
Multi-agent Plan Repairing

Antonı́n Komenda and Peter Novák
Agent Technology Center

Dept. of Cybernetics, Faculty of Electrical Engineering
Czech Technical University in Prague

Czech Republic

Abstract
Coordinated multi-agent planning and acting in dy-
namic and uncertain environments poses a number
of challenges. We present a conceptual framework
formalising the problem of multi-agent planning
and subsequent plan repair. As a first step towards
tackling the problem of multi-agent plan repair, we
introduce a sequel of three algorithms. As a prelim-
inary experiment, we evaluate and compare one of
them with re-planning from scratch in a synthetic
domain of multi-robot cranes and show computa-
tional and communication gains of the plan repair-
ing technique.

1 Introduction
Dealing with dynamic and uncertain environments in which
unexpected events may occur or actions of agents may fail
is one one of the core research topics in Artificial Intelli-
gence. This problem is a particularly pressing issue in the
domain of embodied robotics, where the agents interact with
the real world in its unconstrained complexity. Recognising
the difficulties of classical planning in such domains led to
emergence of several approaches tackling this problem. In
the field of automated planning, among the most important
ones belong contingency planning, conformant planning, or
distributed continual planning [2].

One of the main problems in planning for a single agent
situated in a dynamic environment is the efficiency of an
agent’s planning versus the rate of plan execution failure. In
cases when the agent’s planning algorithms are significantly
faster than the dynamics of the environment, the pragmatic
approach to simply re-plan from scratch is currently the pre-
valent solution to the problem. By performing a formal time
complexity analysis of the problem Nebel and Koehler in [3]
show that this approach is in fact a very reasonable solution.
In particular, as a result of their work they show that when
repeated (re-)planning is needed, it is not possible to achieve
a provable efficiency gain of plan reuse over plan generation.
Informally, there is not much to be gained by naive attempts
to repair failed plans in order for the autonomous agent to
continue its activities.

With maturing of the field of multi-agent systems and
transfer of the relevant results to multi-robotic application do-

mains, the problem of plan repair vis-à-vis dynamic and un-
certain environments gains, however, a new importance. Con-
sider application domains, such as e.g., underwater coordin-
ated operations by teams of autonomous underwater vehicles
(AUVs). While the state of the art technology allows to
employ relatively powerful computers on board of such ro-
bots, the communication links are extremely constrained and
expensive; wireless networks cannot be deployed and com-
munication is performed mostly using acoustic signalling.
In such applications, it is the communication complexity of
the distributed multi-agent planning algorithms which mat-
ters more than time, or space complexity. Consequently, em-
ployment of multi-agent plain repair techniques can provide
a tangible benefit over re-planning from scratch for the team
of robots whose multi-agent plan fails.

In this paper we present first steps towards a formal ap-
proach tackling the problem of multi-agent plan repair. The
contribution of this work is twofold. Firstly, in Section 2,
we introduce a formal conceptual framework articulating the
problem of multi-agent planning and the corresponding prob-
lem of multi-agent plan repair. Secondly, in Section 3, we
present a sequel of three multi-agent plan repair algorithms
and discuss their respective properties. We conclude the pa-
per by presenting an experimental evaluation of one of the
algorithms in Section 4 and discussion of the related work in
Section 5.

2 Preliminaries
Even though various aspects of multi-agent planning were
studied in the course of the last decade (cf. e.g., [6]), sur-
prisingly a formal treatment and a complexity analysis of the
general problem of multi-agent planning appeared only re-
cently in the work of Brafman and Domshlak [1]. In the fol-
lowing we recapitulate and extend their formalism of multi-
agent planning (Subsection 2.1), introduce an abstract plan-
execute-monitor architecture capable to detect plan failures
(Subsection 2.2) and finally introduce the multi-agent plan
repair problem (Subsection 2.3).

2.1 Multi-agent planning
Let from now onL be a propositional language. The language
L comes with the entailment relation |=: 2L × L → {>,⊥}
mapping a set of propositions, a theory in L, and a formula to
Boolean truth values according to the set inclusion relation.

A1: P1= a1a1 a2a1 a3a1 ama1...

A2: P2= a1a2 a2a2 a3a2 ama2...

An: Pn= a1an a2an a3an aman...

...

P =(

)

Figure 1: Depiction of a multi-agent plan structure.

I.e., having a theory S ∈ 2L and a proposition ϕ ∈ L, S |=
ϕ if and only if ϕ ∈ S. W.l.o.g., we assume >,⊥ ∈ L.

A multi-agent planning problem is defined as a tuple Π =
〈ϕ, S, sinit, Sgoal〉 where ϕ is a set of agents A1, . . . , An,
S denotes the set of all possible states and sinit ∈ S and
Sgoal ⊆ S respectively denote the initial state of the multi-
agent system and the set of desirable goal states. Each agent
is characterised by sets of their respective individual capab-
ilities. The capabilities are described using STRIPS as a set
of quadruples φpreaφ+postφ

−
post . φpre ∈ 2L denotes the set of

preconditions of the action a, where a is the action’s label.
φ+post , φ

−
post ∈ 2L respectively denote the sets of add and de-

lete effects of execution of the action a. To say that an agent
A is capable to execute the action a, from now on we simply
write a ∈ A. Furthermore, we assume that each agent is cap-
able to execute the empty action {>}ε{>}{>}, i.e., ε ∈ Ai

for every 0 ≤ i ≤ n.
Note that our version of STRIPS action specification lan-

guage does not involve variables. Assuming only finite do-
mains of variables, w.l.o.g., we assume already grounded ac-
tion specifications, i.e., such where a first-order action spe-
cification with variables is translated into a set of primitive
ground actions without variables by considering all instanti-
ations of the action over the domains of the involved vari-
ables.

Having a multi-agent planning problem (MA-plan) Π =
〈ϕ, S, sinit, Sgoal〉, we are looking for a set of individual
plans P1, . . . , Pn for the agents A1, . . . , An in the form of
sequences of actions, such that (i) each agent is capable to
carry out its individual plan on its own, and (ii) after the syn-
chronised execution of the individual plans, the system is in
one of the goal states Sgoal. Formally, considering agents
A1, . . . , An, we are seeking a n-tuple P = (P1, . . . , Pn),
such that each Pi = ai1, . . . , a

i
m, where aij ∈ Ai and |Pi| =

|Pj | = m, for every 1 ≤ i, j ≤ n. We also denote |P| = m.
In the following we write P [k] to select ak, the k-th action of
the individual plan P = a1, . . . , ak, . . . , am. Consequently,
we write φ[k]pre , φ[k]+post and φ[k]−post do denote the pre-
and post-conditions of the action P [k]. The structure of a
MA-plan is depicted in Figure 1.

Since every agent is capable to perform the empty action
ε, the constraint for the same length of plans can be trivially
fulfilled for any multi-agent plan by adding ε-padding to the
end of shorter individual plans.

Synchronised execution of a multi-agent plan (P1, . . . , Pn)
in a state s0 is characterised by a sequel of states
s0, s1, . . . , sm where each state sj is obtained from sj−1
by executing the joint action of the agents A[j] =
〈P1[j], . . . , Pn[j]〉 for all 0 < j ≤ m = |P1|. We write

Planner

MA-plan

repaired MA-planfailure

correct

Monitoring Execution

Repairer

communication

communication

...

...

Figure 2: The plan execution and monitoring architecture –
each layer for each agent.

Algorithm 1 Plan execution and monitoring algorithm.
1: P = plan(Π)
2: k := 0
3: while k 6= |P| do
4: scurr := exec(scurr,

⋃n
i=1 φi[k]−post ,

⋃n
i=1 φi[k]+post)

5: if cannot proceed(P, scurr, k) then
6: P = repair(Π,P, scurr, k)
7: if P = Fail then
8: return Fail
9: end if

10: end if
11: k := k + 1
12: end while
13: return True

sj = sj−1 ⊕A[j], formally

sj = sj−1 \ {
n⋃

i=1

φi[j]
−
post} ∪ {

n⋃
i=1

φi[j]
+
post}

The joint action A[j] is executable in a state sj−1 ∈ S if
and only if preconditions of each individual action are satis-
fied in sj−1, i.e., sj−1 |= φpre for every φpre ∈

⋃n
i=1 φ[j]pre .

We say that the multi-agent plan (P1, . . . , Pn) is sound
w.r.t the MA-plan problem Π = 〈ϕ, S, sinit, Sgoal〉 iff the
synchronised execution of (P1, . . . , Pn) is characterised by
the sequel of states s0, s1, . . . , sm, such that s0 = sinit,
sm ∈ Sgoal and each joint action A[j] is executable in the
state sj−1.

2.2 Plan execution and monitoring
In dynamic and uncertain environments, an agent’s actions
and plans may not always lead to the desired consequences, or
can turn out to be not executable. To account for such cases,
a cautious agent must be able not only to execute its actions,
but also monitor its own progress and detect failures. Gener-
ally speaking, besides a planning component, implementation
of an agent should also include monitoring and a plan repair-
ing component. Figure 2 depicts a generic multi-agent plan-
execute-monitor architecture. More concretely, considering a
multi-agent plan produced by a suitable MA-plan planner, the
abstract execution-monitoring algorithm checks in every state
the soundness of the next step before advancing. If necessary,
it invokes a plan repairing procedure. The Algorithm 1 lists a
sketch of such an algorithm.

The multi-agent planning function plan(...) takes an in-
stance of the MA-plan problem as an input and returns

a multi-agent plan P . Function exec(. . .) executes a
joint action defined by sets φ+post and φ−post and returns
changed state. Plan failure is detected by the condition
cannot proceed(P, s, k) which is true iff there exists an in-
dividual plan Pi of the agent Ai, such that the precondition
φ[k + 1]pre of the action Pi[k] is not satisfied in s, i.e.,
s 6|= φ[k + 1]pre . Hence, the next joint action of the plan
P cannot be executed as planned, because one of the pre-
conditions necessary for the step is not satisfied. We con-
sider full information, i.e., all agents can observe failures of
other agents. Upon plan execution failure, the plan repairing
function repair(Π,P, s, k) takes as an input the considered
instance of the multi-agent plan problem, the executed multi-
agent plan P , a state s in which the execution of P failed
(could not proceed any more), and k the step in which the
execution of the plan P failed in.

2.3 Multi-agent plan repair

As already sketched in the previous subsection, upon detec-
tion of plan execution failure, a plan repair should be attemp-
ted. In general, a plan repair problem R can be defined as
a tuple R = (Π,P, sF, k) comprising the original MA-plan
problem Π, the currently executed multi-agent plan P , the
state sF in which the execution ofP was interrupted (couldn’t
proceed anymore) and 0 < k < |P| the number of the step
in which the execution of P was interrupted. Furthermore,
we assume that there was a reason for the joint plan so that it
couldn’t proceed further than state sF. Provided the execution
of P is characterised by the sequence of states s0, . . . , s|P|,
there must be an individual plan Pi inP , such that the precon-
dition φ[k + 1]pre of the next action to be executed Pi[k + 1]
is not satisfied in sF , i.e., sF 6|= φ[k + 1]pre . A solution
of the plan repair problem (MA-repair) is of the same type
as that of the plain multi-agent planning problem Π, i.e, a
joint plan P ′, which is sound w.r.t. the MA-plan problem
Π = 〈ϕ, S, sF, Sgoal〉. Optionally, we can require the res-
ulting multi-agent plan P ′ to be constructed from P with use
of minimal number of changes. Since the optimal plan repair
problem is not the focus of this paper, we leave out its precise
formal definition.

In the above paragraph, we focus only on a single type of
plan failure, the critical one, i.e., when the cooperative plan
simply cannot proceed any more. The reasons for such a situ-
ation might be twofold. Either (i) some previous individual
action of the multi-agent plan failed, i.e., some post-condition
of the action did not become true after the action’s execution,
or (ii) the environment interfered and invalidated a previously
established condition so that the forthcoming action couldn’t
be safely executed. In both cases, the failure is detected at the
latest possible point, i.e., when the condition becomes vital
for the subsequent step in the joint plan, that is its precondi-
tion.

In general, we can identify several types of plan failures.
Alternatively, post-conditions of actions could be checked
after their execution in order to detect action failures. This
approach is however vulnerable to checking irrelevant con-
ditions, i.e., such which are never used as a precondition of
some future action in P .

Algorithm 2 Naive plan repair algorithm
1: scurr := simulate(P, sinit, k)
2: while Sgoal 6⊆ scurr do
3: P ′ := plan(ϕ, S, sF, scurr)
4: if P ′ 6= ∅ then
5: return P ′ · tailplan(P, k)
6: else
7: k := k + 1
8: scurr := simulate(P, sinit, k)
9: end if

10: end while
11: return Fail

Algorithm 3 Blind Repairing Algorithm
1: P ′ := (P ′1 = ε, ..., P ′n = ε)
2: scurr := simulate(P, sinit, k)
3: ϕ∗ := (A|A ∈ ϕ∧∃a ∈ A : φa+post ⊆ scurr\sF∨φa−post ⊆
sF \ scurr)

4: for all Ai ∈ ϕ∗ do
5: if ∃ar : ar ∈ Ai, φ

ar
pre ⊆ sF ∧ φ

ar+
post ⊆ scurr ∧ scurr 6⊆

φar−
post then

6: P ′i [1] = ar
7: else
8: if ∃Ad∃ad : Ad ∈ ϕ, ad ∈ Ad : φad

pre ⊆ sF ∧
φad+
post ⊆ scurr ∧ scurr 6⊆ φ

ad−
post then

9: P ′d[1] = ad
10: end if
11: end if
12: end for
13: if ∃i : P ′i 6= ε then
14: return P ′ · tailplan(P, k)
15: else
16: return tailplan(P, k)
17: end if

3 Plan repairing algorithms
3.1 Naive Repairing Algorithm

Algorithm 2 lists the simplest algorithm designed. It uses
iteratively prolonged repairing plan from the point of the fail-
ure to a particular point in the old plan (the k-th step). The
function simulate(. . .) denotes the ideal plan execution func-
tion up to the k-th step if everything works out right accord-
ing to the joint action specification (w.r.t. the effects of the
involved actions). Formally,

simulate(P, sj , k) = ((sj⊕A[j+1])⊕A[j+2])⊕· · ·⊕A[k]

simulates iteratively the ideal execution of the joint actions
A[j+1], ...,A[k] on the state sj . The function tailplan(P, k)
cuts off beginning of the MA-plan P up to the k-th action and
returns the rest.

The complexity of the Naive Repairing Algorithm (NRA)
respects the inner planner complexity. The worst case com-
plexity is PSPACE-complete (since a general planning fits the
PSPACE-complete complexity class).

Algorithm 4 Iterative Blind Repair Algorithm
1: korig := k
2: sorigF := sF
3: P ′ := P
4: while Sgoal 6⊆ scurr do
5: P ′ := blindRepair(Π,P ′, sF, k)
6: if ∀i ∈ (0, ...,m) : φ′i[k]+post ⊆ sF ∧ sF 6⊆ φ′i[k]−post

then
7: return P ′
8: else
9: k := k + 1

10: sF := simulate(P ′, sinit, k)
11: end if
12: end while
13: return naiveRepair(Π,P, sorigF , korig)

3.2 Blind Repairing Algorithm
The Blind Repairing Algorithm (BRA) tries to solve a failure
by adopting an alternative action(s) solving the failed effects.
Firstly it finds agent(s) which caused the problem (their ef-
fects do not meets the simulated state). After the agents are
found, for each agent an alternative action is tried to be found.
If the personal alternative cannot be found a wide alternative
is tried (another agent can adopt an action which solves the
failure). Finally, even if the wide alternative cannot be found,
the problem is ignored to be solved in the next steps prospect-
ively (the agens which cannot proceed are executing ε). If a
failure is ignored the repairing algorithm is called again in the
next step by the main monitor-execution loop, however the
context is already changed thus a new solution can be found.
Algorithm 3 lists the pseudo-code of the blind plan repairing
algorithm.

The algorithm is not sound in the pure form as it can miss
a solution of the repairing problem. Its modification towards
the soundness can be managed simply by adding a fail-safe
call of NRA if the algorithm iteratively fails at the goal state.
The iterative form of the algorithm is listed in Algorithm 4.

The non-iterative form has linear complexity (iteration
over the number of the agents). The iterative extension has
minimal quadratic complexity (number of the agents times
the length of the plan). Maximal complexity reflects the com-
plexity of the NRA as it can be used as a fail-safe process.

3.3 Locality Repairing Algorithm
The last repairing algorithm (see Algorithm 5) is based on an
assumption, the communication is not costless, i.e. we count
amount of information needed to be transmitted for each re-
pairing of an action (for the Naive Repairing Algorithm, it
is the complete global state plus the final state to one re-
pairer agent, and then the result back to the rest of the agents
c = 2 ∗ 2 ∗ n, n is number of the agents, i.e. number of
the state to transfer and c is communication volume for each
(re-)planning process; for the Blind Repairing Algorithm the
mean value is c = n/2, i.e. a median of the probability of
number of agents involved in reparation of one action).

Before presenting the final plan repair algorithm, the local-
ity repairing, let us introduce the notion of a causality graph

Algorithm 5 Locality Repairing Algorithm
1: v := (1, 1, 0)
2: loop
3: ϕ∗ := combinations(ϕ,A, dv1e)
4: π = {ρ|∀A ∈ ϕ∗ : ρ = A : alterns(dv2e, dv3e)}
5: P = compatible(π)
6: if P 6= ∅ then
7: return P
8: end if
9: v := v + V

10: end loop

exploited by the algorithm.
Each MA-plan P can be represented as a graph G, where

vertices V represent the actions and edges E represent causal
links among the actions:

G = (V,E)

V = {vi|∀i : ai ∈ P}
E = {eij |eij = (vi, vj) iff φai

post ∩ φaj
pre 6= ∅}.

Using a causality graph G, a causality relation ← can be
defined as ai ← aj iff eij ∈ E. A transitive closure of ←
(oriented path in the causal graph) will be denoted as ∗←.

The proposed plan repairing algorithm is based on the plan-
ning technique presented in [4]. From the communication
perspective, it tries to solve the problem as locally as pos-
sible, iteratively including more and more agents which tries
to solve the problem also locally. Therefore, the agents com-
municate as few as possible information (failed actions). Al-
gorithm 5 lists the pseudo-code of the Locality Repair Al-
gorithm (LRA).

The vector v represents three counters: v1 number of
agents involved in the repairing process, v2 represents length
of the repairing plans, and v3 represents number of actions
removed from the old plan. The counters are increased by a
constant vector V if a valid plan is not found. Various para-
metrisation of the algorithm can be done using the V vector
(e.g., V = (0.1, 1, 0) represents increase of the number of
the involved agents for each 10 actions of the repairing plan
length).

The combination(ϕ,A, n′) function generates a set of
possible combinations of n′ agents prioritising combinations
with the agent A. The function A : alterns(q, r) generates
alternative repairing plans from the perspective of the agent
A of length q with r removed actions from the current plan.
The process of action removing follows a path in the caus-
ality graph G, formally the process successively removes ac-
tions on path ak

∗← ak+r. The generated plan alternatives
have to satisfy the initial conditions defined by the state sF
and the final conditions defined by state sk+r. The function
compatible(π) returns a plan based on the alternatives in the
set π, where only mutually compatible alternatives are pre-
served. Two alternatives are compatible if delete effects of
one do not preclude usage of the other. The first compatible
alternative tuple found is used.

Repairing Dimensions The Locality Repairing Algorithm
is based on the principle of the Blind Repairing Algorithm.
The main difference is that the algorithm is sound inherently
in the pure form.

The main problem of the BRA is that the repairs can be
done only by one changed action for an agent A in the step
k. Additionally, the changes cannot be backtracked as the
process works only in the successive manner. On one hand,
this fact simplifies the process and implies the process has
only linear computational complexity. On the other hand, the
process can miss quite simple solutions using only two suc-
cessive actions provided by the failure causing agent. The
Locality Repairing Algorithm takes into the account all these
possibilities and thus searches through the complete space of
possible repairs.

More precisely, there are three dimensions in the space of
the possible repairs. The first dimension v1 is common with
the BRA and it describes which agents undertake the repair-
ing actions. The second dimension v2 describes how many
and which actions one agent uses for its local repair. The last
one v3 describes how deep the repair goes through the current
plan. The last dimension is similar to the successive direction
of the NRA. The differences are (i) the repairing process can
backtrack and (ii) it primarily follows the causality graph in
an opposite direction against the causality links.

In the exhaustive case, all the combinations of the future
actions have to be treated as possibilities for repairing. The
only aspect decreasing the full range of 2|A|dv2e combinations
for one agent A is that only compact successive sequences of
the actions based on the causal links need to be considered.
The number of the combinations thus only (dv2e+ 1)|A|.

4 Experimental evaluation
For an evaluation and a preliminary comparison, we have
designed and implemented a synthetic experimental environ-
ment, a multi-agent planner based on [4], and the Naive Re-
pairing Algorithm (see Section 3.1). The Naive Repairing
Algorithm is compared with re-planning from scratch.

4.1 Simulated Environment
As an environment we use a restricted instance of the Crane-
Robot domain problem which we call Box-Movers. In Box-
Movers, there are k mover agents (representing a robot and
crane as one entity), which can each move in a w×h grid and
b distinguishable boxes each of which has one target position.
The boxes cannot be laid upon each other. Each grid point
can be accessed by only one mover with the exception of s
points, which can be accessed by two neighbouring agents
(hand-over points). Each mover can carry only one box at a
time.

The initial state defines points where the movers start and
where the boxes lie. The movers have three possible actions
(i) move, (ii) load, and (iii) unload. A mover can move in its
accessible grid by one cell horizontally, vertically, and diag-
onally (including the hand-over points) whether or not it is
carrying a box. A mover can load a box, if it is at the same
point as the box. A mover can unload a box if it is carrying
it, and there is not another box in the unload position.

(a) (b)

Figure 3: The example environment, where blue circles rep-
resent movers and blue squares represent the boxes. The or-
ange cells are the respective target points and the red points
are the hand-off points. The red lines represent areas reach-
able by the respective agents. (a) The initial configuration for
4 movers and 2 boxes. (b) Box1 (10, 0) is being handed from
Mover3 (top-right) to Mover4 (bottom-right).

The model of the failures is based on a probability P with
an uniform distribution. The probability describes if a move
action carrying a box drops the box. The detection of the
failure is reliable which means the failure is always detected.
P = 1 represents a failure of each executed move action (this
case is not included in the evaluation as the plan would have
infinite length). If P = 0, the execution is deterministic and
without failures.

A solution of the problem is a plan of actions for each
mover which relocates the boxes from their initial points to
their target points.

An example instance of the domain is depicted in Figure 3,
where k = 4, w = 6, h = 6, b = 2, and s = 4.

4.2 Experimentation Methodology
The experiments are comparing the Naive Repairing Al-
gorithm and re-planning from scratch for varying probability
P . There are three comparison metrics used: (i) computa-
tional complexity, (ii) communication complexity, and (iii)
length of the resulting plans.

The computational complexity measure is based on a
number of action sequences generated by the planning, re-
planning, and plan repairing processes. All such sequences
have to be checked for soundness and mutual compatibility,
which makes them the most complex part of the algorithm.

The communication complexity counts a number of mes-
sages, which are necessary to coordinate the planning pro-
cesses. The messages contain only comparable sizes of data
(the largest structure transferred by one message is a single-
agent action sequence). More complex data packages are split
into more messages.

The length of the final plan includes also all repairing
plans.

4.3 Experiment Results and Discussion
The results are depicted in three figures according to the men-
tioned metrics. As we can see in Figure 4, the complexity
of the plan repairing algorithm (NRA) is considerably lower
(12%) than the complexity of the re-planning. The plan re-
pairing technique uses the planner during the execution only
for short and simple planning problems. On the other hand,

Figure 4: Comparison of NRA and re-planning from scratch
– computational complexity metrics.

Figure 5: Comparison of NRA and re-planning from scratch
– communication complexity metrics.

the re-planning approach in the earlier phases of the execution
has to plan complete plans towards the goal state.

The communication complexity (see Figure 5) of the plan
repairing algorithm is also lower than the re-planning from
scratch (57%). As the planning problems creating repairing
plans are simpler than the complete re-planning problems, the
planning process need less messages to find the compatible
personal action sequences of the agents. The more advanced
plan repairing techniques as Locality Repairing Algorithm
are theorised to even more decrease the number of the mes-
sages required for the repairing process according to the v2
dimension (other agents) of the vector V .

The plan lengths, depicted in Figure 6, shows the increase
of the plan length for the plan repairing technique (59%). It
is caused by repeated extension of the initial plan by the re-
pairing plans. Study and reduction of this effect can be one
of the possible future works.

5 Discussion and conclusions
In the presented work, we are making first steps towards a
thorough investigation of the multi-agent plan repair problem,
where we specifically focus on study of communication com-
plexity of the re-planning and plan repair process. As already
discussed in Section 1, plan repair in general is not a deeply
studied topic. One of the main reasons is that it can be shown
that plan repair, in its most general form in single-agent con-
text, is not more efficient than planning from scratch, i.e.,
re-planning (cf. [3]). In multi-agent context, where commu-
nication among agents can be severely constrained, however,

Figure 6: Comparison of NRA and re-planning from scratch
– plan length metrics.

distributed repair algorithms aiming at fixing the failed plan
in a local context only concerning a relevant subset of agents
of the team can be a more viable option than straightforward
re-planning.

Recently, in a sequel of works culminating in the disserta-
tion [5], van der Krogt and de Weerdt study plain repair and
its uses for multi-agent planning [6]. Unlike our case, they
study plan repair in single-agent context. When transposed
to multi-agent planning domain, they consider the problem
of multi-agent planning for self-interested agents which are
capable to independently achieve their respective goals. Our
primary motivation, however, is to study multi-agent plan-
ning in teams of cooperative agents, which are forced to work
together in order achieve their individual goals and none of
the team members is able to bring about the goal on its own
(cf. Subsection 4.1).

References
[1] Ronen I. Brafman and Carmel Domshlak. From one to

many: Planning for loosely coupled multi-agent systems.
In Jussi Rintanen, Bernhard Nebel, J. Christopher Beck,
and Eric A. Hansen, editors, ICAPS, pages 28–35. AAAI,
2008.

[2] Edmund H Durfee, Charles L Ortiz, and Michael J Wol-
verton. A Survey of Research in Distributed, Continual
Planning. AI Magazine, 20(4):13–22, 1999.

[3] Jana Koehler Nebel, B. Plan reuse versus plan genera-
tion: a theoretical and empirical analysis. Artificial Intel-
ligence, 76(1-2):427–454, July 1995.

[4] Raz Nissim, Ronen I. Brafman, and Carmel Domsh-
lak. A general, fully distributed multi-agent planning al-
gorithm. In Wiebe van der Hoek, Gal A. Kaminka, Yves
Lespérance, Michael Luck, and Sandip Sen, editors, AA-
MAS, pages 1323–1330. IFAAMAS, 2010.

[5] Roman van der Krogt. Plan repair in Single-Agent and
Multi-Agent Systems. PhD thesis, Delft University of
Technology, Delft, The Netherlands, 2005.

[6] Roman van der Krogt and Mathijs de Weerdt. Self-
interested planning agents using plan repair. In Proceed-
ings of the ICAPS 2005 Workshop on Multiagent Plan-
ning and Scheduling, pages 36–44, 2005.

