&KW TU Claﬂqst‘hal

Clausthal University of Technolog

Behavioural State Machines

Framework for programming cognitive agents

Peter Novak

Clausthal University of Technology, Germany

Thursday, February 19, 2009
ATG@CVUT

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 1/22

6 TU Clausthal Hoteten

Clausthal University of Technology

Motivation & domain frame

Embodied cognitive/knowledge intensive agent

generates and maintains a model of its environment and uses it as
a basis for deciding about its future actions.

environment: rich, unstructured, dynamic, noisy
mental attitudes: beliefs, desires, plans, obligations, norms, etc.
knowledge: different KR techniques are suitable for different tasks

Problem statement
How to program cognitive agents?

B reactiveness vs. deliberation & heterogeneous KRR
~ practical framework

How to use such a framework? Pragmatics?

m set of sound methodological guidelines, design phase support

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 2/22

Motivation

xm TU Clausthal

Clausthal University of Technology

Agenda

Motivation

Behavioural State Machines/Jazzyk
Code patterns for agent programming
Case studies

Summary & conclusion

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 3/22

s havioural State Machines/Jazzyk
WA TU Clausthal i se My

Clausthal University of Technology

Behavioural State Machines

Different programming languages are suitable for different
knowledge representation tasks.

Heterogeneous knowledge bases!

Focus on encoding agent’s behaviours.

Behavioural State Machines

A programming framework with clear separation between
knowledge representation and agent’s behaviours.

BSM framework provides:
m clear semantics: Gurevich’s Abstract State Machines
m modularity: KR, source code
m easy integration with external/legacy systems

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 4/22

o Behavioural State Machines/Jazzyk
M TU Clausthal sl S M e

Clausthal University of Technology

Jazzyk BSM agent: A = (My,..., M,,P)
KR module M = (S, L, Q,U)

m S - a set of states

m L - aKR language,

m Q- asetof query operators =: S x L — {T, 1},
m U - set of update operators & : S x L — S.

~ appeared @ ProMAS’08

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 5/22

o Behavioural State Machines/Jazzyk
M TU Clausthal sl S M e

Clausthal University of Technology

Jazzyk BSM agent: A = (My,..., M,,P)
KR module M = (S, L, Q,U)

m S - a set of states

m L - aKR language,

m Q- asetof query operators =: S x L — {T, 1},
m U - set of update operators & : S x L — S.

mental state transformer 7: =, ¢ — @®;¢

~ appeared @ ProMAS’08

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 5/22

¥ Behavioural State Machines/Jazzyk
ITU Clausthal ehavioural State a(a:corlenizliiz;yts

Clausthal University of Technology

Jazzyk BSM agent: A = (My,..., M,,P)
KR module M = (S, L, Q,U)

m S - a set of states

m L - aKR language,

m Q- asetof query operators =: S x L — {T, 1},
m U - set of update operators & : S x L — S.

mental state transformer 7: =, ¢ — @®;¢

when query; module; [{ © }] then update; module; [{ ¢ }]

when query; module; [{...}] and query; module; [{...}] then {
when query;, moduley, [{...}] then {

H
update; module; [{...}]

Jazzyk - the BSM language
~ appeared @ ProMAS’08

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 5/22

] ' Behavi | S Machines/Jazzyk
ﬁu‘w TU Clausthal chavioursate Maeh ;:?n]jntiycs

Clausthal University of Technology

Semantics: A= (My,...,M,,P)

labeled transition system over states o = (01,...,0,)
induced by updates ©vy
yields(, 0, p)

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 6/22

] ' Behavi IS Machines/Jazzyk
R TU Clausthal e i

Clausthal University of Technology

Semantics: A= (My,...,M,,P)

labeled transition system over states o = (01,...,0,)
induced by updates ©vy
yields(, 0, p)

T T yields(,0,p)
yields(skip,o,skip) yz’elds(update{;i module; ¥,0,H;1)) yields({T},0,p)

yields(t,0,p), o= yields(t,0,p), o=
yields(when query_ module; ¢ then 7,0,p) yields(...,o,skip)

yields(11,0,p1), yields(T2,0,p2)
yields(71;72,0,01) yields(71;72,0,02)

yields (Tl »0,01)) yzelds (7-2 0 @ P1 7/)2)
yields(71,m2,0,p10p2)

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 6/22

4 " havioural S hi /)azzyk
6 TU Clausthal Sehavioura tate Mactinesszk

Clausthal University of Technology

Semantics cont.

computation step

A= (My,..., My, P) induces a transition o — o' iff o’ = c P p
and the program P yields pin o, i.e. 30 : yields(P, o, p).

~ appeared @ AAMAS’06, ProMAS’07, AITA’08, ProMAS’08

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 7/22

Behavioural State Machines/Jazzyk

KM\H‘ TU Clausthal Semantics

Clausthal University of Technology

Semantics cont.

computation step

A= (My,..., My, P) induces a transition o — o' iff o’ = c P p
and the program P yields pin o, i.e. 30 : yields(P, o, p).

V.

Jazzyk BSM semantics (operational view)

Asequenceoy,...,0;,..., S.t. 0; — 041, is a trace of BSM.
An agent system (BSM), is characterized by a set of all traces.

.

Jazzyk BSM semantics (denotational view)

T~ fr 00— {p|yields(T, o, p)}: a specification of enabled updates

M

policies, code modularity

v

~ appeared @ AAMAS’06, ProMAS’07, AITA’08, ProMAS’08

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 7/22

NKH‘ TU Clausthal Behavioural State MachineEsx/;ar;;yll;

Clausthal University of Technology

/* When the searched item is found, pick it x/
when desiresg [{ task(pick(X)) }] then {
/= PICK x/
when believes [{ see(X) }] then {
when believes [{ dir(X,’ahead’), dist(X,Dist) }] then acte [{ move forward Dist }] ;
when believes [{ dir(X, Angle) }] then actg¢ [{ turn Angle }]
oo

I

/* Goal adoption */

when believes;z [{needs(X)}] then addg [{task(pick(X))}];

/* Drop the goal */

when desiresg [{ task(pick(X)) }] and believes s [{holds(X)}] then removeg [{task(pick(X))}];

/* When endangered, run away */
when desiresg [{ maintain(safety) }] and believes 3 [{ threatened }] then {
/* RUN_AWAY x/
when believes [{ random(Angle) }] then {
actg [{turn Angle }],
actg [{ move forward 10 }]

/* When the searched item is found, pick it =/
ACHIEVE(‘task(pick(X))’, ‘needs(X)’, ‘holds(X)’, PICK)

/* When endangered, run away */
MAINTAIN(‘maintain(safety)’, ‘threatened’, RUN_AWAY)

~ code adapted from (Novak, Késter @ CogRob’08)

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 8/22

HKH» TU Clausthal Code patterns for agent pror\g/lrstrg?tiig%

Clausthal University of Technology

Problem: pragmatics of programming with BSM
BSM~~generic programming language for cognitive agents

specification ¢ ~» program P

verification

Pvs. ¢

Support of design process by
code templates/idioms/design patterns...

decomposition

—_e S

Ao RSEEEEINSE

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 9/22

L Code patterns f t i
HE% TU Clausthal ode patterns for agen yzcr)(;glcri(r:rn;gn'\%

Clausthal University of Technology

Logic for BSM — (Novak, Jamroga @ AAMAS’09)
DCTL*=DL+CTL* LTLCDCTL*

A hybrid of Dynamic Logic and Temporal Logic CTL*:

([r1]Op1) C [r2]O(p2 V p3)

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 10/22

L Code patterns f t i
HE% TU Clausthal ode patterns for agen E;Og?cl’afg\rfglsn’a

Clausthal University of Technology

Logic for BSM — (Novak, Jamroga @ AAMAS’09)

DCTL*=DL+CTL* LTLCDCTL*

A hybrid of Dynamic Logic and Temporal Logic CTL*:

([r1]Op1) C [r2]O(p2 V p3)

Program annotations ~» aggregation!

Annotation function 2 : (Q(A) UU(A)) — LTL

A(®psee(friend)) =O happy ~ [®psee(friend)]|O happy

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 10/22

Enpy Code patterns f t i
‘HKH’ TU Clausthal ode patterns for agen [E(I;(;S‘]Crafg]rl'glsn’\%

Clausthal University of Technology

Logic for BSM — (Novak, Jamroga @ AAMAS’09)

DCTL*=DL+CTL* LTLCDCTL*

A hybrid of Dynamic Logic and Temporal Logic CTL*:

([r1]Op1) C [r2]O(p2 V p3)

Program annotations ~» aggregation!

Annotation function 2 : (Q(A) UU(A)) — LTL

A(®psee(friend)) =O happy ~ [®psee(friend)]|O happy

¢ € LTL - 7P 1play(P) € DOTL

4
refinement | mqb [77]? : characterization
v :

P e BSM - gujoua = P+

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 10/22

K Code patterns f t i
hd TU Clausthal ode patterns for agent programiming

Clausthal University of Technology

Behavioural design patterns: decomposition

Example (gradual refinement)
S1=¢
So=¢1 A2V gzand g1 Ada Vg3 = ¢
S3 = [ACHIEVE(7)|¢1 A ...V [MAINTAIN (73)]¢3
Ss = [Pl(p1 A...V¢3)and P < mq,..., 73

Ss = S1=893=>5=5 =

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 11/22

o Code patterns f t i
A TU Clausthal e eion o

Clausthal University of Technology

Agent system architecture (BDI instance)

We assume BDI-like agent architecture: 53, G, £ with =;, ©;, ©;.

robot in 3D environment: search/pick/deliver/escape
Structure:

B: belief base in Prolog-like language (=3, ®5, ©5)

G: goal base in Prolog as well (=g, ®g, ©¢g)

&: interface to environment - body (¢, ®¢, ©¢)
Behaviours:

FIND: [FIND]2(FIND) = [FIND*|<holds (item42)

RUN_AWAY: [RUN_AWAY]2((RUN_AWAY) = [RUN_AWAY*|< safe

v

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 12/22

Code patterns for agent programming

@H\H’ TU Clausthal BSM design patterns

Clausthal University of Technology

BSM design patterns: TRIGGER

define TRIGGER(¢g, 7)
when =g ¢g then 7
end

[T1207) = (A(Eg ¢c) — [TRIGGER(pg, 7)*]OA(T))

running example (cont.)

TRIGGER(has(item42), FIND)
TRIGGER(keep_safe, RUN_AWAY)

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 13/22

Code patterns for agent programming

KM} TU Clausthal BSM design patterns

Clausthal University of Technology

BSM design patterns: ADOPT/DROP

define ADOPT(¢c, ¥a)
when =5 1g and not =¢ v then ©gpa
end

define DROP(pq, ¥o)
when =3 95 and =g pc then Sgpc
end

A5 Ye) — [ADOPT(pq, 1e) [OU(=g Ya)
A(f=p vs) — [DROP(pq, ¥s)"|0—U(g va)

running example cont.

ADOPT(has(item42), needs(item42))
DROP(has(item42), —needs(item42) V —exists(item42))

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 14/22

Code patterns for agent programming

KM\H‘ TU Clausthal BSM design patterns

Clausthal University of Technology

BSM design patterns: ACHIEVE

define ACHIEVE(¢q, vB, Yo, Yo, T)
TRIGGER(pq, 7) ;
ADOPT(¢g, ¥a);
DROP(pg, ¢B) ;
DROP(pg, ¥e)
end ([rRU(r) A [r]0pm) =

[ACHIEVE(¢g, vB, Yo, Ve, T)'|U(F¢ va) UAMFEB vBY FB ¥o)

running example cont.

ACHIEVE(
has(item42),
holds(item42),
needs(item42),
—needs(item42) V —exists(item42),
FIND)

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 15/22

o Code patterns f t i
A TU Clausthal e eion o

Clausthal University of Technology

BSM design patterns: MAINTAIN

define MAINTAIN(¢c, ¢B, T)
when not =3 ¢ then TRIGGER(pg, 7) ;
ADOPT(pg, T)

end

([r1A(r) A [T7]CU(EB vB)) =
(g va) — [MAINTAIN(¢G, pB7)*|0(-2(Fs ¢B) — CU(FB ¥B)))

running example cont.

MAINTAIN(keep_safe, safe, RUN_AWAY)

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 16/22

!@!f% TU Clausthal

Clausthal University of Technology

Running example finish

Robot program

PERCEIVE,
{

MAINTAIN(
keep_safe,
threatened,
RUN_AWAY) ;

ACHIEVE(
has(item42),
holds(item42),
needs(item42),
—needs(item42) V —ezists(item42),
FIND)

Code patterns for agent programming
BSM design patterns

v

Peter Novak - Clausthal University of Technology, Germany

Thursday, February 19, 2009 ATG@CVUT 17/22

ol TU Clausthal Cose gt
Jazzbot: bot in a simulated 3D environment

m testbed for heterogeneous KRR in agent domain
m testbed for NMR/ASP/EKB apps in dynamic environment
m challenging, rich, dynamic environment

Agent program:
when believes goals(Obj) [{find(0bj)}] and (1)
believes brain(Obj) [{see(Obj)}] and (2)

query map (Object, Dist) [{Dist=get_distance_of (Obj)}] (3)

then {
act body(Dist) [{move forward Dist}] , (4)
update brain(Obj) [{keeps(0Obj)}] (5)
}
Jazzyk interpreter
(2) (5) 3) (1) (4)
A A
! Belief base '

3' Goal base fEnvironment

body| |

| Nexuiz client

Yol
AsPsolver ||| Ruby ;
| interpreter -

ASP solver

~~ Novak @ ProMAS’08, detailed report under submission

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 18/22

6 TU Clausthal Cose s

Clausthal University of Technology

URBI-Bot: simulated e-Puck mobile robot

~~ towards embodied cognitive robotics

Simple event-based programming language

~- OS independent, easy integration, modular - components for
robotic HW modules

URBI-Bot (e-Puck robot)

m similar architecture as Jazzbot, i.e.
uses NMR/ASP

m code for the Webots simulator is
directly transferable to the real
robot

~- detailed report under submission
Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 19/22

NKH‘ TU Clausthal Summary & conclusion

Clausthal University of Technology

Summary

Original problem statement
How to program cognitive agents?

m reactiveness vs. deliberation & heterogeneous KRR

How to use such a framework? Pragmatics?

m set of sound methodological guidelines, design phase support

Proposed solutions:
Behavioural State Machines/Jazzyk framework
BSM design patterns + informal BDI directed methodology

Not only theory, but also demonstrated functionality!
m robust & efficient action selection (BSM semantics)
m elaboration tolerant programming style (macros, patterns)
m horizontal & vertical modularity

(source code modules, KRR technologies/3rd party aP
Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 20/22

ﬁu{} TU Clausthal Summary & conclusion

Clausthal University of Technology

On-going & future research agenda

Efficient & robust action selection

m model-checking of DCTL* annotations
m Probabilistic Behavioural State Machines (submitted)
m extensive library of BSM design patterns

Towards open multi-agent systems

m platform for open heterogeneous MASs (position paper)
m using SRI’s OAA as a MAS communication middleware (Agent

Contest 2009)
Exploiting limits of BSM &
B non-player characters for computer games q“ — "
m entertainment robotics: Rovio, Nao (URBI) / ® ‘\ \
Wgﬁ b gy
07, :,-\,l =
W 2> - q) ;

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 21/22

KIHI% TU Clausthal Summary & conclusion

Clausthal University of Technology

Thank you for your attention...
http://jazzyk.sourceforge.net/

Peter Novak - Clausthal University of Technology, Germany Thursday, February 19, 2009 ATG@CVUT 22/22

