Modular BDI Architecture

Peter Novak
peter.novak@in.tu-clausthal.de

Jurgen Dix
dix@tu-clausthal.de

Department of Computer Science
Clausthal University of Technology
Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany

ABSTRACT

One of the main challenges in agent-oriented programming
is the design of specialized programming languages for sin-
gle agent development. They should provide transparent
interfaces to existing mainstream programming languages
for easy integration with external code and legacy software.
The underlying architecture of such programming languages
has to be robust enough to support various approaches to
knowledge representation and agent reasoning models.

In this paper we propose a modular BDI agent program-
ming architecture, which is independent of the internal struc-
ture of its components and agent reasoning model. The con-
nections between the components of such a BDI system are
provided by interaction rules. Using this separation, we are
able to draw a clear distinction between knowledge repre-
sentation issues of a BDI agent system components and its
dynamics.

Categories and Subject Descriptors

D.3.1 [Programming Languages|: Formal Definitions and
Theory; F.3.2 |Logics and Meanings of Programs|: Se-
mantics of Programming Languages; 1.2.5 [Artificial In-
telligence|: Programming Languages and Software; 1.2.11

[Artificial Intelligence|: Distributed Artificial Intelligence—

Intelligent Agents

General Terms
Languages, Theory

Keywords

agent and multiagent architectures; agent programming lan-
guages; frameworks, infrastructures and environments for
agent systems; BDI architecture

*Primary author of this paper is a PhD. student.

(© ACM, 2006. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Mul-
tiagent Systems, 2006
http://doi.acm.org/10.1145/1160633.1160814

AAMAS’06 May 8-12 2006, Hakodate, Hokkaido, Japan

Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

1. INTRODUCTION

In [15] Rao and Georgeff introduced an abstract architec-
ture for rational agents based on BDI logic together with a
proposal for a practical implementation of this architecture
in a software system. Their proposal introduced three data
structures for beliefs, goals and intentions, relations and in-
teractions of which are governed by a set of basic axioms of
rationality [14].

Apart from a mass of theoretical work inspired by this
abstract architecture a number of programming languages
for development of rational agents have been implemented
as well. State-of-the-art BDI agent programming frame-
works implementing this abstract schema fall into two main
groups. On the one hand, there are agent programming plat-
forms like Jadex [12] and JACK [9, 17], in which agent pro-
gramming support is integrated into an existing program-
ming language by addition of a layer of specialized agent
oriented programming constructs. The main advantage of
this approach is to enable clear and transparent integration
of agent system with external and legacy software systems.
Additionally, these platforms provide access to a wide range
of supporting programming libraries of the underlying pro-
gramming language. As the main motivation for these sys-
tems is to exploit the strengths of mainstream programming
frameworks, these approaches lack a strong formal semantics
defined in terms of BDI logic. Therefore a formal investiga-
tion of agent system properties relies more or less only on
the semantics of the underlying programming language.

On the other hand, standalone agent programming lan-
guages like AgentSpeak(L) [3, 13] and 3APL [5, 8] provide a
clear semantics of the agent system. Most of these program-
ming languages build on the use of logic based knowledge
representation and support a declarative way of encoding the
dynamics of the agent system. This allows deeper theoreti-
cal insights into the behaviour and the properties of systems
built with these programming languages and allows the use
of formal methods like verification, or model checking. Un-
fortunately, they usually provide only a basic interface to
external software systems. Because of this lack of integra-
tion with mainstream programming languages and various
knowledge representation techniques, they still remain more
theoretical tools than widely applied software development
environments.

Clearly, if agent oriented programming languages are go-
ing to gain ground in software engineering in general, besides
providing a solid theoretical basis for studying properties
of applications built with them, they also have to support
traditional software development techniques to the largest

possible extent. Therefore programming languages provid-
ing transparent integration with legacy systems and robust
interfaces to external software systems are of high interest
for agent oriented programming community [11].

In this paper, we address this issue and propose a modular
BDI programming architecture to bridge this gap (Section
2). We describe syntax and semantics of an abstract pro-
gramming language, together with an interpreter providing
the dynamics of the system. The architecture consists of
independent components for beliefs, desires, intentions and
agent’s capabilities, which are glued together by rules gov-
erning their interactions in terms of component queries and
updates. This distinction provides a separation of concerns
of knowledge representation issues for individual BDI com-
ponents and the agent system dynamics encoding. It also
allows the exploitation of a wide range of knowledge repre-
sentation techniques, programming languages and libraries.

We do not focus specifically on development of rational
agents in the traditional BDI sense. Rather we consider
more general schemes, in which the rational agent reason-
ing model is only one of their possible specializations. We
also show how various agent models can be implemented in
it (Section 3) and discuss its relation to existing agent pro-
gramming systems (Section 4). We conclude by pointing out
directions for future work (Section 5).

2. MODULAR BDI ARCHITECTURE

The inspiration for our work was a particular aspect of
the agent programming language 3APL [8], in which the
interactions between BDI components are independent of
the internal structure of agent’s belief base. Essentially, only
a query and update interfaces are important for interactions
of a belief base with other components of a 3APL agent
system.

Our main idea is to generalize this independence of com-
ponents also for goals and intentions of BDI agent schema,
thus allowing replacement of individual modules of an agent
system as far as they provide a proper interface which inte-
grates with the rest of the BDI system.

Our BDI agent consists of four basic components for be-
liefs, desires, intentions and capabilities, where the last one
serves as a technical shortcut for encapsulating implementa-
tion of agent’s capabilities w.r.t. its environment (i.e. agent’s
sensors and effectors influencing the environment). Each of
these components provides an interface for query and up-
date. Interactions between components of an agent are de-
fined by interaction rules similar to usual production rules
of the form: “if query @ holds, then update U s performed”.
The dynamics of the whole system is provided by selection
and ezecution of interaction rules by an interpreter. This is
provided by an interpreter. By specialising the rule selec-
tion and imposing constraints on rule types allowed, we can
implement various agent reasoning models (see Section 3).

Figure 1 depicts a schema of the proposed BDI agent sys-
tem architecture. Replaceable modules of a BDI system
(depicted as rectangles with round corners) provide query
and update interfaces. Apart from using these basic opera-
tions, no other means of interaction between components of
a BDI system is considered. When an interpreter executes
an interaction rule, the query part of it (left side of a rule)
is consulted, and when evaluated to true, the update part
(right side) is executed. The result of such an execution is
an update of a certain BDI component. In the subscript of

| BDI agent system
beliefs desires intentions
[
E g capabilities
< ' B
m
N /// /// events 7772_
\\ //, : §
N e e ‘ E
Q3 UD Q UC7 T actions 7:> =
interaction rules
interpreter

Figure 1: BDI Agent System

query and update expressions, the consulted component is
indicated (depicted by dashed arrows). Agent’s interaction
with the outer environment is facilitated by its capabilities.
Events are perceived by sensory capabilities, so that when
the base of capabilities is queried, it provides information
about state of the outer environment and events occurred
in it. Based upon its mental state, an agent can act in its
environment by updating its base of capabilities, what in
turn results in performing an action by agent’s effectors.

Note that we consider only the run-time representation of
an agent. Design-time form, or syntax of an agent program-
ming language associated with our framework, is not in the
scope of this paper.

2.1 Syntax

In order to investigate the strengths of various approaches
to knowledge representation (for implementation of a com-
ponent of BDI system), we need an abstract programming
language general enough to accommodate interfaces of wide
range of programming languages from Prolog to C++, or
LISP. Therefore we reduce the requirements on this lan-
guage as much as possible and assume only the existence
of generic domains and variables over them.

DEFINITION 1. (BDI component languages) Let Dy,
..., Dy be a set of domains and Varp,,..., Varp, be mu-
tually disjoint sets of corresponding domain variables. Let
Lp, Lp, L1, Lc be languages possibly involving elements of
Dy,...,Dy and Varp,,..., Varp,.

We call L, Lp, L1, L& BDI component languages of be-
liefs, desires, intentions and capabilities with typical element
belief, desire, intention and capability respectively. We also
assume w.l.0.g., that BDI component languages are mutually
disjoint.

Domains and domain variables over them are elements of
BDI component languages which can be shared between the-
ories in these languages. Typical example would be domain
of natural numbers and set of variables standing for them.
From this point on, we will denote formulas of BDI compo-
nent languages by ¢. Formulas which do not include vari-
ables are called ground and those which do are non-ground.

From formulas of BDI component languages, query and
update expressions can be constructed.

DEFINITION 2. (query and update) Let L be a BDI
component language. Then query and update languages Lg
and Ly are defined as follows:

o if pe L, then Q(p) € Lg and U(y) € Lu,
o if 1,02 € Lo then ¢1 A ¢p2 € Lo,
o if 1,92 € Ly then 1 02 € Ly.

ExXAMPLE 1. (running example) Consider a simple cra-
ne agent which is able to take/put a container from/to a cart.
The belief base of the agent is implemented using C++ and
contains the following code chunk:

class CCraneBelief {
public:
bool isHolding(int & nContlD) const;
void tookCont(int nContlD);
bool isCartPrepared() const;
void cartArrived (bool bValue);

int m_nContld;
bool m_bCartOK;

static CCraneBelief crane;

Querying and updating the belief base corresponds to ex-
ecution of valid C++ expression invoking the interface of
object crane. Sample query and update formulas look as fol-
lows:

Q(crane.isHolding(2)) A Q(crane.isCartPrepared()) (1)

U (crane.tookCont(3)) (2)

As BDI component languages can be arbitrarily expressive,
we consider only conjunctions of query formulas and se-
quences of updates. More complex binary connectives of
queries and updates are left to abilities of particular BDI
component language.

Intersection of any two BDI component languages is empty,
therefore each query and update formula is uniquely associ-
ated with only one BDI component language. However, for
clarity, we will indicate the corresponding BDI component
language in the subscript of @) and U whenever necessary.
From this point on, we will usually denote query formulas
by ¢ and update formulas by .

Interactions between components of a BDI agent system
are defined by interaction rules as follows.

DEFINITION 3. (interaction rules) Let Lo and Ly be
query and update languages, ¢ € Lo and ¢ € Ly. We say
that a rule of the form

b—19

is an interaction rule.

The informal semantics of interaction rules is that of pro-
duction rules. If the query ¢ is true w.r.t. given theory from
a BDI component language, then the update operation de-
fined by update formula 3 can be performed on another
theory.

2.2 Semantics

The formal semantics of our BDI system is, in tradi-
tion with other BDI agent programming languages such as
AgentSpeak(L) and 3APL, provided in terms of a transition
system. A transition system is a set of derivation rules for
deriving transitions. A transition is a transformation of one
system configuration into another and it corresponds to a
single computation step. The configuration of a BDI agent
is a record of its current mental state at a certain point of
time. Components of a BDI agent are defined as theories in
given BDI component languages. Transitions between them
are performed via execution of interaction rules.

DEFINITION 4. (BDI agent configuration) A BDI agent
configuration is (3,0, , k), a tuple of theories, where theory
B C Lp is a belief base of an agent, 6 C Lp s the base of
desires, v C L stands for the base of intentions of it and
finally k C Lc represents the base of capabilities.

A BDI agent configuration is a run-time representation of
an agent.

Bases of beliefs, desires, intentions and capabilities are
structures storing information about corresponding aspect
of agent’s mental state: they provide interfaces for its ma-
nipulation. Formally, they are represented as theories in
corresponding BDI component languages. From now on, we
will formally speak about theories in languages of individual
BDI components 3, 4, ¢ and « and on the technical level we
will use term base for them.

EXAMPLE 2. (running example cont.) A belief base
of the crane agent from Ezample 1 at a certain point in
time is a state of member variables of the crane object. If,
let’s say, m_nContld=2 and m_bCartOK= true, the agent
believes that it is holding a container No. 2 and the cart is
prepared to be loaded.

In order to evaluate queries and perform updates on BDI
components we define semantical operators Query and Update.

DEFINITION 5. (query and update operators) Let L
be a BDI component language and T C L be a theory in that
language. Lo C L is the set of all ground formulas from L
and ¢, € Lg formulas in it .

A query operator Query, associated with L is a mapping

Query, : Lg X 2f {true, false}; (o, T) — Query.(p,T)

Stmalarly, corresponding update operator Update - is a map-
ping
Update, : La % 2L 5 9%, (¢,) — Update (3, T)

In the case of a query, the result is truth value of ¢ w.r.t. 7.
The result of an update operator application is a new theory
7' C L which reflects an update v on 7.

Query and update operators Query, and Update, should
be computable procedures evaluating formula ¢ € £ against
theory 7 C L. Especially in the field of logic programming
and non-monotonic reasoning, there’s a vast number of the-
ories dealing with knowledge base updates (for overview see
e.g. [10]). For many of them, there are even implementa-
tions of update operators. We can exploit capabilities and
strengths of these approaches for implementation of various
update operators in specializations of our architecture.

EXAMPLE 3. (running example cont.) Query and up-
date operators for the belief base, as they were introduced
in Example 1, simply evaluate the given C++ expression
against current state of the belief base'. The query is true,
when the return value of the executed expression is also true
(i.e. not equal 0).

By the query formula 1 from Ezample 1, we consult the
belief base to find out whether our crane agent beliefs that
it is holding container No. 2 and at the same time also be-
lreves that the cart, into which the container is to be put, is
prepared for loading. After execution of the update formula
2, the crane agent should believe that it took the container
No. 3, so now it holds it.

In order to define the semantics of interaction rules in terms
of queries and updates of BDI components, we first need
to define a semantics of these query and update formulas.
We do this by relating formulas of the form Q,(¢) and
Ur(v) to applications of corresponding operators Query .
and Update .

DEFINITION 6. (semantics of ground query and up-
date formulas) Let L1,...,Ls be a quadruple of BDI com-
ponent languages and Lo and Ly be query and update lan-
guages over union of these disjoint BDI component languages.
Let also (11,72, T3,74) be a BDI agent configuration with
7 C L; for 1 <1 < 4. Query operator is denoted by = and
@ denotes an update operator.

The semantics of a ground query formula ¢ € Lg 1is de-
fined as follows

e if o = Q(p) and ¢ € L; then (11,72,73,74) E ¢ iff
Queryﬁi ((:O>Ti) = lrue,

o ifd=Q(p1)N - -AQ(pn) forn > 1, then (11, 72,73, 7T4) =

¢ iff for each @; holds (11, 72,73,74) = Q(vi) for 1 <
1 < n.

and for a ground update formula ¢ € Ly

o ify = U(p) and ¢ € L;, then (11,72,73,74) D Y =
(1,75, 73,74) iff Update, (7i,) = 7 and ¥j # i :
TP =T,

o ifi) = U(p1)o---oU(pn) forn > 1, then (11,72, T3, Ta)®
W = (11,74, 7T5,74) iff there exists a chain of configura-
tions (01,1,02,1,03,1,04,1);--+,(01,n+1,02,n41,03,n+1,
0’4,n+1), such that (7’1,7‘2,7’3,T4) = (017170271,(7371,(7471),
(71,73, 73,74) = (O1,n+1, 02,041, 03,n+1, 04,n41) and for
each i, 1 S 7 S n, holds (01,i+170'2,i+170'3,i+170'4,i+1) =
(01,i,02,5,038,5,045) B U(p5).

Informally, an update formula U (p1)o- - -oU (¢) is evaluated
from left to right, where each successive update is applied
to the result of the previous one. Since different orders of
updating a configuration can lead to different results, note
that the operation of updates chaining o is not commutative.

EXAMPLE 4. (running ezample cont.) Assume a BDI
agent configuration with the current state of the belief base
as it was described in Erample 2 and semantics of Query
and Update operators from Ezxample 3. The query formula 1

'Note, that we consider here an application of a C++ in-
terpreter. Therefore a given expression can be executed at
any time.

from Ezample 1 is true and after ezecution of the update for-
mula 2 the agent should believe that it is holding container
3. Le. the result of this update operation is a configura-
tion in which the belief base of an agent is modified so that
m_ nContld=3.

For evaluation of a query formula against a BDI component
theory by Query operator, the formula should be ground.
Similarly for update formulas. However, non-ground for-
mulas provide a more concise form of programming and
therefore we have to deal with them. Transformation of
non-ground formulas to ground ones is provided by means
of variable substitution. Variable substitution is a mapping
0 C {[V/T||V € Varp, NT € D; A0 < i < n}, where
D;,...D, are domains and Varp,,..., Varp,, sets of corre-
sponding domain variables. By 0 we denote a ground for-
mula with all occurrences of variable V' € Varp, replaced by
an element T' € Dy, such that [V/T] € 0 for some 0 < k < n.

Finally, for a query formula ¢ € Lo we denote by ¢0 a
formula Q(¢0) for ¢ = Q(p). In the case that ¢ = Q(p1) A
- AQ(pn), then ¢ = Q(p10) A+ - A Q(pnb). Analogically
for update formulas.

We say that variable substitution 6 is ground w.r.t. for-
mula ¢, when ¢ does not contain any variables.

At each time point of a system life cycle, queries of only a
subset of all interaction rules hold. We say that an interac-
tion rule ¢ — 1 is applicable to a BDI agent configuration
(8,0,t,k) iff there exists a ground variable substitution 6,
such that (3,0,¢,k) = ¢0.

An agent system moves from one configuration to another
exclusively by the application of some currently applicable
interaction rule. All possible agent configurations are con-
nected to each other via transitions from an associated tran-
sition system induced by interaction rules. More formally

DEFINITION 7. (agent system transition) Let ¢ — 1)
be an interaction rule, (8,9,t,k) a BDI agent configuration
and 0 a ground variable substitution w.r.t. ¢ and 1. Then

(/[3567L’H)):¢07 (6757L7H)@w0: (/Bl75/7[//’lil)
(ﬁ7 67 L, K/) — (6/7 5’7 L/7 H//)
We say that the rule ¢ — 1) induces this agent system
transition.

Although the semantics of interaction rules is defined for
ground query and update formulas, a practical programming
system has to handle also non-ground interaction rules. We
therefore consider the concept of grounding on-the-fly. Non-
ground rules are grounded at the time of their execution. For
this, a mechanism of variable instantiation similar to the one
provided by Prolog can be used. For other languages like C,
C++, or Java, mechanism of returning a value to a variable
passed as an argument by reference can be exploited.

As the execution of a BDI agent starts with some initial
configuration, all other possible transitions are determined
by the first one. Thus a BDI agent is formally defined as
follows.

DEFINITION 8. (BDI agent) A BDI agent is a tuple (Bo,
do, Lo, ko, ZR), where (Bo,do, Lo, ko) s the initial configura-
tion of an agent and IR is a set of interaction rules.

Given an initial configuration of an agent system, we can
see its evolution as a path within the transition system. We
call such a path computation run.

DEFINITION 9. (computation run) A computation run
Comp(so) for a BDI agent (8o, do, Lo, ko,ZR), where so =
(Bo, b0, o, ko), 1S a finite or infinite sequence So,...,Sn,...
of BDI agent configurations and Vi > 0 : s; — S;4+1 S an
agent system transition.

The semantics of a BDI agent system is the set of all pos-
sible computation runs. This corresponds to all possible
evolutions of an agent system within its transition system.
Because of non-determinism there are more than one pos-
sible evolutions of an agent system. Basically, there are two
sources of non-determinism in the BDI agent system:

internal: caused by multiple applicable interaction rules
w.r.t. a single configuration, and

external: coming from non-determinism of agent’s environ-
ment and uncertainty of results of agent’s actions in it.

While external non-determinism of an agent system cannot
be influenced by an agent itself, the degree of internal is
handled by agent system’s interpreter.

2.3 Interpreter

What ezactly is the relation between the interpreter of an
agent system and the set of interaction rules? While in-
teraction rules secure the encoding of the dynamics of the
system, the interpreter is respounsible for their selection and
ezecutton. In order to achieve the highest possible flexibility,
we have to provide a mechanism for the fine-tuning of the
interpreter.

Tuning the mechanism of rule selection can be done by
means of partial ordering over interaction rules. This gives
a very high degree of flexibility and provides enough space
for further extensions. It is even possible to remove internal
non-determinism of an agent’s transition system by apply-
ing a total ordering on interaction rules. Such a system
would then resemble a standard Prolog interpreter which
applies rules simply in order in which they were encoded in
the source program. On the other extreme side, when no
ordering on interaction rules is applied, the only mechanism
governing the evolution of an agent system is the content of
query formulas in query parts of interaction rules. Selection
of a rule to execute is then arbitrary.

DEFINITION 10. (interpreted run) Let (5o, do, to, ko, ZR)

be a BDI agent and < be a partial ordering on TR. We say
that the computation run Comp((Bo,do, Lo, ko)) s an inter-
preted run iff for each agent system transition (B, 0s, Li, Kq)
— (57;4_1, 5i+17 Li+1, l£7;+1) induced by a rule r = ¢ — ’Z/), r
1s some minimal rule applicable to configuration (Bi, ds, Li, Ki)
w.r.t. partial ordering <.

Considering only interpreted runs of BDI agent system, BDI
agent’s definition could be extended by including the order-
ing < to it.

EXAMPLE 5. (running example cont.) Consider an
extension of the agent introduced in Examples 1, 2 and 3.
Let the base of desires of this agent be implemented as a

simple set of string identifiers {Load(ContID),Unload(ContID)},

standing for loading and unloading the cart. The language
of desires Lp is Prolog. Query and update operators corre-
spond to Prolog query ezecution of predicates isGoal/1, ad-
dGoal/1 and removeGoal/1 with the obvious semantics.

The base of intentions is implemented as a queue of string
identifiers {PerformTake(ContID),PerformPut(ContID)} stand-
ing for raising and putting down the container. Language
of intentions L1 is also Prolog and query/update operations
correspond to execution of predicates currentint/1, queuelnt/1
and dequeuelnt/1.

Finally the language of capabilities Lc is C and query/up-
date are implemented as for beliefs by invoking the following
routines:

int isContainerAtLoc(int nContlD);
int isCartAtLoc();

void take(int nContlD);

void put(int nContlD);

Sample interaction rules for loading a container are

Qp(isGoal(Load(ContlD)))
— Ur(queuelnt(PerformPut(ContlD)))

Qr(currentint (PerformPut(ContlD))) A
Qs(crane.isHolding (ContlD) &&
crane.isCartPrepared())
— Uc(put(ContiD))o
Ur(dequeuelnt (PerformPut(ContID)))

Considering a precedence ordering on the rules above, in
one step of the interpreter’s cycle, the upper rule will be
evaluated as the first. If an agent has the goal to load a
container (e.g. Load(2)€&belief base), then this rule will be
also executed, which will cause the term PerformPut(2) to be
appended to the end of the queue of intentions. Then the
interpreter will start the cycle all over again. If the query
part of the first rule is false, the interpreter will proceed to
considering the second interaction rule.

Note, that in the second rule, we exploited the internal
ability of C++ implementation of belief base component to
evaluate conjunctions of erpressions, instead of using query
of the form Qp N Qp.

By further extending this basic interpreter, by e.g. allowing
changes of the ordering of interaction rules on-the-fly, we can
implement a very dynamic behaviour of an agent system.
However, this is not in the scope of this paper and we will
investigate properties of such extensions in future work.

3. AGENT REASONING MODELS

The definition of a BDI agent system as given in the last
section is quite abstract: it does not make any differences
between individual BDI components. This uniformity is a
direct implication of the requirement of independence of BDI
agent’s components w.r.t. applied knowledge representation
technique.

However, we believe that crucial differences of BDI system
components can be reflected in constraints on their interac-
tions. By allowing, or enforcing certain interactions between
components of a BDI agent, we can achieve various proper-
ties of the whole system. We will show that a wide range of
agent reasoning models can be implemented in our frame-
work by regulating types of interaction rules.

3.1 I-System

Implementations of rational agent reasoning model usu-
ally descend from the original I-system [14], which axiom-
atizes interactions within rational agents. Informally, an
agent should adopt only goals it believes to be an option
w.r.t. to its beliefs (AI1l). An agent should adopt intentions
only in order to achieve its goals (AI2). If an agent has an
intention to perform a certain action, it will eventually also
perform it (AI3). It should be aware of the fact that it com-
mitted itself to certain goals and intentions (AI4, AI5). If
an agent intends to achieve something, it also has to have
a goal to intend it (AI6). It should be aware of its actions,
i.e. if it performs certain action, it should also believe that
it already performed it (AI7). And finally an agent should
never hold its intentions forever, i.e. each intention must be
eventually dropped (AIS).

Out of these eight basic axioms, four (AI1-AI3 and AI7)
enforce certain interactions between components. These
correspond to interaction rules which, following the nota-
tion introduced in Example 1, look like Qg — Up (AIl),
Qp — Us (AI?), Qr — Uc (AI3) and Qc — Up (AI?).
Axiom AI7 is implemented here indirectly, since agents can
learn about their successful actions by perceiving changes
caused by them in their environments. An alternative way
to implement this axiom is to keep history of actions agent
tried to perform in its belief base. We can achieve this by
interaction rules of type Qr — Uc o Up (AI3).

Axioms AI4 and AI5 are secured via accessibility of all
BDI components for the agent reasoning mechanism. Inter-
action rules can examine desire and intention bases by means
of queries, so agent reasoning mechanism is “aware” of the
content of its components. Axiom AI6 is satisfied by sim-
ple execution of an interaction rule of the type Qp — Ur.
Finally axiom AI8 is very vaguely specified, since “eventu-
ally” can be arbitrarily long. Realisation of this axiom is
more a matter of a particular implementation of agent’s base
of intentions, than a feature of software agent architecture.
Finally, rational agents interact with their environment by
rules of the form @ — Uc for performing actions and
Qc — Up for perceiving events.

3.2 Extensions of [-System

A closer look at the flow of information in the rational rea-
soning model, described in the previous subsection, reveals
that on the ground of events occurring in the environment,
an agent adopts beliefs, which are again the basis for adopt-
ing desires. On the ground of desires, intentions are adopted
which are finally the base for agent’s actions in the environ-
ment. This information flow can be informally described as
a cycle of BDI components through which the information
flows C — B — D — I — C. By inserting additional
links and shortcuts, we can achieve various different agent
reasoning models.

In their original paper [14], authors provide examples of
blind, single minded, and open minded agent. Informally,
a blindly committed agent maintains its intentions until it
actually believes that it had achieved them. Single minded
agent maintains them as long as it believes they are still
possible to achieve and finally open minded agent maintains
its intentions only as long as these intentions are still its
goals.

In our modular BDI architecture with appropriate imple-
mentation of BDI components, a blind agent would need

interaction rules for removing intentions from the intention
base once it recognizes that actions based on these inten-
tions were successful in the environment. A single minded
agent cancels certain intentions with preconditions ¢ exactly
when ¢ does not hold anymore. Informally, for every rule
QB(p) A ... — Ur(+¢'), which introduces certain inten-
tion into the base of intentions, also the interaction rule
Qp(—p) — Ur(—¢') must occur in agent’s rule base. Sim-
ilarly for an open minded agent, but instead of Q) g, it would
query its base of desires Qp.

Apart from rational agents, we can also model irrational®
agent reasoning in our framework. Consider for example
a servant agent, to which goals can be “implanted” from
outside as commands which it should follow, although it
doesn’t believe they are an option w.r.t. its beliefs. This can
be implemented by allowing rules of the type Qc — Up.
Informally, such a rule can be interpreted as “upon perceiving
a command C, agent should carry out C”. A slightly stricter
version of servant agent, is a slave agent, to which intentions
could be changed and added in a similar way by interaction
rule of the type Qc — Uj.

Slave agents resemble more software objects in their tradi-
tional meaning in object oriented programming. They sim-
ply execute a requested procedure without having a “free
will” not to do so. However they are still able to freely de-
cide on later canceling this intention. As an extreme case of
irrational reasoning a religiously fanatic agent can be con-
sidered. Such an agent doesn’t want to believe facts which
are conflicting its goals, or intentions. According to its cur-
rent intentions and goals, it is able to change its beliefs by
executing rules of the type Qp/Qr — Us.

Although purely irrational agents like slave agent lack au-
tonomy and thus do not comply with classic definitions of an
agent, mixing rationality with certain degree of non-rational
behaviour (w.r.t. certain aspects of agent’s functionality)
can lead to more efficient implementations of software agent
systems. However, this claim has to be yet experimentally
demonstrated.

3.3 Modular BDI Programming Platform

As we already mentioned, the main disadvantage of our
modular BDI architecture is its high degree of abstraction.
On the other hand, we showed that it provides also a high
degree of flexibility and a lot of space for customization to
particular needs.

Implementation of a software development platform based
on our proposal should be based on a plug-in architecture
supporting development of BDI components in various pro-
gramming languages. The interpreter of interaction rules
serves only as a glue between them. Each plug-in should be
an interpreter for a specific programming language able to
evaluate queries and perform updates on the current oper-
ational state of the component. Since nowadays many in-
terpreters for various programming languages ranging from
C++ to Prolog, LISP or Java are available, such implemen-
tation is feasible.

Because of its high flexibility, a programming platform
based on our modular BDI architecture could serve as a
testbed for investigating applications based on combinations
of various knowledge representation techniques. We will
pay special attention to applications of logic programming

’In the sense of not rational w.r.t. I-System.

techniques and especially declarative non-monotonic knowl-
edge representation approaches like Answer Set Program-
ming (ASP) [7] (see also [6] for the relevance of ASP in
agent programming). For ASP, there’s a vast amount of re-
search on its practical applications (see e.g. [1]) as well as
knowledge base updates (e.g. [10]) a lot of which can be used
and practically evaluated using our system.

4. RELATED WORK

Because of its legacy, 3APL agent programming language
[8] is the closest relative to our modular BDI architecture.
Modular BDI schema is rather a generalization of 3APL ar-
chitecture than a parallel approach. 3APL uses fixed logic
based languages for implementation of BDI components. In
the 3APL platform [5] Prolog is used to implement the belief
base. Goal base is realized as a set of Prolog terms, and plans
in the plan base are stack resembling structures of Prolog
terms. In the language of our framework, 3APL allows al-
lows only certain types of interaction rules, namely goal rules
of the form Qp AN Qs — Up, plan rules Q1 A Qp — U;
and interaction rules Qp AQ@p — Up [4]. Since belief base
of a 3APL agent is implemented in Prolog, all other BDI
components are therefore also limited to use structures of
first order logic terms.

Another important representative of BDI agent program-
ming systems is AgentSpeak(L) [13] and its incarnation in
the agent development platform Jason [3]. AgentSpeak(L)
is the original implementation of already discussed I-system
in a logic based language. Similarly to 3APL, it uses lan-
guage of first order logic terms for belief base and stack
structures for implementation of intentions. The goal base
is realized via direct event processing. Contrary to 3APL,
AgentSpeak(L) is even more specific in terms of queries and
updates of its components. Interaction rules, or plans, are
of the type Qp AN Qs — U, or @Qp N Qs — Up, where
updating the base of desires means firing an event. Query-
ing it is similar to processing events from event pool which
is updated according to agent’s perceptions.

We see the independence of implementation of an individ-
ual BDI component of knowledge representation technique
as the main advantage of our modular architecture over
3APL and AgentSpeak(L). Because of their focus on ratio-
nal agent reasoning model, both 3APL and AgentSpeak(L)
limit design freedom of a system programmer and enforce
particular software development methodology together with
a specific knowledge representation technique. Use of pro-
prietary programming language limits 3APL and AgentS-
peak(L) w.r.t. exploitation of a wide range of standard li-
braries for software development and external code packages.
This has a strong impact on possibilities of their integration
with legacy systems. On the other hand, because of the clear
specification of the architecture details, like implementation
languages of BDI components, systems built using 3APL
or AgentSpeak(L) have probably much clearer theoretical
properties w.r.t. verification of an agent system.

The other extreme of the spectrum is represented by the
second family of BDI inspired programming frameworks which
includes systems like JACK [17] and Jadex [12]. These are
focused on integration with a mainstream programming lan-
guages (Java in both cases) and provide a high degree of free-
dom w.r.t. software development techniques used. However,
since they both provide a particular methodology for devel-
opment of internal structure of components of BDI system,

integration with other knowledge representation approaches
is not straightforward. Finally, they do not provide a clear
semantics of systems developed with them, therefore study
of theoretical properties of their applications is even more
difficult than in the case of our BDI architecture.

Our modular BDI architecture proposal is positioned some-
where between the two approaches to BDI agent program-
ming. On one hand it provides a clear operational semantics
and a simple technique for implementation of agent reason-
ing and on the other it allows high degree of integration with
existing programming languages, standard libraries and ex-
ternal legacy code.

S. CONCLUSION AND FUTURE WORK

In this paper we presented a modular BDI architecture
which is independent of the underlying knowledge represen-
tation approach used and provides a high degree of flexibility
for implementation of rational and non-rational agent rea-
soning models. Its core, interaction rules, are specified as
the connecting element between heterogeneous components
of BDI agent system. We are convinced that by using such a
flexible approach, it will be easier to step from agent system
analysis to its implementation and exploit strengths of main-
stream programming languages and wide range of libraries
provided for them.

Since the proposed modular BDI architecture was con-
ceived to provide support for various, particularly logic based,
knowledge representation techniques, our future work will
be focused in this direction. We are planning to implement
the interpreter for the proposed modular BDI system and a
set of generic plug-ins for various knowledge representation
approaches. We are interested especially in exploitation of
non-monotonic reasoning and incomplete information han-
dling techniques like Answer Set Programming [6, 7]. We
will develop a set of plug-ins for programming languages
like SMODELS [16] and C++ in order to study properties
of agent systems built with them.

The degree of abstraction, our architecture provides, al-
lows embedding various agent reasoning models into it (in-
cluding those of 3APL or AgentSpeak(L)) and thus provides
a common base for their comparison and possibly also clas-
sification. Therefore we will also study properties of various
agent reasoning models in our BDI architecture and exten-
sions of it with concepts like role of an agent and agency.

6. REFERENCES

[1] C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University
Press, 2003.

[2] R. H. Bordini, M. Dastani, J. Dix, and A. E. F.
Seghrouchni. Multi-Agent Programming Languages,
Platforms and Applications, volume 15 of Multiagent
Systems, Artificial Societies, and Simulated
Organizations. Kluwer Academic Publishers, 2005.

[3] R. H. Bordini, J. F. Hiibner, and R. Vieira. Jason and
the Golden Fleece of Agent-Oriented Programming,
chapter 1, pages 3-37. Volume 15 of Multiagent
Systems, Artificial Societies, and Simulated
Organizations [2], 2005.

[4] M. Dastani, B. van Riemsdijk, F. Dignum, and
J.-J. C. Meyer. A Programming Language for
Cognitive Agents Goal Directed 3APL. In M. Dastani,

1]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Dix, and A. E. Fallah-Seghrouchni, editors,
PROMAS, volume 3067 of Lecture Notes in Computer
Science, pages 111-130. Springer, 2003.

M. Dastani, M. B. van Riemsdijk, and J.-J. Meyer.
Programming Multi-Agent Systems in 3APL,

chapter 2, pages 39-68. Volume 15 of Multiagent
Systems, Artificial Societies, and Simulated
Organizations [2], 2005.

J. Dix and T. Eiter. Answer Set Programming and
Agents. AgentLink News, Vol. 19, 2005.

M. Gelfond and V. Lifschitz. The Stable Model
Semantics for Logic Programming. In ICLP/SLP,
pages 1070-1080, 1988.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. C. Meyer. Agent Programming in 3APL.
Autonomous Agents and Multi-Agent Systems,
2(4):357-401, 1999.

N. Howden, R. Ronnquist, A. Hodgson, and A. Lucas.
JACK Intelligent Agents - Summary of an Agent
Infrastructure. In T. Wagner and O. Rana, editors,
Infrastructure for Agents, MAS, and Scalable MAS,
2001.

J. A. Leite. Evolving Knowledge Bases, volume 81 of
Frontiers of Artificial Intelligence and Applications.
IOS Press, 2003.

M. Luck, P. McBurney, O. Shehory, and S. Wilmott,
editors. Agent Technology Roadmap: A Roadmap for
Agent Based Computing. University of Southampton
on behalf of AgentLink III, September 2005.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadez:
A BDI Reasoning Engine, chapter 6, pages 149-174.
Volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations 2], 2005.

A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in
a Logical Computable Language. In W. V. de Velde
and J. W. Perram, editors, MAAMAW, volume 1038
of Lecture Notes in Computer Science, pages 42-55.
Springer, 1996.

A. S. Rao and M. P. Georgeff. Modeling Rational
Agents within a BDI-Architecture. In KR, pages
473-484, 1991.

A. S. Rao and M. P. Georgeff. An Abstract
Architecture for Rational Agents. In KR, pages
439-449, 1992.

T. Syrjanen and I. Niemeld. The SMODELS System.
In T. Eiter, W. Faber, and M. Truszczynski, editors,
LPNMR, volume 2173 of Lecture Notes in Computer
Science, pages 434-438. Springer, 2001.

M. Winikoff. JACK(TM) Intelligent Agents: An
Industrial Strength Platform, chapter 7, pages
175-193. Volume 15 of Multiagent Systems, Artificial
Societies, and Stmulated Organizations (2], 2005.

