mst’s.

The P-BSM formalism introduced below heavily builds on associativeness of
BSM composition operators of non-deterministic choice and sequence. We also
informally say that an mst τ occurs in a mst τ ′ iff τ ′ can be constructed from
a set of mst’s T , s.t. τ ∈ T , by using composition operators as defined by the
Definition 1.

Definition 6 (Probabilistic BSM). A Probabilistic Behavioural State Ma-
chine (P-BSM) Ap is a tuple Ap = (M1, . . . ,Mn,P, Π), where A = (M1, . . . ,
Mn,P) is a BSM and Π : τ 7→ Pτ is a function assigning to each non-
deterministic choice mst of the form τ = τ1| · · · |τk ∈ P occurring in P a discrete
probability distribution function Pτ :τi 7→ [0, 1], s.t.

∑k
i=1 Pτ (τi) = 1.

W.l.o.g. we assume that each mst occurring in the agent program P can be
uniquely identified (e.g. by its position in the agent program).

The probability distribution function Pτ assigns to each component of a non-
deterministic choice mst τ = τ1|τ2| · · · |τk a probability of its selection for appli-
cation by a BSM interpreter.

Note, that because of the unique identification of mst’s in an agent program
P, the function Π assigns two distinct discrete probability distributions Pτ1 and
Pτ2 to choice mst’s τ1, τ2 even when they share the syntactic form but occur as
distinct components of P.

To distinguish from the BSM formalism, we call mst’s occurring in a P-BSM
probabilistic mental state transformers. BSM mst’s as defined in Section 2 will
be called plain.

Similarly to plain mst’s, the semantic counterpart of a probabilistic mst is a
probabilistic update. A probabilistic update of a P-BSM Ap = (M1, . . . ,Mn,P, Π)
is a tuple p:ρ, where p ∈ R, s.t. p ∈ [0, 1], is a probability and ρ = (�, ψ) is an
update from the BSM A = (M1, . . . ,Mn,P).

The semantics of a probabilistic mental state transformer in a state σ, for-
mally defined by the yieldsp predicate below, is the probabilistic update set it
yields in that mental state.

Definition 7 (yieldsp calculus). A probabilistic mental state transformer τ
yields a probabilistic update p:ρ in a state σ, iff yieldsp(τ, σ, p:ρ) is derivable in
the following calculus:

>
yieldsp(skip,σ,1:skip)

>
yieldsp(�ψ,σ,1:(�,ψ)) (primitive)

yieldsp(τ,σ,p:ρ), σ|=φ
yieldsp(φ−→τ,σ,p:ρ)

yieldsp(τ,σ,θ,p:ρ), σ 6|=φ
yieldsp(φ−→τp,σ,1:skip) (conditional)

τ=τ1|···|τk, Π(τ)=Pτ , ∀1≤i≤k: yieldsp(τi,σ,pi:ρi)
∀1≤i≤k: yieldsp(τ,σ,Pτ (τi)·pi:ρi)

(choice)

τ=τ1◦···◦τk, ∀1≤i≤k: yieldsp(τi,σi,pi:ρi)∧σi+1=σi
L
ρi

yields(τ,σ1,
Qk
i=1 pi:ρ1•···•ρk)

(sequence)

The modification of the plain BSM yields calculus introduced above for primi-
tive and conditional mst’s is rather straightforward. A plain primitive mst yields
the associated primitive update for which there’s no probability of execution
specified. A conditional mst yields probabilistic updates of its right hand side if
the left hand side query condition is satisfied. It amounts to a skip mst other-
wise. The function Π associates a discrete probability distribution function with
each non-deterministic choice mst and thus modifies the probability of applica-
tion of the probabilistic updates yielded by its components accordingly. Finally,
similarly to the plain yields calculus, a sequence of probabilistic mst’s yields
sequences of updates of its components, however the joint application probabil-
ity equals to the conditional probability of selecting the particular sequence of
updates. The following example illustrates the sequence rule of the probabilistic
yieldsp calculus.

Example 1. Consider the following mst: (0.3:τ1 | 0.7:τ2) ◦ (0.6:τ3 | 0.4:τ4). Let’s
assume that for each of the component mst’s τi, we have yieldsp(τi, σ, pi:ρi) in
a state σ. The plain yields calculus yields the following sequences of updates
ρ1 • ρ3, ρ1 • ρ4, ρ2 • ρ3 and ρ2 • ρ4. The probability of selection of each of them,
however, equals to the conditional probability of choosing an update from the
second component of the sequence, provided that the choice from the first one
was already made. I.e. the probabilistic yieldsp calculus results in the following
sequences of probabilistic updates 0.18:(ρ1 •ρ3), 0.12:(ρ1 •ρ4), 0.42:(ρ2 •ρ3) and
0.28:(ρ2 • ρ4).

The corresponding adaptation of the mst functional semantics straightforwardly
follows.

Definition 8 (probabilistic mst functional semantics). Let Ap = (M1, . . . ,
Mn,P, Π) be a P-BSM. A probabilistic mental state transformer τ encodes a
transition function fpτ : σ 7→ {p : ρ|yieldsp(τ, σ, p : ρ)} over the space of mental
states σ = 〈σ1, . . . , σn〉 ∈ S1 × · · · × Sn.

According to the Definition 6, each mst occurring in a P-BSM agent program
can be uniquely identified. Consequently, also each probabilistic update yielded
by the program can be uniquely identified by the mst it corresponds to. The
consequence is, that w.l.o.g. we can assume that even when two probabilistic
updates p1:ρ1, p2:ρ2 yielded by the agent program P in a state σ share their
syntactic form (i.e. p1 = p2 and ρ1, ρ2 encode the same plain BSM update) they
both independently occur in the probabilistic update set fp(σ).

The following lemma shows, that the semantics of probabilistic mst’s em-
bodied by the yieldsp calculus can be understood as an encoding of a probability
distribution, or a probabilistic policy over updates yielded by the underlying plain
mst. Moreover, it also implies that composition of probabilistic mst’s maintains
their nature as probability distributions.

Lemma 1. Let Ap = (M1, . . . ,Mn,P, Π) be a P-BSM. For every mental state
transformer τ occurring in P and a mental state σ of Ap, we have∑

p:ρ∈fpτ (σ)

p = 1 (1)

Proof. Cf. Appendix A.

Finally, the semantics of a P-BSM agent is defined as a set of traces in the
induced transition system enabled by the P-BSM agent program.

Definition 9 (BSM semantics). A P-BSM Ap = (M1, . . . ,Mn,P, Π) can
make a step from state σ to a state σ′ with probability p, iff σ′ = σ

⊕
ρ, s.t.

p:ρ ∈ fpτ (σ). We also say, that with a probability p, Ap induces a (possibly
compound) transition σ

p:ρ→ σ′.
A possibly infinite sequence of states ω = σ1, . . . , σi, . . . is a run of P-BSM

Ap, iff for each i ≥ 1, A induces the transition σi
pi:ρi→ σi+1 with probability pi.

Let pref (ω) denote the set of all finite prefixes of a possibly infinite com-
putation run ω and |.| the length of a finite run. P (ω) =

∏|ω|
i=1 pi is then the

probability of the finite run ω.
The semantics of an agent system characterised by a P-BSM Ap, is a set

of all runs ω of Ap, s.t. all of their finite prefixes ω′ ∈ pref (ω) have probability
P (ω′) > 0.

Informally, the semantics of an agent system is a set of runs involving only
transitions induced by updates with a non-zero selection probability.

Additionally, we require an admissible P-BSM interpreter to fulfil the fol-
lowing specialisation of the weak fairness condition, for all the induced runs.

Condition 2 (P-BSM weak fairness condition) Let ω be a possibly infinite
computation run of a P-BSM Ap. Let also freqp:ρ(ω′) be the number of transitions
induced by the update p:ρ along a finite prefix of ω′ ∈ pref (ω).

We say that ω is weakly fair w.r.t. Ap iff for all updates p:ρ we have, that if
from some point on p:ρ is always yielded in states along ω, 1) it also occurs on ω
infinitely often, and 2) for the sequence of finite prefixes of ω ordered according
to their length holds

lim inf
|ω′|→∞
ω′∈pref (ω)

freqp:ρ(ω′)
|ω′|

≥ p

Similarly to the plain BSM weak fairness Condition 1, the above stated Con-
dition 2 embodies a minimal requirement on admissible P-BSM interpreters. It
admits only P-BSM interpreters which honor the intended probabilistic seman-
tics of the non-deterministic choice selection of the yieldsp calculus. The first
part of the requirement is a consequence of the plain BSM weak fairness condi-
tion (Condition 1), while the second states that in sufficiently long computation
runs, the frequency of occurrence of an always yielded probabilistic update cor-
responds to its selection probability in each single step.

4 Jazzyk(P)

Jazzyk is a programming language instantiating the plain BSM theoretical frame-
work introduced in [10]. This section informally describes its extension Jazzyk(P),
an instantiation of the framework of Probabilistic Behavioural State Machines
introduced in Section 3 above.

Jazzyk(P) syntax differs from that of Jazzyk only in specification of prob-
ability distributions over choice mst’s. Jazzyk(P) allows for explicit labellings
of choice mst members by their individual application probabilities. Consider
the following labelled choice mst p1:τ1 ; p2:τ2 ; p3:τ3 ; p4:τ4 in the Jazzyk(P) no-
tation. Each pi ∈ [0, 1] denotes the probability of selection of mst τi by the
interpreter. Furthermore, to ensure that the labelling denotes a probability dis-
tribution over τi’s, Jazzyk(P) parser requires that

∑k
i=1 pi = 1 for every choice

mst p1:τ1 ; . . . ; pk:τk occurring in the considered agent program. Similarly to
Jazzyk, during the program interpretation phase, Jazzyk(P) interpreter proceeds
in a top-down manner subsequently considering nested mst’s from the main
agent program, finally down to primitive update formulae. When the original
Jazzyk interpreter faces a selection from a non-deterministic choice mst, it ran-
domly selects one of them assuming a discrete uniform probability distribu-
tion. I.e., the probability of selecting from a choice mst with k members is 1

k
for each of them. The extended interpreter Jazzyk(P) respects the specified se-
lection probabilities: it generates a random number p ∈ [0, 1] and selects τs,
s.t.

∑s−1
i=1 pi ≤ p ≤

∑s
i=1 pi.

For convenience, Jazzyk(P) enables use of incomplete labellings. An incom-
pletely labelled non-deterministic choice mst is one containing at least one mem-
ber mst without an explicit probability specification such as p1:τ1 ; p2:τ2 ; τ3 ; τ4.
In such a case, the Jazzyk(P) parser automatically completes the distribution
by uniformly dividing the remaining probability range to unlabelled mst’s. I.e.,
provided an incompletely labelled choice mst with k members, out of which
m < k are labelled (p1:τ1 ; . . . ; pm:τm ; τm+1 ; · · · ; τk), it assigns probability
p = 1−

Pm
i=1 pi

k−m to the remaining mst’s τm+1, . . . , τk.
The Listing 1 provides an example of a Jazzyk(P) code snippet adapted from

the Jazzbot project [6]. Consider a BDI-style virtual agent (bot) in a simulated
3D environment. The bot moves around a virtual building and searches for items
which it picks up and delivers to a particular place in the environment. Upon
encountering an unfriendly agent (attacker), it executes an emergency behaviour,

Listing 1 Example of Jazzyk(P) syntax.

when |=bel [{ threatened }] then {
/∗ ∗∗∗Emergency modus operandi∗∗∗ ∗/

/∗ Detect the enemy’s position ∗/
0.7 : when |=bel [{ attacker(Id) }] and |=env [{ eye see Id player Pos }]
then ⊕map [{ positions[Id] = Pos }] ;

/∗ Check the camera sensor ∗/
0.2 : when |=env [{ eye see Id Type Pos }] then {
⊕bel [{ see(Id, Type) }] ,
⊕map [{ objects[Pos].addIfNotPresent(Id) }]

}

/∗ Check the body health sensor ∗/
when |=env [{ body health X }] then ⊕bel [{ health(X). }] ;

} else {
/∗ ∗∗∗Normal mode of perception∗∗∗ ∗/

/∗ Check the body health sensor ∗/
when |=env [{ body health X }] then ⊕bel [{ health(X). }] ;

/∗ Check the camera sensor ∗/
when |=env [{ eye see Id Type Pos }] then {
⊕bel [{ see(Id, Type) }] ,
⊕map [{ positions[Id] = Pos }]

}
}

such as running away until it feels safe again. The agent consists of several
KR modules bel, map and env respectively representing its beliefs about the
environment and itself, the map of the environment and an interface to its sensors
and actuators, i.e. the body. The corresponding query and update operators |=
and ⊕ are sub-scripted with the KR module label they correspond to.

The Listing 1 provides a piece of code for perception of the bot. In the normal
mode of operation, the bot in a single step queries either its camera, or its body
health status sensor with the same probability of selection for each of them,
i.e., 0.5. However, in the case of emergency, the bot focuses more on escaping
the attacker, therefore, in order to retrieve the attacker’s position, it queries the
camera sensor more often (selection probability p = 0.7) than sensing objects
around it (p = 0.2). Checking it’s own body health is of the least importance
(p = 0.1), however not completely negligible.

In an implemented program, however, the Listing 1 would be rewritten using
the macro facility of the Jazzyk interpreter and reduced to a more concise code
shown in the Listing 2.

5 Discussion

Probabilistic Behavioural State Machines, and in turn Jazzyk(P), allow for la-
belling of alternatives in non-deterministic choice mental state transformers,
thus providing a specification of a probability distribution over the set of en-
abled transitions for the next step in agent’s life-cycle. Besides the, in the field

Listing 2 Example of focusing bot’s attention during emergency situations
rewritten with reusable macros.

when |=bel [{ threatened }] then {
/∗ ∗∗∗Emergency modus operandi∗∗∗ ∗/
0.7 : DETECT ENEMY POSITION ;
0.2 : SENSE CAMERA ;

SENSE HEALTH
} else {

/∗ ∗∗∗Normal mode of perception∗∗∗ ∗/
SENSE HEALTH ;
SENSE CAMERA

}

of rule based agent programming languages conventional, Plotkin style opera-
tional semantics [13], the BSM semantics allows a functional view on mental
state transformers (cf. Definition 8). In turn, the informal reading of a P-BSM
choice mst’s can be seen as a specification of the probability with which the next
transition will be chosen from the function denoted by the particular member
mst. In other words, a probability of applying the member mst function to the
current mental state.

The proposed extension allows a finer grained steering of the interpreter’s
non-deterministic selection mechanism and has applications across several niches
of methodologies for rule based agent oriented programming languages. Our
analyses and first experiments in the context of the Jazzbot application have
shown that labelling probabilistic mst’s is a useful means to contextually focus
agent’s perception (cf. Listing 2). Similarly, the labelling technique is useful in
contexts, when it is necessary to execute certain behaviours with a certain given
frequency. For example, approximatelly in about every 5th step broadcast a
ping message to peers of the agent’s team. Finally, the technique can be used
when the agent developer has an informal intuition that preferring more frequent
execution of certain behaviours over others (e.g. cheaper, but less efficient over
resource intensive, but rather powerful) might suffice, or even perform better
in a given context. Of course writing such programs makes sense only when a
rigorous analysis of the situation is impossible, or undesirable and at the same
time a suboptimal performance of the agent system is acceptable.

An instance of the latter technique for modifying the main control cycle of
the agent program is what I call adjustable deliberation. Consider the following
Jazzyk BSM code for the main control cycle of an agent adapted from [12]:

PERCEIVE ; HANDLE GOALS ; ACT

The macros PERCEIVE, HANDLE GOALS and ACT encode behaviours for percep-
tion (similar to that in the Listing 1), goal commitment strategy implementa-
tion and action selection respectively. In the case of emergency, as described in
the example in Section 4 above, it might be useful to slightly neglect delibera-
tion about agent’s goals, in favour of an intensive environment observation and
quick reaction selection. The following reformulation of the agent’s control cycle
demonstrates the simple program modification:

when |=bel [{ emergency }] then { PERCEIVE ; HANDLE GOALS ; ACT }
else { 0.4 : PERCEIVE ; HANDLE GOALS ; 0.4 : ACT }

The underlying semantic model of Behavioural State Machines framework is a
labelled transition system [11]. In consequence, the underlying semantic model of
the P-BSM framework is a discrete probabilistic labelled transition system, i.e.,
a structure similar to a Markov chain [8]. This similarity suggest a relationship
of the P-BSM underlying semantic structure to various types of Markov models
(cf. e.g. [9]), however a more extensive exploration of this relationship is beyond
the scope of this paper.

In the field of agent oriented programming languages, recently Hindriks et
al. [5] introduced an extension of the GOAL language [4], where a quantitative
numeric value is associated with execution of an action leading from a mental
state m to another mental state m′. I.e., a triple of a precondition φ (partially
describing m), an action a and a post-condition ψ (describing m′) is labelled with
a utility value U(φ, a, ψ). Subsequently, in each deliberation cycle, the interpreter
selects the action with the highest expected future utility w.r.t. agent’s goals.

The approach of Hindriks et al. focuses on estimating aggregate utility values
of bounded future evolutions of the agent system, i.e., evaluating possible future
courses of evolution, plans, the agent can consider, and subsequently choosing
an action advancing the system evolution along the best path. The P-BSM, on
the other hand, is concerned only with selection of the next action resulting from
the bottom-up propagation of probabilistic choices through the nested structure,
a decision tree, of the agent program. So, while the approach of Hindriks et al.
can be seen as a step towards look-ahead like reactive planning, P-BSM remains
a purely reactive approach to programming cognitive agents. Informally, except
for the nested structuring of agent programs (the distinguishing practical feature
of the BSM framework w.r.t. to other theoretically founded agent programming
languages), the P-BSM framework could be emulated by the approach of Hin-
driks et al. with the look-ahead planning bound of the length one.

6 Conclusion

The main contribution of the presented paper is introduction of Probabilistic
Behavioural State Machines framework with the associated agent programming
language Jazzyk(P). The proposed extension of the plain BSM framework is a re-
sult of practical experience with BSM case-studies [6] and introduces a straight-
forward and pragmatic, yet quite a powerful, extension of the BSM framework.
However, the presented paper presents only first steps towards a more rigorous
approach to dealing with underspecification in agent oriented programming by
means of probabilistic action selection.

Underspecification of agent programs is in general inevitable. However, in sit-
uations when a suboptimal performance is tolerable, providing the agent program
interpreter with a heuristics for steering its choices can lead to rapid development
of more efficient and robust agent systems.

References

1. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni.
Multi-Agent Programming Languages, Platforms and Applications, volume 15 of
Multiagent Systems, Artificial Societies, and Simulated Organizations. Kluwer Aca-
demic Publishers, 2005.

2. Rafael H. Bordini, Jomi F. Hübner, and Renata Vieira. Jason and the Golden Fleece
of Agent-Oriented Programming, chapter 1, pages 3–37. Volume 15 of Multiagent
Systems, Artificial Societies, and Simulated Organizations [1], 2005.

3. Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Meyer. Programming
Multi-Agent Systems in 3APL, chapter 2, pages 39–68. Volume 15 of Multiagent
Systems, Artificial Societies, and Simulated Organizations [1], 2005.

4. Frank S. de Boer, Koen V. Hindriks, Wiebe van der Hoek, and John-Jules Ch.
Meyer. A verification framework for agent programming with declarative goals. J.
Applied Logic, 5(2):277–302, 2007.

5. Koen V. Hindriks, Catholijn M. Jonker, and Wouter Pasman. Exploring heuristic
action selection in agent programming. In Koen Hindriks, Alexander Pokahr, and
Sebastian Sardina, editors, Proceedings of the Sixth International Workshop on
Programming Multi-Agent Systems, ProMAS’08, Estoril, Portugal, volume 5442 of
LNAI, 2008.

6. Michael Köster, Peter Novák, David Mainzer, and Bernd Fuhrmann. Two case
studies for Jazzyk BSM. In Proceedings of Agents for Games and Simulations,
AGS 2009, AAMAS 2009 collocated workshop, to appear, 2009.

7. Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

8. Andrey Andreyevich Markov. Extension of the law of large numbers to dependent
quantities (in Russian). Izvestiya Fiziko-matematicheskogo obschestva pri Kazan-
skom Universitete, (15):135–156, 1906.

9. S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-
Verlag, London, 1993.

10. Peter Novák. Jazzyk: A programming language for hybrid agents with heteroge-
neous knowledge representations. In Proceedings of the Sixth International Work-
shop on Programming Multi-Agent Systems, ProMAS’08, volume 5442 of LNAI,
pages 72–87, May 2008.

11. Peter Novák and Wojciech Jamroga. Code patterns for agent-oriented program-
ming. In Proceedings of The Eighth International Conference on Autonomous
Agents and Multi-Agent Systems, AAMAS 2009, to appear, 2009.

12. Peter Novák and Michael Köster. Designing goal-oriented reactive behaviours. In
Proceedings of the 6th International Cognitive Robotics Workshop, CogRob 2008,
July 21-22 in Patras, Greece, pages 24–31, July 2008.

13. Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, University of Aarhus, 1981.

14. Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A BDI Rea-
soning Engine, chapter 6, pages 149–174. Volume 15 of Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations [1], 2005.

15. Anand S. Rao and Michael P. Georgeff. An Abstract Architecture for Rational
Agents. In KR, pages 439–449, 1992.

16. Michael Winikoff. JACKTM Intelligent Agents: An Industrial Strength Platform,
chapter 7, pages 175–193. Volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations [1], 2005.

A Proofs

Proof (Proof of Lemma 1). The proof follows by induction on nesting depth of
mst’s. The nesting depth of an mst is the maximal number of steps required
to derive yieldsp(τ, σ, p:ρ) in the yieldsp calculus for all σ from Ap and all p:ρ
yielded by τ .

depth = 1: Equation 1 is trivially satisfied for primitive updates from Ap of the
form skip and �ψ.

depth = 2: let’s assume τ1, . . . , τk are primitive mst’s yielding 1:ρ1, . . . , 1:ρk in a
state σ respectively, and φ be a query formula. We recognise three cases:
conditional in the case σ |= φ, we have yieldsp(φ −→ τ1, σ, 1:ρ1). Similarly

for σ 6|= φ, we have yieldsp(φ −→ τ1, σ, 1:skip), hence Equation 1 is
satisfied in both cases.

choice according to Definition 7 for each 1 ≤ i ≤ k we have

yieldsp(τ1| · · · |τk, σ, Pτ1|···|τk(τi):ρi)

where Π(τ1| · · · |τk) = Pτ1|···|τk . Since Pτ1|···|τk is a discrete probability
distribution (cf. Definition 6) over the elements τ1, . . . , τk, we have∑

1≤i≤k

Pτ1|···|τk(τi) = 1

hence Equation 1 is satisfied as well.
sequence for the sequence mst, we have yieldsp(τ1◦· · ·◦τk, σ, 1:(ρ1•· · ·•ρk)),

so Equation 1 is trivially satisfied again.
depth = n: assume Equation 1 holds for mst’s of nesting depth n−1, we show it

holds also for mst’s of depth n. Again we assume that φ is a query formula
of Ap and τ1, . . . , τk, are compound mst’s of maximal nesting depth n − 1
yielding sets of updates fpτ1(σ), . . . , fpτk(σ) in a mental state σ respectively.
Similarly to the previous step, we recognise three cases:
conditional according to the derivability of φ w.r.t. σ, for the conditional

mst φ −→ τ1 we have either fpφ−→τ1(σ) = fpτ1(σ), or fpφ−→τ1(σ) =
{1:skip}. For the latter case, Equation 1 is trivially satisfied and since
τ1 is of maximal nesting depth n − 1, we have

∑
p:ρ∈fpφ−→τ1 (σ) p =∑

p:ρ∈fpτ1 (σ) p = 1 as well.
choice let Pτ1|···|τk be the probability distribution function assigned to the

choice mst τ1| · · · |τk by the function Π. We have

fpτ1|···|τk(σ) =
{
p:ρ|∃0 ≤ i ≤ k : yieldsp(τi, σ, pi:ρ) ∧ p = Pτ1|···|τk(τi) · pi

}
Subsequently,

∑
p:ρ∈fpτ1|···|τk

(σ)

p =
∑

0≤i≤k

Pτ1|···|τk(τi) ·
∑

p:ρ∈fpτi (σ)

p

However, because of the induction assumption that Equation 1 holds for
mst’s τi with maximal nesting depth n−1, for all i

∑
p:ρ∈fpτi (σ) p = 1, and

since Pτ1|···|τk is a discrete probability distribution function, we finally
arrive to ∑

p:ρ∈fpτ1|···|τk
(σ)

p =
∑

0≤i≤k

Pτ1|···|τk(τi) = 1

sequence for the sequence mst τ1 ◦ · · · ◦ τk, we have

fpτ1◦···◦τk(σ) =

{
k∏
i=1

pi:(ρ1 • · · · • ρk)|∀1 ≤ i ≤ k : yieldsp(τi, σ, pi:ρi)

}

and subsequently

∑
p:ρ∈fpτ1◦···◦τk

(σ)

p =
∑

Qk
i=1 pi:(ρ1•···•ρk)∈fpτ1◦···◦τk

(σ)

k∏
i=1

pi (2)

Observe, that if we fix the update sequence suffix ρ2 • · · · • ρk, the sum 2
can be rewritten as ∑

p1:ρ1∈fpτ1 (σ)

p1

 ·
 ∑

Qk
i=2 pi:(ρ2•···•ρk)∈fpτ2◦···◦τk

(σ)

k∏
i=2

pi

Finally, by reformulation of the sum of products 2 as a product of sums
and by applying the induction assumption for the mst’s τ1, . . . , τk of
nesting depth n− 1, we arrive to

k∏
i=1

∑
p:ρ∈fpτi (σ)

p =
k∏
i=1

1 = 1

Hence, Equation 1 is satisfied. ut

