
Behavioural State Machines
Agent Programming and Engineering

Doctoral Thesis
(Dissertation)

to be awarded the degree of
Doctor rerum naturalium (Dr. rer. nat.)

submitted by

Peter Novák
from Ružomberok, Slovak Republic

approved by

Faculty of Mathematics/Computer Science and Mechanical Engineering
Clausthal University of Technology

date of oral examination
September 11th 2009

chairperson of the board of examiners
Prof. Dr. rer. nat. Jörg P. Müller

chief reviewer
Prof. Dr. rer. nat. Jürgen Dix

reviewer
Prof. Michael Fisher, Ph.D.

(University of Liverpool, UK)

D104

To Zuzana Bullová, Ján Šefránek and Jürgen Dix,
my teachers of computer science.

Contents

Preface 9

1 Introduction 11
1.1 Prelude . 11
1.2 Motivation . 12
1.3 Agent-oriented programming: state of the art 15
1.4 Thesis outline and contributions . 18

I Theoretical foundations 21

2 Behavioural State Machines 23
2.1 Syntax . 24
2.2 Semantics . 26
2.3 Abstract interpreter . 32
2.4 Summary . 33

3 Modular BDI architecture 35
3.1 Belief Desire Intention . 35
3.2 BDI instantiation in BSM . 37
3.3 Ape the Airport E-Assistant . 41
3.4 Summary . 44

4 Logic for Behavioural State Machines 45
4.1 Linear Time Temporal Logic LTL . 45
4.2 Dynamic Computation Tree Logic DCTL* 47
4.3 Temporal annotations and verification of BSMs 48
4.4 Verifying Ape . 50
4.5 Summary . 52

5

Contents

II Software engineering issues 53

5 Jazzyk 55
5.1 Language . 55
5.2 Interpreter . 59
5.3 Ape in Jazzyk . 65
5.4 Summary . 66

6 BSM design patterns: commitment-oriented programming 69
6.1 Ape example revisited: naïve methodology 71
6.2 Jazzyk BSM code patterns . 72
6.3 Commitment-oriented programming . 85
6.4 Summary . 89

III Evaluation, extensions and beyond 91

7 Case studies 93
7.1 Jazzbot . 93
7.2 Urbibot . 97
7.3 AgentContest team . 100
7.4 Summary . 103

8 Implemented Jazzyk modules 105
8.1 Answer Set Programming KR module . 106
8.2 Ruby KR module . 108
8.3 Nexuiz KR module . 110
8.4 URBI plug-in . 112
8.5 MASSim client plug-in . 113
8.6 OAA connector KR module . 115
8.7 Summary . 116

9 Probabilistic Behavioural State Machines 117
9.1 Probabilistic Behavioural State Machines 118
9.2 Jazzyk(P) . 123
9.3 Adjustable deliberation . 125
9.4 Summary . 126

10 Embedding GOAL in Behavioural State Machines 127
10.1 GOAL . 128
10.2 Compiling a GOAL agent into a BSM . 131
10.3 Summary . 137

6

Contents

Conclusion 139

11 Part I: Theoretical foundations 141
11.1 Vertical modularity . 141
11.2 Horizontal modularity . 143
11.3 Agent reasoning model . 144
11.4 Logic for programming agents . 145

12 Part II: Software engineering issues 147
12.1 The programming language . 147
12.2 Extensible language constructs . 148

13 Part III: Evaluation, extensions and beyond 151
13.1 Experimental work . 151
13.2 Probabilistic approaches to agent-oriented development 153
13.3 Comparison with related frameworks . 155
13.4 Broader context . 157
13.5 Application domains . 159

14 Towards open multi-agent systems 161
14.1 Epilogue . 161
14.2 Outlook . 162
14.3 Lightweight open communication platform 163

15 Conclusion 167
15.1 Acknowledgements . 168

Appendices 171

A Implementation of Jazzyk interpreter 173
A.1 Architecture . 173
A.2 Installation . 174
A.3 Jazzyk interpreter manual page . 175

B Jazzyk SDK 179

Bibliography 185

7

Contents

8

Preface
AlC IXH XAN.

(Jan van Eyck)

This is a work of an apprentice in the craft of computer science on his way
to becoming a journeyman of the guild. I submit this dissertation text as the
proof of the level I reached in the fine craft of Artificial Intelligence research.

I present here an account of my research work of the last, almost five years. Initially,
it was driven by a vision of applying computational logic in cognitive agents. While on
one hand, I managed to build systems which indeed apply logic based technologies in
practice even in non-trivial and interesting ways, the original project partly missed the
vision. Instead of showing an impressive application of computational logic in a cognitive
agent, I spent most of the time solving issues and removing roadblocks on the way to
enabling such a demonstration. I found that in order to apply any kind of computational
logic in a software system, I first need to solve some fundamental software engineering
issues on the way. One of such turned out to be an agent programming framework, a
language capable of integrating arbitrary KR technologies, which a programmer might
choose for her or his application. While the project is certainly nowhere close to its end,
I tried to stand up to Jan van Eyck’s maxim and did my best to deliver a good solution.
I do not only propose an agent programming framework of my taste, but also elaborate
on how to use it in the target domain and demonstrate its merit in several non-trivial
proof-of-concept applications. Finally, I reach beyond and sketch some of the potential
future research avenues stemming from the presented work.
Each of us is partly a product of interactions with our social environment. Retro-

spectively, we can trace our personal intellectual evolution in the past to people who
influenced us, changed our direction in a positive sense, or helped us to avoid dead-end
paths. I dedicate this dissertation to my teachers, especially those who gave me the
direction towards computer science and artificial intelligence. In particular, this work
is dedicated to my high school teacher of programming Zuzana Bullová, my university
teacher of artificial intelligence, adviser and a friend Ján Šefránek and finally my teacher
of scientific research affairs and supervisor of my doctoral research Jürgen Dix.
I was fortunate to work under supervision of Prof. Jürgen Dix. His attitude to us, his

assistants, promotes independent research and leaves space for personal development.
At the beginning, Jürgen did not give me a concrete research topic, but rather trusted

9

Preface

me and guided me in the search for my own theme. I am grateful for that and I hope, I
wasn’t a bad bet for him either.
Nowadays, research work is more and more becoming a collaborative effort. The one

presented in this dissertation very much fits this pattern. A large portion of its content
is based on joint works with my colleagues and collaborators. In particular, I am glad I
could co-author papers with my supervisor Jürgen Dix, my colleagues Wojtek Jamroga,
Michael Köster and Tristan Behrens, as well as with Koen Hindriks, Mehdi Dastani and
Nick Tinnemeier and the students of our group Bernd Fuhrmann, David Mainzer and
Slawomir Dereń. I am grateful to Koen for his constructive critique of my early ideas and
later fruitful collaboration. Wojtek helped me to clarify and fix many of my half-backed
ideas. I very much enjoyed the friendship arising from the almost five years we spent
together in Clausthal and our endless debates on anything spanning research, family,
society and beyond. I am glad that I met and could share the office in the last year with
Michael, a former diploma student in our group and later a colleague. Even though we
share a lot of opinions on how the world should turn around, we never had a lack of
topics for lengthy arguments and discussions opposing each other, mostly as a matter
of principle. Besides Michael, I was also very lucky to meet students Bernd, David and
Slawek, who made a great job working on various projects under my supervision and
who helped me to turn the ideas presented here into working applications. Reflecting the
nature of the collaborative work, parts of this dissertation are mixing the plural voice
with the, otherwise prevalent, first-person narrative.
My ambition in doing research is to contribute to the state of the art at the highest

level of excellence I can deliver. Examples of such works as well as invaluable sources of
inspiration were in these years for me those by Koen Hindriks and Birna van Riemsdĳk.
“Every review is gold dust” (Jones, 2005). I am grateful to all the anonymous reviewers

of my papers. Their feedback provided me with constructive critique, fresh views and
hints and thus greatly influenced the directions of my research work.
My years in Clausthal were marked by friendships to the family Mišík, Yingqian Zhang,

Andreas Brüning, Zuzana Zúberová, Lenka Grygarová as well as colleagues of my wife
from University of Göttingen Tanja Dučić, Simon Castorph, Klaus Giewekemeyer and
their partners. They made our time in this country as pleasant as it was. Not to forget
my colleagues Nils Bulling, Juan Guadarrama, Rebecca Vincent Olufunke and all the
guest researchers we hosted, who maintain the family-like atmosphere of Jürgen’s group.
Finally, I am indebted to my wife Eva who followed me to Germany and stood by my

side all the time in the years we are together. During our stay in Germany, we received
a lot of support from both our families. Thanks go to all the four of our parents, our
siblings and their families, as well as to our daughter Bronislava, who brightens our days.

Peter Novák
Clausthal-Zellerfeld, July 2009

10

Chapter 1

Introduction

1.1 Prelude

Ape is an Airport Passenger E-assistant, a mobile humanoid robot with
the task of helping passengers by providing them with flight schedules, getting
them at the right gate on time and assisting with various travelling trivia. On
Monday morning, Ape is busy assisting travellers at the Bratislava airport.
Bronja has a busy day as well. She was visiting her friend Boris in Bra-

tislava over the weekend and now is about to fly back home to Brussels.
Because of a traffic jam in the city, she arrived to the airport a bit later than
expected and since this is her very first visit to Bratislava, she feels a bit lost.
Bronja stands helplessly in the middle of the airport check-in hall. She looks
around to find a BBWings airline counter when Ape arises from the crowd
and approaches her with a kind offer for assistance. Bronja quickly explains
her situation. Ape’s internal knowledge base includes information about the
BBWings ground facilities, so he explains Bronja the way to the counter B42
in terminal B check-in hall. After recognizing that she has no clue how to
get there, Ape offers her guidance to the Base Line inter-terminal rail shuttle
station. Bronja gladly follows.
Ape smoothly navigates through the crowd when suddenly a rushing man

approaches him and asks for a direction to the newly opened airport Wi-
Fi lounge. Ape stops and apologizes to Bronja for the interruption. Since
the new Wi-Fi lounge was only opened today, Ape was not updated about
it yet. He looks up the airport electronic yellow pages service to find an
agent informed about facilities located at the airport. His request matches
the profile of Bran0, the Business Register Agent maintaining the airport
facilities database. Bran0 of course knows the Wi-Fi lounge whereabouts. It
is located just behind the corner from Ape’s actual position, right to the Café
Superiore kiosk. Ape updates his internal database with the new information
and explains the directions to the rushing man.
The interruption did not take more than a minute, yet Ape kindly apolo-

gizes to Bronja again. Then he asks her to follow him to the station where he

11

Chapter 1 Introduction

explains that the BBWings check-in counter B42 is right opposite the Base
Line shuttle platform at terminal B. Bronja should be able easily find it after
getting off the train. To reassure her that she will manage to check-in on
time, Ape notifies Chic, the Check-In Clerk Agent of the BBWings ground
personnel serving at the counter B42, about Bronja’s later arrival. Right
before he says goodbye to Bronja, Ape receives a new task from the airport
command center. A group of elderly tourists needs help with check-in for the
flight to Bucharest.

1.2 Motivation
The driving vision behind the research leading to this dissertation is that of intelligent
open multi-agent systems. I.e., communities of coordinating, yet only loosely coupled
heterogeneous actors and services. Such systems are a necessary prerequisite to enable
scenarios such as the one described in the introductory example in the previous section1.
They have to be able to accommodate autonomous entities, agents, such as Ape, Bran0
and Chic, which can enter and leave the community upon their own, or their user’s
decision. They should also be able to transparently look-up other agents in order to
communicate and coordinate with them to possibly reach common goals. Development
of such systems however presumes development of individual intelligent agents.
One of the original long-term aims of the field of Artificial Intelligence (AI) is to build

intelligent entities, i.e., such which are able to function and act in a manner similar
to human beings. According to the standard definition by Wooldridge (2000), such
intelligent agents are assumed to be autonomous, proactive, reactive, as well as socially
able. In other words, most of the time they should act on their own without intervention
of a human user (autonomy). They should proactively seek an action whenever a need
of an opportunity arises (proactivity). Since they are embodied in a physical or a virtual
environment they must be able to react to events and changes in it (reactivity). And
finally, they should be able to communicate, understand, negotiate or even argue and
thus coordinate with other similar agents present in the environment (social ability).
During its lifetime, AI research mainly focused on solving various particular subprob-

lems of the original aim. It led to development of a plethora of approaches and practically
applicable technologies tackling various aspects of the original goal (for a taste recall the
classics by Russell and Norvig (2002)). Yet, the problem of integration of a number of
the pieces of the big puzzle remains open and we only rarely encounter approaches for
enabling their composition into a single functional unity.
The leitmotif of this dissertation is the problem of programming cognitive agents. I.e.,

such employing cognitive processes as the basis for their decision making and actions.
In particular, I focus on systems constructing and maintaining a mental state (Shoham,

1Adapted and extended from an earlier publication with Dastani et al. (2008d).

12

1.2 Motivation

1993), a representation of their environment, themselves or their peers, and in turn
use knowledge representation and reasoning techniques as the basis for the action selec-
tion. To avoid anthropomorphic nomenclature, such systems are also sometimes coined
knowledge-intensive agents (Jones and Wray III, 2006).
Being able to process symbolic information is a necessary prerequisite for inter-agent

information exchange. Reasoning and communication about agent’s mental attitudes,
such as beliefs, goals, intentions, commitments, obligations, etc., in turn facilitates co-
ordination among agents. It enables joint reaching of common goals, or engaging in
negotiations while at the same time preserving their own autonomy. The agent’s mental
attitudes might be expressed using various knowledge representation technologies ac-
cording to the concrete application domain. Any programming framework for such a
class of agents must therefore support programming with mental attitudes.
In the example scenario, Ape needs to maintain an extensive mental state. To be able

to respond to the rushing man’s query and in turn properly request the information from
Bran0, his knowledge bases must maintain a topological map of the airport. Similarly,
to help Bronja, he should know the schedules and routes of the inter-terminal shuttle
railway. Ape also has to be informed about various behavioural patterns of different
groups of travellers at the airport. He should know various social norms corresponding
to their cultural backgrounds, so that he is able to recognize Bronja’s anxiety, treat her
in a convivial manner and proactively take actions to reassure her that everything will
be alright. On the other hand he should be unobtrusive when dealing with the group
of elderly tourists, while treating business travellers, who are always on a nervous move,
as efficiently as possible. Ape also holds various desires, descriptions of states and tasks
he wants to bring about in the future. While he desires to fulfill various requests of his
clients, such as taking Bronja to the shuttle station, at the same time he probably also
needs to take care of his own technical status. His batteries have to be loaded, he tries
to maintain his own safety in, at times quite unfriendly, environment and occasionally
he also desires to be checked by the Airport Android Maintenance Team.
Besides architectural specification and implementation of various knowledge bases im-

plementing agent’s mental state, the software engineering task of building an intelligent
agent requires specification of agent’s behaviour, i.e., its action selection mechanism.
While in order to fulfill longer term goals and tasks the agent should be able to plan and
subsequently execute possibly complex sequences of actions, at the same time it has to be
able to swiftly react to events, changes and interruptions occurring in the environment.
Efforts in robotics to marry deliberation and planning on one side with maintaining
agent’s reactivity on the other led to development of various hybrid architectures. Yet,
an application-domain-independent, robust and flexible specification framework for en-
coding agent’s behaviours in terms of deliberation-based action selection remains one of
the open problems of cognitive robotics research.
Ape’s deliberation and behaviour selection mechanisms have to be rather complex as

well. To resolve Bronja’s situation, he needs to construct or retrieve and instantiate a

13

Chapter 1 Introduction

stock plan from his plan library prescribing how to assist her by providing an advice
and navigating to the shuttle through the airport halls. While executing the plan and
navigating to the station, Ape must quickly react to avoid moving people, luggage trans-
port vehicles, carts and finally even interrupt the navigation in order to serve a high
priority request by the rushing man. Actually, in order to fulfill that request, Ape has
to enact a complex behaviour, a plan, specifying a sequence of actions for looking-up,
contacting and negotiating with Bran0 agent, reasoning about the airport topology and
finally explaining the directions to the man. Besides all that, Ape must keep track of the
lower priority goals in the context of assisting Bronja and all the technical maintenance
of his own robotic body.

In the research leading to this dissertation I tried to tackle the following challenges:

How to build cognitive agents by integration of various existing AI
technologies?

How to encode action selection mechanism in a concise and elaboration
tolerant manner?

And once we have a framework tackling the previous two issues, how should
programmers use it?

Clearly, these question are those of pragmatic software engineering.
As noted above, while there exists a vast body of research tackling various partial

AI subproblems, integration of the various approaches in a single system remains an
open problem. The first above formulated question takes on exactly this problem. It
asks for a robust solution capable to accommodate heterogeneous approaches to support
modelling, reasoning and generally processing information contained in components of
agent’s mental state.
While constructing, maintaining and using a model of the world is an important aspect

of cognitive agent development, after all we require an embodied agent, be it a software
or a hardware entity, to act in its environment. Hence, it must execute behaviours
satisfying the needs of its user. In the simplest case, when we see an agent as a single
discrete computation process, this boils down to an iterated action selection. The second
challenge posed above not only asks for a solution enabling encoding of such a behaviour
selection mechanism, but since its development is a pragmatic software engineering task,
it must support at least the basic requirements imposed on a practical programming
framework. In particular, such a framework should lead to preferably short and easily
understandable programs, which also allow easy modification and restructuring when a
future need arises.

14

1.3 Agent-oriented programming: state of the art

The last but definitely not the least is the problem of a methodology. Provided a
toolbox for programming some type of software systems, it is of a high interest to its
users, in this case agent developers, to have an insight into its pragmatics. On one
hand, tackling this problem requires powerful abstractions providing a suitable optics
on solving software engineering problems with the toolbox. On the other, the framework
should also come with at least some informal guidelines for the development process in
some relevant application domains.

1.3 Agent-oriented programming: state of the art

Since Shoham’s seminal paper (1993) on agent-oriented programming, one of the high am-
bitions of the agents programming community is development of a theoretically founded
programming frameworks enabling construction of cognitive agents. However, a pro-
gramming framework is an engineering tool in the first place and thus it also has to
provide a pragmatic toolbox for development of practical systems. On the other hand, it
is desirable to establish a tight relationship of the programming approach with a rigorous
machinery for reasoning about programs written with it. The relationship should enable
development of a formal methodology supporting the design process, as well as allow a
deeper insight into functionality of built agent systems.
Development of programming frameworks for cognitive agents deals with the core

issues of two overlapping research fields of cognitive robotics and programming agent
systems. Since the background context of these two topics is around since the AI’s in-
ception, the research in the field resulted in a vast body of literature on various aspects
of these topics. One of the main streams which can be observed in the state-of-the-
art literature is implementation of the Belief-Desire-Intention (BDI) agent architecture
stemming from the seminal work by Rao and Georgeff (1992). BDI, builds on the classic
work on Bratman’s planning theory of intention (1999). It heavily relies on anthropo-
morphic concepts such as beliefs, goals/desires and intentions. In turn, it prescribes
architectural decomposition of agent systems into three basic knowledge bases respec-
tively storing agent’s model of its environment etc. (beliefs), descriptions of states it
wants to bring about (goals/desires) and actions of partial plans the agent decided to
execute (commitments/intentions). The most recent and relevant threads of research
on BDI inspired programming frameworks of the last decade revolve around the In-
ternational Conference on Autonomous Agents and Multiagent Systems, AAMAS and
two collocated workshops Programming Multi-Agent Systems, ProMAS and Declarative
Agent Languages and Technologies, DALT. The journal paper by Bordini et al. (2006)
and the two volumes by Bordini et al. (2005a) and (2009) provide a comprehensive survey
of the state of the art of the field.

15

Chapter 1 Introduction

1.3.1 Pragmatic approaches

The most prominent state-of-the-art approaches to building agents with mental atti-
tudes can be divided into two main groups. The group of pragmatic engineering ap-
proaches includes frameworks, such as Jadex (Pokahr et al., 2005) and JACK (Winikoff,
2005b). These build on and extend object oriented imperative programming languages.
In both cases the underlying programming language is Java (Sun Microsystems Inc.,
2006; Arnold et al., 2000). These technologies, in particular Jadex and JACK, provide
a layer of BDI agent-oriented programming constructs over Java and thus naturally al-
low programmer to mix native Java source code into the agent program. Thanks to
this setting, developers can exploit the software engineering features of the underlying
object-oriented language such as classes, packages, system calls, etc. Moreover, using
the general purpose object oriented programming language makes integration with 3rd
party systems and legacy software straightforward and easy to handle.
The programming comfort and the support of plethora of features and tools provided

by the underlying language has, however, its price. Because in the end an agent pro-
gram written with these programming frameworks is translated into plain Java code, its
underlying semantics is also provided by the underlying language. Theoretical proper-
ties of such agent programs can thus be analyzed w.r.t. agent-oriented concepts only to
a limited extent and their semantics is rather that of structured imperative programs.
Moreover, these languages provide only rather weak techniques for knowledge represen-
tation and reasoning in terms of maintaining a set of objects or an object database.
Even though using specialized knowledge representation methods can be in principle
facilitated by integration of the corresponding KR engine into the Java environment,
such undertaking would require a major programming effort.

1.3.2 Theoretically founded approaches

The second group of approaches to agent-oriented programming and at the same time
more relevant for the scope of this dissertation, are those theoretically founded. To this
group belong declarative languages such as AgentSpeak(L)/Jason (Rao, 1996; Bordini
et al., 2007), 3APL (Hindriks et al., 1999; Dastani et al., 2005b), 2APL (Dastani, 2008),
GOAL (Hindriks, 2001; de Boer et al., 2007), or MetateM (Fisher, 1994), to name just
the most prominent. As far as the semantic issues are concerned, the situation with these
languages is almost reversed in comparison to the previous group of approaches. Their
semantics rely on a strong theoretical foundation based on formal computational logic.
Thereby, they provide a sound basis for study of properties of resulting agent systems
and also enable development of methods for their verification and model-checking.
To bridge the gap between pragmatics of software engineering and theoretical foun-

dations, these BDI-inspired agent programming languages provide a particular set of
agent-oriented features and bind them to a rule-based computational model of reactive

16

1.3 Agent-oriented programming: state of the art

planning. However, since they are always built from scratch and the focus is rather on
their formal semantics, the language designer’s choices on theoretical side impose strong
constraints on the resulting design of agent applications. As a result, they suffer from a
number of problems which make software engineering with them rather difficult.
First of all, to facilitate a clear and transparent semantics these languages are always

tightly coupled with a single knowledge representation technique. Most of the time
this is the first-order logic on the theoretical side, what usually translates into employ-
ing a flavour of Prolog-like language (Shapiro and Sterling, 1994) in the implemented
interpreter. However, since different application domains require different knowledge
representation technologies, the strong bond to computational logic limits the use of
non-logic based technologies, which can be sometimes more appropriate for the concrete
task in question. This is usually solved by extra-language features, such as calls to Java
interpreter in the case of Jason, 3APL and 2APL, for which there is no proper language
semantics defined. Moreover, the heavy reliance on a single underlying knowledge rep-
resentation technology makes the integration with the environment, as well as 3rd party
or legacy systems rather difficult, if cared for at all.
Besides a fixed knowledge representation technology, these frameworks come with a

fixed set of language constructs for manipulating agent’s beliefs and/or goals, and their
mutual relationships. The main benefit from constraining agent designers in so many
ways is a clear, theoretically sound operational semantics of the language modeled after
Plotkin (1981). Traditionally it is provided in terms of computation runs (traces) in
a transition system over the agent’s mental states. The sound and theoretically clear
semantics is the basis for further study of theoretical properties of implemented agents
and explorations of techniques for program verification and model checking. However,
a tight formal relationship with a rigorous reasoning framework for agent behaviours is
only rarely established. Works by Hindriks (2001), de Boer et al. (2007) and Dennis et al.
(2007) provide a basis for further studies towards reasoning about and model checking
of programs in GOAL (de Boer et al., 2007) and Gwendolen (Dennis and Farwer, 2008)
respectively.
The strong accent on simple semantics and declarative features of these languages

results in neglecting their pragmatic aspects. As of now, most of them provide only
rudimentary constructs supporting development of application-domain-independent and
reusable subprograms. In turn, it is rather difficult to structure and organize larger code
bases written in such frameworks. To tackle this issue, recent works of Hindriks (2007),
van Riemsdĳk et al. (2006b) and Dastani et al. (2008e) introduce concepts of modules
and roles in agent programming with GOAL, 3APL and 2APL respectively.
As of now there are only few reports about problems with applying theoretically

founded languages in larger projects. Brief project descriptions can be found in reports
from the past editions of the Multi-Agent Programming Contest (Dastani et al. 2005a;
2006; 2008a; 2008b), such as e.g., (Hübner and Bordini, 2008; 2008 and Astefanoaei
et al., 2008). Yet, these reports do not provide deeper insights into problems and issues

17

Chapter 1 Introduction

with using the language frameworks. To my knowledge, the only work analyzing a
use of the language Jason in a larger case-study is the recent report by Madden and
Logan (2009). Unlike for the pragmatically oriented counterparts, according to available
literature, there seems to be only little experience with the use of such frameworks. It
is also important to note that their acceptance outside the research community seems
to be rather low. One of the reasons might be the already discussed lack of support for
mainstream software engineering techniques.

1.4 Thesis outline and contributions

Part I: Theoretical foundations
This dissertation is divided into three main parts. In the first part, I lay down the
main theoretical foundations for exploring the problem of programming cognitive agents.
Subsequently, I gradually build up a theory enabling formulation of the main result of
this dissertation: a proposal for an alternative approach to design of agent-oriented
programming languages presented later in Part II.
Similarly to Hindriks (2001) and van Riemsdĳk (2006), I tackle the problem of cogni-

tive agent programming by a formal study of special purpose programming languages for
such systems. In Chapter 2, I introduce the framework of Behavioural State Machines
(BSM), the theoretical foundation of this dissertation. It facilitates programming cogni-
tive agent systems by means of synergistic exploitation of heterogeneous technologies for
knowledge representation and reasoning within a single agent system. At the same time,
it also provides a software engineering toolbox for encoding action selection mechanism
of the agent. Similarly to other theoretically founded languages, the BSM approach is a
framework built from scratch. Its ambition is, however, to also provide a strong support
for development and use of language extensions supporting mainstream software engi-
neering techniques, such as source code modularity and reuse, integration with 3rd party
external systems or development of reusable, domain-independent design patterns.
Even though the BSM framework does not enforce a particular agent architecture,

later in this thesis I focus exclusively on development of BDI inspired agents. Chapter 3
discusses Modular BDI Architecture, an instantiation of the BSM framework for BDI
agents providing the scaffolding for extensions and experimentation later in the thesis.
Chapter 4 introduces Dynamic CTL* (DCTL*), a logic for verification and reasoning

about BSM programs. DCTL* is a novel extension of the Emerson’s full branching time
temporal logic CTL* (1990) with features of Dynamic Logic by Harel et al. (1984). In the
BSM framework, an agent program is encoded in terms of mental state transformers,
i.e., nested subprograms joined by composition operators. The hierarchical structure
of subprograms allows to define and instantiate macros which implement encapsulated
and clearly defined agent-oriented concepts, such as e.g., a specific type of a goal. To
bridge the gap between the flexible but logic-agnostic programming BSM framework and

18

1.4 Thesis outline and contributions

DCTL*, the logic for verification of BSM programs, I introduce program annotations in
the form of formulae of Linear Time Temporal Logic (LTL) (Pnueli, 1977).

Part II: Software engineering issues
The second part of this thesis discusses the pragmatic aspects of programming agent
systems with the framework of Behavioural State Machines. There, I propose a novel
alternative approach to design of agent-oriented programming languages:

On the substrate of a generic language for programming reactive systems
(BSM), I propose development of a library of agent-oriented design patterns.

Such encapsulated and application-domain-independent subprograms provide a flexible
and easily extensible toolbox for development of cognitive agents. Moreover, code an-
notations together with the logic associated with the language provide a clear formal
agent-oriented semantics to the application code.
To provide substance to the proposal, Chapter 5 introduces Jazzyk, an implemented

programming language for the BSM framework. Apart from the details of the language
syntax, I also discuss the implemented language interpreter, its technological background
and its features, such as the integrated macro preprocessor as well as considerations
about its further development.
The part culminates in Chapter 6 with the introduction of a set of actual code patterns,

such as an achievement or a maintenance goal, facilitating development of BDI style
agents. Finally, by lifting a proposed naïve straightforward agent design methodology
resulting from using such patterns, I propose commitment-oriented programming. A
design and programming style based on the idea of specifications of commitments towards
mental attitudes in terms of agent’s behaviours and other commitments. In turn, an
agent program can be seen as a specification of web of interrelated commitments.
Jazzyk, the programming language, is a concrete implemented instance of the approach

to design of agent programming languages. The discussed code patterns are a first
step towards a more extensive library of application-domain-independent agent-oriented
constructs.

Part III: Evaluation, extensions and beyond
The final part of the dissertation is dedicated to a description of experimental appli-
cations developed with the Jazzyk language, discussion of extensions of the plain BSM
framework, related work, as well as directions for future developments.
Chapter 7 provides an overview of Jazzbot, UrbiBot and AgentContest Team. These

are three case-studies developed to demonstrate the feasibility of the proposed pro-
gramming language, as well as to evaluate its practical applicability and usefulness by
employing the methodological guidelines proposed in Chapter 6. Jazzbot, the first proof-
of-concept demonstration of an agent developed with Jazzyk, is a virtual agent roaming
in the environment provided by a first-person shooter computer game. The second case-
study, UrbiBot, is a step towards demonstrating Jazzyk’s applicability in building robots

19

Chapter 1 Introduction

embodied in the physical environment. The code steering UrbiBot, a simulated two-
wheeled mobile robot, is directly portable to its physical counterpart, e-Puck (EPFL,
2006). Finally, Agent Contest Team is our planned non-competing entry in Multi-Agent
Programming Contest (AgentContest 2009) and implements a team of agents playing
cowboys in a simulated cow herding scenario.
Chapter 8 provides a brief overview of the implemented Jazzyk knowledge represen-

tation modules used in the previously described experimental applications. Two KR
modules JzASP and JzRuby facilitate respectively knowledge representation and rea-
soning by means of a non-monotonic reasoning engine for AnsProlog* (Baral, 2003)
and by means of Ruby, an object-oriented programming language. Additional three
KR modules JzNexuiz, JzURBI and JzMASSim enable interaction with various envi-
ronments: simulated worlds of the first-person-shooter computer game Nexuiz (Nexuiz
Team, 2007), robot hardware and mobile robotics simulator Webots (Michel, 1998, 2008)
and interaction with the MASSim server (Behrens et al., 2008, 2009a), the underlying
infrastructure of the AgentContest series of competitions. Finally, module JzOAAComm
facilitates inter-agent communication via SRI’s Open Agent Architecture (Cheyer and
Martin, 2001; SRI International, 2007) platform.
The remaining two chapters of the second part discuss complementary results stem-

ming from the proposal of the BSM framework. Chapter 9 discusses Probabilistic Be-
havioural State Machines, a probabilistic extension of the plain BSM framework allowing
a finer grained control of a non-deterministic choice mechanisms of BSM interpreters.
Finally, Chapter 10 demonstrates embedding of GOAL language agent programs in BSM
framework.

Discussion of the broader context, contributions of the presented work and future
research vectors stemming from it concludes the dissertation. Discussion of each of
the parts of the dissertation comprises a separate chapter (Chapters 11, 12, 13). The
discussion is complemented by an additional Chapter 14, which provides an outlook
towards applying the BSM framework in multi-agent system scenarios and discusses the
first steps to enable such experiments. Finally, Chapter 15 wraps up the dissertation
with final remarks.
The main body of the thesis is complemented by extra material in appendices. Ap-

pendix A provides technical details and the manual of the Jazzyk interpreter implemen-
tation. The software development kit for construction of Jazzyk plug-ins, KR modules,
is briefly described in Appendix B.

20

Part I

Theoretical foundations

... in which I lay down the theoretical foundations of an agent program-
ming framework drawing a strict distinction between a modular knowledge
representation layer and agent’s behaviours.

In varietate concordia.

(European Union motto)

Chapter 2

Behavioural State Machines

No single knowledge representation (KR) technology offers a range of capabilities and
features required for different application domains and environments agents operate in.
For instance, purely declarative KR technologies offer a great power for reasoning about
relationships between static aspects of an environment, like e.g., properties of objects.
However, they are not suitable for representation of topological, arithmetical or geo-
graphical information. Similarly, a relational database is appropriate for representation
of large amounts of searchable tuples, but it does not cope well with representing excep-
tions and default reasoning.
An important pragmatic requirement on a general purpose agent-oriented program-

ming framework is the ability to integrate heterogeneous KR technologies within a single
agent system. An agent programming framework should not commit to a single KR
technology. The choice of an appropriate KR approach should be left to the agent de-
signer and the framework should be modular enough to accommodate a large range
of KR techniques, while at the same time providing flexible means to encode agent’s
behaviours.
On the other hand, the dynamics of an environment leads to difficulties with the

control of an agent. Unexpected events and changes can interrupt the execution of
complex behaviours, or even lead to failure. Therefore an agile agent has to be able to
reactively switch its behaviours according to the actual situation. While achievement
of long-term goals requires rather algorithmic behaviours, reaction to interruptions has
to be immediate. Moreover, due to only partial accessibility of the environment, some
situations can be indistinguishable to the agent. It is thus vital to allow reactive non-
deterministic choice between several potentially appropriate behaviours, together with
arbitration mechanisms for steering the selection.
This chapter introduces the theoretical framework of Behavioural State Machines

(BSM). BSM is a general purpose computational model based on Gurevich’s Abstract
State Machines modeled according to the presentation by Börger and Stärk (2003) and
adapted to the context of agent-oriented programming. The framework is devised as a
glue between a number of heterogeneous knowledge bases of an agent and its interface(s)
to the environment. It facilitates assembling agent’s behaviours in terms of interactions
among the knowledge bases. BSM draws a strict distinction between the knowledge

23

Chapter 2 Behavioural State Machines

representational layer of an agent and its behavioural layer. To exploit strengths of var-
ious KR technologies, the KR layer is kept abstract and open, so that it is possible to
plug in heterogeneous modules as agent’s knowledge bases. The main focus of the BSM
computational model is the highest level of control of an agent: its behaviours.
The underlying semantic substrate of the Behavioural State Machines framework is

that of a transition system over agent’s mental states. A mental state is a collection
of agent’s partial knowledge bases or KR modules. The state of the environment is
treated as a KR module as well. Transitions between the agent’s mental states are
induced by mental state transformers, atomic updates of mental states. An agent system
semantics is then, in operational terms, a set of all enabled paths within the transition
system, the agent can traverse during its lifetime. To facilitate modularity and program
decomposition, BSM provides also a functional view on an agent program, specifying a
set of enabled transitions an agent can execute in a given situation.

2.1 Syntax

A BSM agent consists of a set of partial knowledge bases handled by KR modules. A
KR module is supposed to store agent’s knowledge e.g., about its environment, itself
or other agents, or to handle its internal mental attitudes relevant to keep track of its
goals, intentions, obligations, etc. Because of the openness of the BSM architecture,
no specific structure of an agent system is prescribed and thus the overall number and
ascribed purposes of particular KR modules is kept abstract. The formal definitions
capture only their fundamental characteristics.
A KR module has to provide a language of query and update formulae and two sets

of interfaces: query operators for querying the knowledge base and update operators to
modify it.

Definition 2.1 (KR module). A knowledge representation moduleM = (S,L,Q, U)
is characterized by

• a set of states S,

• a knowledge representation language L, defined over some domains D1, . . . ,Dn
(with n ≥ 0) and variables over these domains. L ⊆ L denotes a fragment of L
including only ground formulae, i.e., such that do not include variables,

• a set of query operators Q. A query operator ��� ∈ Q is a mapping
��� : S × L → {>,⊥},

• a set of update operators U . An update operator ⊕ ∈ U is a mapping
⊕ : S × L → S.

24

2.1 Syntax

KR languages are compatible on a shared domain D, when they both include variables
over D and their sets of query and update operators are mutually disjoint. KR modules
with compatible KR languages are compatible as well.

Remark 2.2. From the Definition 2.1 we have that a KR language not including variables
is compatible with any other KR language.

Each query and update operator has an associated identifier. For simplicity, these are
not included in the definition, however I use them throughout the text. When used as
an identifier in a syntactic expression, I use informal prefix notation (e.g., ���ϕ or ⊕ϕ),
while when used as a semantic operator, formally correct infix notation is used (e.g.,
σ���ϕ or σ ⊕ ϕ).
Query formulae are the syntactical means to retrieve information from KR modules.

Definition 2.3 (query). LetM1, . . . ,Mn be a set of compatible KR modules. Query
formulae are inductively defined as follows

• if ϕ ∈ Li, and ��� ∈ Ui corresponding to someMi, then ���ϕ is a query formula,

• if φ1, φ2 are query formulae, so are φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ1.

The informal semantics is straightforward. If a ground language expression ϕ ∈ L
is evaluated to true by the corresponding query operator ��� w.r.t. a state of the corre-
sponding KR module, then ���ϕ is true in the agent’s mental state as well. Note that
non-ground formulae have to be first grounded before their evaluation (cf. Section 2.2).
Q(A) =

⋃n
i=1Qi × Li denotes the set of all ground primitive queries of a BSM A.

Mental state transformers (mst’s) enable transitions from one state to another. A
primitive mental state transformer �ψ, typically denoted by ρ and constructed from
an update operator � ∈ Ui and a formula ψ ∈ Li, refers to an update on the state
of the corresponding KR module. Mental state transformer is the principal syntactic
construction of BSM framework.

Definition 2.4 (mental state transformer). LetM1, . . . ,Mn be a set of compatible
KR modules. Mental state transformer expression (mst) is inductively defined:

• skip is a mst (primitive),

• if ⊕ ∈ Ui and ψ ∈ Li corresponding to someMi, then ⊕ψ is a mst (primitive),

• if φ is a query expression, and τ is a mst, then φ −→ τ is a mst as well (conditional),

• if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s too (choice and sequence).

T denotes the set of all mst’s over the set of KR modules.

25

Chapter 2 Behavioural State Machines

An update expression is a primitive mst. The other three (conditional, sequence and
non-deterministic choice) are compound mst’s. Informally, a primitive mst is encoding
a transition between two mental states, i.e., a primitive behaviour. Compound mst’s
introduce hierarchical structure to the BSM framework. Similarly to set of primitive
queries, U(A) =

⋃n
i=1 Ui ×Li denotes the set of all primitive ground update mst’s of A.

A mental state transformer encodes an agent behaviour. As the main task of an agent
is to perform a behaviour, naturally an agent program can be fully characterized by a
single mst and a set of associated KR modules used in it. Such a standalone mental
state transformer is also called an agent program over a set of KR modulesM1, . . . ,Mn.
A Behavioural State Machine A = (M1, . . . ,Mn,P) is a collection of compatible agent
KR modules and an associated agent program and it completely characterizes an agent
system A.

Example 2.5 (Prolog KR module). Let’s assumeM is a KR module implementing
a Prolog (Shapiro and Sterling, 1994) knowledge base. It is characterized by

• SM, the set of all states σ the Prolog’s interpreter memory context can be in, i.e.,
the set of all valid Prolog programs,

• LM, the set of well formed Prolog formulae ϕ,

• QM = {���M}, where ���M(σ, ϕ) = > iff the Prolog interpreter evaluates the Prolog
query ϕ to true. Otherwise, ���M(σ, ϕ) = ⊥.

• UM = {⊕M,	M}, where ⊕M(σ, ϕ) = σ′, where σ′ is a Prolog program result-
ing from execution of the query ?-assert(ϕ), in the context of the program σ.
Similarly, 	M(σ, ϕ) = σ′ amounts to execution of the query ?-retract(ϕ) in the
context of the program σ,

• σ0, an initial state of the KR moduleM.

The following mental state transformer can be constructed over the single moduleM

���Mpred(a) −→ (Mpred(a) ◦ ⊕Mpred(b)) | ⊕Mdone

2.2 Semantics
Similarly to other logic based state-of-the-art BDI agent programming languages such
as AgentSpeak(L)/Jason (Bordini et al., 2005b, 2007), 3APL (Dastani et al., 2005b),
2APL (Dastani, 2008) or GOAL (de Boer et al., 2007; Hindriks, 2009), the underlying
semantics of a BSM is that of a labelled transition system over agent’s mental states.
It became a de facto tradition in the field of agent-oriented programming languages to

26

2.2 Semantics

provide the semantics of a language in terms of an operational semantics modeled after
Plotkin (1981). I.e., a set of semantic rules describing mental state transitions specifying
how a particular agent system moves from one mental state to another by means of
atomic changes of its partial knowledge bases. The framework of Behavioural State
Machines also comes with a straightforward operational semantics. However, unlike
the tradition in the field, it also specifies a crisp denotational view on agent programs
written in it. Informally, a mental state transformer τ denotes a function over agent’s
mental state. For each mental state σ, it yields a set of new states σ′ corresponding to
transitions resulting from application of the various ground instantiations of the mst τ
on σ. The functional view on agent programs turns out to be a powerful abstraction
facilitating program compositionality and thus enabling hierarchical decomposition of
agent programs.

2.2.1 Denotational view
Definition 2.6 (state). Let A be a BSM over KR modulesM1, . . . ,Mn. A state of A
is a tuple σ = 〈σ1, . . . , σn〉 of KR module states σi ∈ Si, corresponding toM1, . . . ,Mn

respectively. S = S1 × · · · × Sn denotes the space of all states over A.

σ1, . . . , σn are partial states of σ. A state can be modified by applying primitive
updates on it and query formulae can be evaluated against it. Query formulae cannot
change the actual agent’s mental state.
According to Definition 2.1, to evaluate a formula in a state by query and update

operators, the formula must be ground. Transformation of non-ground formulae to
ground ones is provided by means of variable substitution. A variable substitution is a
mapping θ : L → L replacing every occurrence of a variable in a KR language formula
by a value from the corresponding domain. Variable substitution of a compound query
formula is defined by usual means of nested substitution. Note however, that a variable
can be substituted in subformulae of a compound formula only when languages of the
corresponding subformulae share the domain of the variable in question. A variable
substitution θ is ground w.r.t. φ, when the instantiation φθ is a ground formula.

Definition 2.7 (query evaluation). Let A be a BSM over KR modulesM1, . . . ,Mn.
Let also ϕ ∈ Li be a primitive formula corresponding to a KR module Mi in state σi
and let also ��� ∈ Mi be a query operator of that module. Finally, let σ = 〈σ1, . . . , σn〉
be a mental state of A. Then we write

• σi���ϕ, iff (σi���ϕ) = >. Otherwise when (σi���ϕ) = ⊥, we use notation σi 6 ���ϕ,

• σ |= φ iff φ = ���ϕ, and σi���ϕ,

The evaluation of compound query formulae on mental states inductively follows usual
evaluation of nested logical formulae. I.e.,

27

Chapter 2 Behavioural State Machines

• σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2,

• σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2, and finally

• σ |= ¬φ iff it is not the case that σ |= φ. We also write σ 6|= φ.

Notions of an update and update set are the bearers of the semantics of mental state
transformers. An update of a mental state σ is a tuple (�, ψ), where � is an update
operator and ψ is a ground update formula corresponding to some KR module. The
syntactical notation of a sequence of mst’s joined by the operator ◦ corresponds to a
sequence of their corresponding updates or update sets joined by the semantic sequence
operator •. Provided ρ1 and ρ2 are updates, also the sequence ρ1 • ρ2 is an update.
Additionally, there is a special no-operation update skip corresponding to the primitive
mst skip.
A simple update corresponds to the semantics of a primitive mst. Sequence of updates

corresponds to a sequence of primitive mst’s and is a compound update itself. An update
set is a set of updates and corresponds to a mst encoding a non-deterministic choice.
Given an update or an update set, its application on a state of a BSM is straightforward.
Formally,

Definition 2.8 (update application). Let A be a BSM over KR modules M1, . . . ,
Mn. The result of applying an update ρ = (�, ψ) ∈ U(A) on a state σ = 〈σ1, . . . , σn〉
is a new state σ′ = σ

⊕
ρ, such that σ′ = 〈σ1, . . . , σ

′
i, . . . , σn〉, where σ′i = σi � ψ, and

both � ∈ Ui and ψ ∈ Li correspond to Mi of A. Applying the empty update skip on
the state σ does not change the state, i.e., σ

⊕
skip = σ.

Inductively, the result of applying a sequence of updates ρ1 • ρ2 is a new state σ′′ =
σ′
⊕
ρ2, where σ′ = σ

⊕
ρ1.

The meaning of a mental state transformer in a state σ, formally defined by the yields
predicate below, is the update set it yields in that mental state.

Definition 2.9 (yields calculus). A mental state transformer τ yields an update ρ in
a mental state σ ∈ S under a variable substitution θ, iff yields(τ, σ, θ, ρ) is derivable in
the following calculus:

>
yields(skip,σ,θ,skip)

>
yields(�ψ,σ,θ,(�,ψθ)) (primitive)

yields(τ,σ,θ,ρ), σ|=φθ
yields(φ−→τ,σ,θ,ρ)

yields(τ,σ,θ,ρ), σ 6|=φθ
yields(φ−→τ,σ,θ,skip) (conditional)

yields(τ1,σ,θ,ρ1), yields(τ2,σ,θ,ρ2)
yields(τ1|τ2,σ,θ,ρ1), yields(τ1|τ2,σ,θ,ρ2) (choice)

yields(τ1,σ,θ,ρ1), yields(τ2,σ
⊕

ρ1,θ,ρ2)
yields(τ1◦τ2,σ,θ,ρ1•ρ2) (sequence)

28

2.2 Semantics

The mst skip yields the update skip. Provided a variable substitution θ, similarly,
a primitive update mst �ψ yields the corresponding update (�, ψθ). In the case the
condition of a conditional mst φ −→ τ is satisfied in the current mental state, the
calculus yields one of the updates corresponding to the right hand side mst τ , otherwise
the no-operation skip update is yielded. A non-deterministic choice mst yields an update
corresponding to either of its members and finally a sequential mst yields a sequence of
updates corresponding to the first mst of the sequence and an update yielded by the
second member of the sequence in a state resulting from application of the first update
to the current mental state. Also note that Definition 2.9 assumes that the variable
substitution θ is ground w.r.t. all the formulae occurring in the considered mst τ .
The calculus defining the yields predicate provides a functional view on a mst and it

is the primary means of compositional modularity in BSM. Mental state transformers
encode functions yielding update sets over states of a BSM. The collection of all the
updates yielded w.r.t. Definition 2.9 comprises an update set of an agent program τ in the
current mental state σ. The following definition articulates the denotational semantics
of the notion of mental state transformer as an encoding of a function mapping mental
states of a BSM to updates, i.e., transitions between mental states.

Definition 2.10 (mst denotational semantics). Let M1, . . . ,Mn be KR modules.
A mental state transformer τ denotes a function fτ : σ 7→ {ρ|∃θ : yields(τ, σ, θ, ρ)} over
the space of mental states S.

Finally, the evolution of a BSM agent system in terms of transitions between mental
states follows.

Definition 2.11 (step of a BSM). A BSM A = (M1, . . . ,Mn, τ) can make a step
from a state σ to a state σ′, iff the mst τ yields a non-empty update set in σ and
σ′ = σ

⊕
ρ, where ρ ∈ fτ (σ) is an update. We also say that A induces a (possibly

compound) labelled transition σ ρ→ σ′.

Remark 2.12. Definition 2.10 articulates the non-deterministic character of the yields
calculus. Firstly, the semantic rule for choice operator | yields an update for each of the
non-deterministic choice construct components. Secondly, each primitive mst, can yield
an update set w.r.t. more than one ground variable substitution.
In fact, there can be an infinite number of such instantiations. Consider

τ : |= (X > 0) −→ ⊕(p(X)), a conditional mst over a KR module with language
and semantics of first-order logic including the domain of integers. The mst con-
sists of a query formula, which is satisfied for every X larger than 0. In turn, asser-
tion ⊕ of the predicate p(X) for each X > 0 is yielded by the conditional mst, i.e.,
∀σ : fτ (σ) = {(⊕, p(X)) : ∀X > 0}. Hence |fτ (σ)| = ℵ0 for every σ ∈ S.

29

Chapter 2 Behavioural State Machines

Remark 2.13. Notice also that the provided semantics of choice and sequence operators
implies associativity of both. Hence, from this point on, instead of the strictly pair-
wise notation τ1|(τ2|(τ3|(· · · |τk))), I simply write τ1|τ2|τ2| · · · |τk whenever appropriate.
Similarly for the sequence operation ◦.
In fact, w.l.o.g. the choice and sequence rules of the yields calculus in Definition 2.9

can be reformulated as follows:
τ=τ1|···|τk, 1≤i≤k, yields(τi,σ,ρi)

yields(τ,σ,ρi) (choice)

τ=τ1◦···◦τk, ∀1≤i≤k: yields(τi,σi,ρi)∧σi+1=σi
⊕

ρi
yields(τ,σ1,ρ1•···•ρk) (sequence)

2.2.2 Operational view
The underlying semantics of a BSM can also be seen in terms of traces within a labeled
transition system over agent’s mental states. Mental state transformers are interpreted
as traces in a transition system over agent’s mental states, where transitions are induced
by updates. The notion of a behavioural frame formally captures the semantic structure
induced by the set of KR modules of a BSM agent. In particular, it encapsulates the set
of all mental states constructed from local states of the KR modules and applications of
the corresponding update operators between them.

Definition 2.14 (behavioural frame). Let A = (M1, . . . ,Mn,P) be a BSM over
a set of KR modules Mi = (Si,Li,Qi,Ui). The behavioural frame of A is a labeled
transition system LTS(A) = (S,R), where S = S1 × · · · × Sn is the space of mental
states of A, and the transition relation R is defined as follows:

R ={σ ρ→ σ′ ∈ S × U(A)× S | σ′ = σ
⊕

ρ} ∪

{σ skip→ σ ∈ S × U(A)× S}

A tuple of KR modules A = (M1, . . . ,Mn), which is essential for constructing the
behavioural frame is also called behavioural template. We will sometimes write LTS(A)
instead of LTS(A) since the mst P in A plays no role in the construction of the corre-
sponding frame.

Note that LTS(A) is finite (resp. enumerable) iff all the modules in A have finite
(resp. enumerable) state spaces, languages, and repertoires of query and update opera-
tors.
The operational semantics of an agent is defined in terms of all possible computation

runs induced by the iterated execution of the corresponding BSM. Let λ = σ0σ1σ2 . . . be a
trace (finite or infinite). Then, λ[i] = σi denotes the i-th state on λ, and λ[i..j] = σi . . . σj
denotes the “cutout” from λ from position i to j. The ith prefix and suffix of λ are defined
by λ[0..i] and λ[i..∞], respectively.

30

2.2 Semantics

Definition 2.15 (traces and runs of a BSM). Let A = (A, τ) be a BSM. T (A)
denotes the set of (complete) traces σ0σ1 . . . σk, such that σ0

ρ1→ σ1
ρ2→ . . .

ρk→ σk, and τ
yields ρ = ρ1 • . . . • ρk in σ0, i.e., ρ ∈ fτ (σ0).
A possibly infinite sequence of states λ is a run of BSM A iff:

• there is a sequence of positions k0 = 0, k1, k2, . . . such that, for every i = 0, 1, 2, . . .,
we have that λ[ki..ki+1] ∈ T (A), and

• weak fairness: if an update is enabled infinitely often, then it will be infinitely
often selected for execution.

The semantics of an agent system characterized by BSM A = (A, τ) is the set of all runs
of A, denoted T (A, τ∗). The star superscript τ∗ denotes iterated execution of τ .

The weak fairness condition of Definition 2.15 actually restates one of the standard
fairness conditions (cf. e.g., (Manna and Pnueli, 1992)). It rules out traces where, for
some non-deterministic choice τ1|τ2 in a program τ , always the same option is selected
during the iterated execution of τ and the other option is always neglected.

Remark 2.16. Note that a trace of a BSM A with an agent program P can be defined
as a result of a sequence of, possibly compound, steps of A according to Definition 2.11.
I.e., iterated application of the function fP to agent’s mental states. The two views
on BSM semantics complement each other while providing two different optics on an
agent program: that of a modifying function and that of runs of enabled sequences of
transitions yielded by its iterated evaluation.

Example 2.17 (mst semantics). Consider the mst τ from Example 2.5 and the be-
havioural frame A over the single KR moduleM.
τ encodes a function over the set of states of A. It enables transitions from states

σ in which pred(a) is derivable, to states σ′ differing from σ in that pred(a) is replaced by
pred(b), or in which done is derivable. I.e., in all states σ in which |=Mpred(a) holds, we have
fτ (σ) = {(M,pred(a))•(⊕M,pred(b)), (⊕M,done)}.
Alternatively, if σ0 is a considered initial state of the A, s.t. σ0 |=Mpred(a), σ0 6|=Mpred(b)

and σ0 6|=Mdone, then λ1 = σ0σ1σ2σ3 . . ., where

• σ1 6|=Mpred(a), σ1 6|=Mpred(b) and σ1 6|=Mdone,

• σ2 6|=Mpred(a), σ2 |=Mpred(b) and σ1 6|=Mdone and finally

• σ2 6|=Mpred(a), σ2 |=Mpred(b) and σ1 |=Mdone

is a possible run of the BSM A = (A, τ).

31

Chapter 2 Behavioural State Machines

Algorithm 2.1 Abstract BSM interpreter
input: agent program P, initial mental state state σ0
σ = σ0
loop

compute fP(σ) = {ρ|yields(P, σ,_, ρ)}
if fP(σ) 6= ∅ then

non-deterministically and fairly choose ρ ∈ fP(σ)
σ = σ

⊕
ρ

end if
end loop

2.3 Abstract interpreter

Agents continuously perceive, deliberate and act in their environment, thus their lifecycle
is open ended. According to the BSM semantics provided by Definition 2.11, a single
step of an agent system amounts to a single application of its agent program, a mst
function, to the current state of its knowledge bases. The system thus moves in a
sequence of discrete steps, where each step is a single evaluation of the agent program
yielding the step transition (cf. Remark 2.16). Algorithm 2.1 lists a straightforward
pseudocode implementation of the BSM execution cycle. In a single deliberation cycle

1. the agent program interpreter computes the update set fP(σ) corresponding to the
agent program P according to the Definition 2.9,

2. non-deterministically chooses an update ρ from fP(σ), and finally

3. updates the current mental state by applying the update ρ to it.

The omission of a variable substitution _ in the yield(. . .) expression denotes arbitrary
applicable ground substitution of the set of all the free variables used in the encoding of
the agent program P.
The semantics provided in the previous section does not enforce a particular BSM

language implementation. As follows from Remark 2.12, the BSM semantics and in
turn also the Algorithm 2.1, is still underspecified. It leaves space for variations in
different BSM interpreter implementations. Definition 2.15 only declares properties
that execution traces produced by a BSM interpreter in question must fulfill. I.e., each
(compound) transition must be a part of an enabled BSM step and the execution trace
must satisfy the weak fairness condition.
Algorithm 2.1 can directly serve as a template for implementation of a concrete BSM

engine. In order to instantiate it, designers of an efficient and compliant BSM interpreter
must deal with the following design issues.

32

2.4 Summary

Shared domains In order to enable information exchange between independent KR
modules, these have to be compatible, i.e., they have to include variables over the same
domains (cf. Definition 2.1). While it is possible to devise many ways how to deal with
this issue, it seems to be reasonable to restrict the number and cardinality of shared
domains over which the KR modules can be defined. Note that domains with infinite or
finite but very large cardinality can potentially lead to computation difficulties, such as
the case highlighted in Remark 2.12.

Variable substitution To implement the semantics of the yields calculus as provided
by Definition 2.9, the interpreter must be able to compute a complete ground variable
substitution for the agent program. As for each primitive query over one of agent’s
KR modules, there can be several, possibly even an infinite number of candidates, the
interpreter designer must also decide on constraining the substitution mechanism within
modules.

Non-deterministic choice The chosen strategy w.r.t. establishing a suitable ground
variable substitution also influences the cardinality of the update set fP corresponding
to the agent program P. The number of candidate updates in the update set is further
multiplied by non-deterministic choice operators in the program P, which yield a set
of candidate updates for each of its branches. Note that the weak fairness condition of
Definition 2.15 does not specify a concrete mechanism how to choose from the number
of updates in fP(σ) in a state σ. As far as the fairness of the choice is secured, the
interpreter is free to employ any compliant strategy of non-deterministic choice.

Various design choices for tackling the issues described above lead to various imple-
mentations of compliant BSM interpreters. Jazzyk, a BSM interpreter presented in
Chapter 5 demonstrates one such.

2.4 Summary
This chapter is based mainly on my earlier works (Novák, 2008a,c) with some notation
adaptations from the joint paper with Jamroga (Novák and Jamroga, 2009). In this
chapter I introduced the theoretical foundation of the presented dissertation, the theo-
retical framework of Behavioural State Machines. It provides three major contributions
to the state of the art in the area of languages for programming cognitive agents:

KR modularity: BSM framework provides modularity of employed knowledge represen-
tation technology as a first class concept. BSM is abstract enough to accommodate
any required KR technology or interface to agent’s environment, while only provid-
ing a means for encoding interdependencies among objects stored in the modules.
Thus, instead of extending the language with a fixed set of mental attitudes and

33

Chapter 2 Behavioural State Machines

their interrelationships, with BSM I put forward a framework which can be in-
stantiated for a specific application in development.

code structure: the concept of mental state transformer allows for hierarchical struc-
turing of agent program and thus facilitates hierarchical decomposition of agent
programs. This is of particular use in the process of gradual refinement of a,
possibly only partial, high level specification down to a concrete agent program
written in terms of interactions between agent’s knowledge bases and interfaces to
the environment.

abstraction: the functional view on the semantics of mental state transformer provides a
powerful abstraction for BSM agent program. Mental state transformer facilitates
encapsulation of a set of particular interdependent objects stored in agent’s knowl-
edge bases together with the dynamics associated with them, a part of agent’s
overall behaviour. The construct of mst thus provides a similar abstract concept
for programming cognitive agents as does an object in the object oriented pro-
gramming paradigm. In particular, the functional semantics allows to view agent
programs as functions modifying its mental states, decomposed into (or composed
of) compounds of other encapsulated subfunctions, possibly with a similar nested
structure.

The remainder of this dissertation provides a substance to the above claims. In particular
the Chapters 4 and 6 subsequently discuss formal support for the process of specification
refinement and design of BSM agent program. Both heavily rely on the functional view
on subprograms, i.e., mental state transformers.

34

Chapter 3

Modular BDI architecture

Among the most prominent state-of-the-art architectural concepts for development of
agents with mental state is the Belief-Desire-Intention (BDI) architecture (cf. Sec-
tion 3.1). Informally, BDI prescribes decomposition of an agent system into several
specialized knowledge bases storing agent’s mental attitudes, such as beliefs, goals, etc.
One of the main aims of this dissertation is to propose a novel approach to design of
agent-oriented programming languages, with a particular focus on BDI inspired agent
systems. In the heart of the proposal lies the framework of Behavioural State Machines,
introduced in the previous chapter.
The plain BSM framework does not implicitly provide first-class concepts for program-

ming cognitive agents with mental attitudes, such as e.g., beliefs or goals. To demonstrate
the flexibility of the BSM framework, as well as to provide support for the remainder of
this dissertation, in this chapter I describe modular BDI Architecture, an instantiation
of the BDI architecture as a BSM. The introduced BDI-style architecture serves as a
substrate for examples and case-studies described the following chapters. Subsequently,
I formally introduce Ape, the airport assistant robot (cf. Chapter 1). Ape is a BDI
inspired BSM agent and serves as the running example throughout this dissertation.

3.1 Belief Desire Intention

Most state-of-the-art approaches for designing and programming cognitive agents rely in
one way or another on Bratman’s Belief-Desire-Intention philosophy (1999). It builds on
the theory of intentional stance by Dennett (1987), which postulates that agents should
be assumed to maintain mental attitudes such as beliefs and goals1 and at the same time
they should be assumed to act rationally. Subsequently, we can use practical reasoning to
predict their future actions towards achieving their goals, taking into account their beliefs
about the actual state of the world. Bratman extends this viewpoint in that besides
beliefs and goals, he proposes another first-class mental attitude for agent’s intentions.
I.e., the agent maintains a set of desires, together with corresponding courses of action,

1Even though probably incorrect from a strict philosophical point of view, here I use the terms desire
and goal interchangeably.

35

Chapter 3 Modular BDI architecture

plans, towards achieving them. Unlike agent’s desires, which can possibly be in a state
of mutual conflict, the set of intentions should be consistent. Thus the agent is able to
adopt a new intention only when it is not in a conflict with those it already committed
to. Paraphrasing van Riemsdĳk (2006), existing intentions thus enjoy a certain level of
inertia and form the screen of admissibility, a term originally coined by Bratman (1999).
Here, I focus on pragmatic aspects of engineering cognitive agents. While taking

into account the philosophical background of the BDI architecture, I rather focus on
treating it only as a source of inspiration, but not as a precise blueprint for designing
a practical programming system for agent systems. In turn, I do not explore here the
deeper philosophical context of the BDI theory, but rather try to isolate the fragmentary
ideas which are useful in the practice of programming agents.

3.1.1 Beliefs, goals and intentions

As I already note above, the most common BDI-inspired agent architecture prescribes an
architectural decomposition of an agent into informational, motivational and procedural
components. Agent’s belief base, the informational component, maintains its informa-
tion about the current state of its environment, its peers or itself. A goal base, the
motivational component, maintains descriptions of states of affairs the agent eventually
wants to believe or bring about in the future. Finally, the procedural component, a
library of agent’s plans/intentions, glues together its behaviours in the form of actions
in the environment and the corresponding goals. While the belief base describes now,
the current state of the world, the goal base maintains descriptions of alternative futures
the agent considers. Finally, the intentions, if treated as a first-class concept, describe
the courses of actions to be taken from now to the futures the agent committed to.
Most of the state-of-the-art BDI programming systems do treat agent’s beliefs and

goals as first-class primitives. There, however, does not seem to be a common agree-
ment about a crisp semantics of intentions from the software engineering point of view.
Languages such as 3APL (Dastani et al., 2005b) or AgentSpeak(L)/Jason (Bordini et al.,
2007) come with an explicit representation of agent’s intentions. These are either stored
in an explicit component of the agent system (e.g., AgentSpeak(L)), or are associated
with agent’s goals and stored in the agent’s goal base (e.g., 3APL). On the other hand
languages such as GOAL (Hindriks, 2009) model only beliefs and goals as language prim-
itives and the agent performs action selection in every deliberation step of its lifecycle.
The intention of such an agent can be identified only a posteriori from its execution
trace, a sequence of actions taken in order to reach agent’s goal.

3.1.2 Agent reasoning model

Primitive language objects stored in agent’s knowledge bases, such as the belief or the
goal base, provide only a static snapshot of its mental state. The dynamics of the

36

3.2 BDI instantiation in BSM

agent system is provided by a mechanism regulating the flow of information between
the system components, the agent reasoning model. For instance, an agent adopts,
drops or modifies a goal or an intention on the ground of holding certain beliefs. Vice
versa, it can also modify its beliefs because it acted in a certain way or perceived a
change in the environment. There are various formal axiomatic systems prescribing
interrelationships and dependencies among agent’s mental attitudes. Their specifications
usually culminate in formalization of the notion of a commitment. The most prominent
approaches w.r.t. current state of research are the Cohen and Levesque’s formalization
of persistent relativized goals (1990) and the Rao and Georgeff’s I-System (1991).
To illustrate a useful example of a formal agent reasoning model, in the following I

describe the I-System, a set of axioms constraining interactions among agent’s mental
attitudes in a rational agent.

I-System

I-System is a set of eight basic axioms (A1-A8) imposing constraints on interrelationships
among agent’s mental attitudes. Informally, an agent should adopt only goals it believes
to be an option w.r.t. to its beliefs (AI1). An agent should adopt intentions only in order
to achieve its goals (AI2). If an agent has an intention to perform a certain action, it will
eventually also perform it (AI3). It should be aware of the fact that it committed itself
to certain goals and intentions (AI4, AI5). If an agent intends to achieve something, it
also has to have a goal to intend it (AI6). It should be aware of its actions, i.e., if it
performs an action, it should also later believe that it performed it (AI7). And finally,
an agent should never hold its intentions forever, i.e., each intention must be eventually
dropped (AI8).
The particular way how an agent handles its intentions gives rise to various models of

commitment. In their original paper, Rao and Georgeff (1991) provide examples of blind,
single minded, and open minded agent. Informally, a blindly committed agent maintains
its intentions until it actually believes that it had achieved them. Single minded agent
maintains them as long as it believes they are still possible to achieve. Finally, an open
minded agent maintains its intentions only as long as these are still also its goals.

3.2 BDI instantiation in BSM

While the previous section briefly summarizes the core ideas underpinning the BDI
architecture, in the following I sketch its instantiation as a template for BSM agent
systems. The resulting behavioural template (cf. Definition 2.14 in Chapter 2) for BDI-
style agent systems, BSM s, will serve as a substrate for the remainder of the dissertation.

37

Chapter 3 Modular BDI architecture

3.2.1 Beliefs, goals and the body

For simplicity, instead of the complex BDI architecture introduced in the previous sec-
tion, the instantiation presented here introduces only beliefs and goals as first-class primi-
tives of the behavioural template. The procedural aspect, intentions, is treated implicitly
as behaviours associated with, and triggered by particular goals. The corresponding KR
modules storing objects representing the two agent’s mental attitudes are a belief base
B and a goal base G respectively.
Unlike other BDI inspired programming systems for cognitive agents, which focus

primarily on internal reasoning of agents, I consider systems embodied in an environment.
I treat agent’s interaction with the environment as a first-class primitive, on a par with
beliefs and goals. A BSM KR module providing sensor and actuator interfaces, query
and update operators respectively, is the module body E . The E stands for interactions
with en Environment.
In order to abstract from the system’s internal semantics and KR technologies em-

ployed by its informational and motivational components, I consider only an interface
specification for the introduced KR modules.

Definition 3.1 (BDI behavioural template). Consider three BSM KR modules B,
G and C with the following characteristics:

belief base B: stores and reasons with formulae representing beliefs of an agent. It
provides a single query operator ���B and two update operators ⊕B,	B for asserting
and retracting a belief formula from the belief base respectively.

goal base G: stores and reasons with formulae representing agent’s goals. Similarly to
the belief base B, it provides a single query operator ���G and two update operators
⊕G ,	G for asserting and retracting a goal formula from the goal base.

body E: provides a pair ���E ,�E of a query and an update operator. The query operator
���E provides a sensory input for the agent, while the update operator �E facilitates
performing agent’s actions in the environment.

The resulting BDI style behavioural template is denoted as ABDI = (B,G, E).

Note that the definition above, imposes only minimal constraints on the interfaces
of the belief and the goal base. Considering a KR language formula ϕ, it does not
even require that the formula is represented in the module as a distinguished object.
Rather, the formula should be only derivable from the information stored in the module
according to the internal module semantics. Thereby, the behavioural template is still
capable to accommodate a wide range of knowledge representation technologies, even a
non-classic ones, such as e.g., an artificial neural network or a relational database.

38

3.2 BDI instantiation in BSM

3.2.2 Agent reasoning model

The behavioural template ABDI , introduced in Definition 3.1, provides an architectural
decomposition of a BDI-style cognitive agent system. Its dynamics is provided by a
BSM agent program, a standalone mental state transformer, in terms of a specification
of interactions between the KR modules of the system. The behavioural template induces
a behavioural frame (cf. Definition 2.14) over the set of KR modules. I.e., a transition
system an agent instantiating the template is allowed to traverse during its lifetime. An
implemented BSM agent provides a specification of a concrete cut-out of the behavioural
frame specific to the considered application domain by means of its program.
The BSM framework does not come with a fixed set of axiomatic rules regulating inter-

dependencies among the mental attitudes of an agent. Instead, it is the responsibility of
an application programmer to encode both, the application-domain-specific behaviour of
the agent, as well as the specific agent reasoning model. As I discuss later in Chapter 6,
it is reasonable to equip application programmers with a domain-independent library
of code patterns and domain-independent guidelines for implementation of a specific
model of rationality for a specific (sub-)class of agents. In the following, I discuss a set
of simple informal mst templates for implementation of an agent reasoning model. The
model is tailored for the behavioural template ABDI , i.e., it does not include an explicit
KR module for handling agent’s base of intentions. I discussed a complete instantiation
of the I-System including a base of intentions in the joint paper with Dix (Novák and
Dix, 2006).
To indicate that the introduced rules are only application-domain-independent tem-

plates, instead of the proper BSM notation, I use the scheme QX −→ UY , with X ,Y
being placeholders for KR module identifiers according to Definition 3.1. Figure 3.1 pro-
vides a schematic overview of the BDI behavioural template together with an example
of some interaction rules.

I-System in BSM
A closer look at the flow of information in the I-System, reveals that on the ground of
events occurring in the environment, an agent adopts beliefs, which in turn are the basis
for adopting desires. Based on desires, intentions are adopted. These finally serve as
the basis for considering agent’s actions in the environment. This information flow can
be informally described as a cycle of BDI components through which information flows
E → B → G → I → E .
Since the BDI behavioural template from the previous subsection lacks an explicit base

of intentions, the cycle considered here is reduced to E → B → G → E . I.e., an agent’s
perceptions of the environment are reflected in its belief base. Because of certain beliefs,
it adopts or drops goals, and finally, in order to achieve a goal, it selects a particular
behaviour and executes the corresponding actions, updates, in the environment. These,
indirectly, lead to new perceptions or events in the environment. Straightforward set of

39

Chapter 3 Modular BDI architecture

Figure 3.1: Architectural decomposition of the agent system (left) and an overview of
the introduced BDI behavioural template with examples of interaction rules (right).

conditional mst’s implementing the flow of information takes the form of the following
schemata: QE −→ UB for perception, QB −→ UG implements goal handling, and finally
QG −→ UE facilitates behaviour selection and acting. These rules directly satisfy the
axioms AI1, AI2, AI3 of the I-System. Axiom AI7 is satisfied only indirectly, since the
agent can learn about success of its actions only by perceiving changes possibly caused
by it in the environment. An alternative way to implement this axiom is to keep history
of actions the agent tried to perform in its belief base. This can be achieved this by
interaction rules of type QG −→ UE ◦ UB (AI3).
Axioms AI4 and AI5 are secured via accessibility of all BDI components to the BSM

agent interpreter. The rules examine desire and intention bases by means of queries, so
the agent’s reasoning mechanism is “aware” of the content of its components.
Axiom AI6 can be satisfied by the execution of rules of the type QG −→ UE . By

evaluating the agent program, in which the actual behaviours in the environment depend
on agent’s goals, the action selection mechanism ensures that whenever the agent desires
a goal, it also intends to execute the associated behaviour.

Commitment strategies
Rao and Georgeff (1991) provide examples of blind, single minded, and open minded
agent. In the context introduced above, this amounts to a particular strategy of handling
goals on the ground of holding certain beliefs in the agent’s belief base. The set of rules
above, partially implementing the I-System, naturally satisfies the definition of an open
minded agent, i.e., it considers certain behaviours, intentions, only as long as goals
triggering them are derivable from the goal base.
To implement the blind commitment strategy, the agent program must ensure that

whenever it starts to believe that a goal satisfaction condition is satisfied, it must drop
the goal associated with that condition. Finally, implementation of a single minded com-

40

3.3 Ape the Airport E-Assistant

mitment strategy requires the agent to be able to reason about its own future evolutions
within its belief base. Such introspective techniques are however beyond the scope of
this work.
Apart from rational agents, in the BSM framework we can also model irrational, in

the sense of not rational w.r.t. I-System, agent reasoning in our framework. Consider
an example of a servant agent, into which goals can be “implanted” from outside as
commands it should follow, although it doesn’t necessarily believe they are an option
w.r.t. its beliefs. This can be implemented by allowing rules of the type QE −→ UG .
Informally, such a rule can be interpreted as “upon perceiving a command C, the agent
should adopt C as a goal”. The agent is, however, still able to deliberate about the goal
in relation to the other goals it already has and their mutual interactions.
A slightly stricter version of the servant agent, is a slave agent. Upon perceiving

a signal from outside, e.g., a message from another agent, the slave directly reacts by
performing the corresponding reactive behaviour of the type QE −→ UE . Note that the
last scheme corresponds to a purely reactive agent model. Slave agents resemble more
software objects in their traditional meaning in object oriented programming. They
simply invoke the requested procedure without having a “free will” not to do so.
As an extreme case of irrational reasoning, a religiously fanatic agent can be consid-

ered. Such an agent doesn’t want to believe facts which are in conflict with its other
goals. According to its current goals, it is thus able to change its beliefs by executing
rules of the type QG −→ UB.
Irrational agents, such as the slave, feature only a constrained autonomy. They thus

do not comply with classic definitions of an agent. Mixing rationality with a certain
degree of non-rational behaviour, at least w.r.t. certain aspects of the functionality, can,
however, lead to more efficient implementations of agent systems. The advantage of the
liberal approach of the BSM framework is that an agent developer is free to implement
either a very strict model of agent reasoning, or to adapt it by mixing in shortcuts to
the flow of information whenever needed.

3.3 Ape the Airport E-Assistant
The following example provides the architecture for Ape, the Airport E-Assistant robot
from Chapter 1. The running example of Ape will be used throughout the following
chapters of the dissertation.

Example 3.2 (behavioural template for Ape). Ape instantiates the BDI behavioural
template ABDI (cf. Definition 3.1). In particular, Ape’s belief and goal bases are im-
plemented as Prolog programs2. It’s interface to the environment is facilitated by an
interface to a Java program interpreted by a virtual machine.

2For illustrative proposes, I chose Prolog. The language formulae provide declarative reading and thus
are rather intuitive.

41

Chapter 3 Modular BDI architecture

Listing 3.1 Programs implementing Ape’s KR modules: belief base B (left), goal base
G (bottom) and body E (right).
%%% Fragment of Ape’s belief base B %%%
% Information about Ape himself
at(self, coor(123,456,678)).
object(self). person(self).
low_battery :−

energy(Level),
Level < 50.

% Information about the airport infrastructure
at(’base_line_terminal’, coor(98,78,54)).
at(’BBWings_counter’, coor(43,53,67)).
comm_gateway(’wlan2’, ’yellow_gtw0’, 4200).

% Information about objects around
obstacle(Object) :− \+ person(Object).

% Information about passengers
businessman(Person) :−

person(Person),
wears(Person, suit),
\+ holds(Person, luggage).

tourist(Person) :−
person(Person),
wears(Person, casual),
\+ holds(Person, laptop_bag).

patient(Person) :−
tourist(Person) ;
woman(Person) ;
child(Person).

anxious(Person) :−
businessman(Person) ;
elderly(Person).

% Asserted facts
object(’Bronja’).
person(’Bronja’).
woman(’Bronja’).
wears(’Bronja’, casual).
holds(’Bronja’, backpack).

/∗∗∗ Fragment of Ape’s body implementation E ∗∗∗/
public class Camera {

/∗ Perceptions ∗/
public static boolean see(String oID) {...};
public static

boolean distance(String oID, Integer dist) {...} ;
public static

boolean recognize(String oID, String type) {...};
public static

boolean wears(String pID, String type) {...};
public static

boolean holds(String pID, String oID) {...};
}

public class Audio {
/∗ Perceptions ∗/
public static

boolean hears(String oID, String msg) {...};

/∗ Actions ∗/
public static void say(String msg) {...};

}

public class Body {
/∗ Perceptions ∗/
public static boolean getBattery(int level) {...};

/∗ Actions ∗/
public static void turn(Integer angle) {...};
public static void forward(int dist) {...};
public static void backward(int dist) {...};

/∗ HW management ∗/
public static void boot() {...};
public static void shutdown() {...};

}

public class Gps {
/∗ Perceptions ∗/
public static

boolean location(int X, int Y, int Z) {...};
}

%%% Fragment of Ape’s goal base G %%%
% Detection of conflicting goals
conflict(X) :−

desire(achieve(at(X))),
desire(achieve(at(Y))),
X \== Y.

% Identification of concrete goals
goal(X) :−

desire(X),
\+ conflict(X).

% Ape’s concrete desires
desire(maintain(safety)).
desire(maintain(energy)).
desire(achieve(has_task)).
desire(achieve(at(’base_line_terminal’))).
desire(achieve(whereIs(’wifi_lounge’))).

42

3.3 Ape the Airport E-Assistant

Listing 3.2 Agent program implementing Ape’s behaviour for guiding passengers who
need a help to a destination point.

/∗∗∗ Perceptions ∗∗∗/
���Ecamera.see(ObjectID) −→ ⊕Bobject(ObjectID) |
���Ecamera.recognize(ObjectID, human) −→ ⊕Bperson(ObjectID) |
���Egps.location(X,Y,Z) −→ ⊕Bat(me, coor(X,Y,Z)) |

/∗∗∗ Goal commitment strategy ∗∗∗/
%% Adopt condition %%
not ���Ggoal(achieve(at(Place))) ∧ ���Bperson(Person) ∧ ���Eaudio.hears(Person, ’get me to ’ + Place)

−→ ⊕Gdesire(achieve(at(Place))) |

%% Drop condition %%
���Ggoal(achieve(at(Place))) ∧ ���Bat(Place, coor(X,Y,Z)), at(self, coor(X,Y,Z))

−→ 	Gdesire(achieve(at(Place))) |

/∗∗∗ Act ∗∗∗/
���Ggoal(achieve(at(Place))) ∧
not ���Bat(Place, coor(X,Y,Z)), at(self, coor(X,Y,Z)) ∧
���Bat(Place, coor(X,Y,Z)), angleTo(coor(X,Y,Z), Angle)

−→ (
%% The way is free %%
not (���Ecamera.see(ObjectID) ∧ ���Ecamera.recognize(ObjectID, obstacle))

−→ (�Ebody.turn(Angle) ◦ �Ebody.forward(3);) |

%% Obstacle ahead %%
���Ecamera.see(ObjectID) ∧ ���Ecamera.recognize(ObjectID, obstacle)

−→ (
%% Avoid obstacle by stepping back and %%
%% either turning left or right %%
�Ebody.backward(3) ◦
(�Ebody.turn(90) | �Ebody.turn(−90)) ◦
�Ebody.forward(3)

)
)

Consider initialization of the individual KR modules with the programs listed in List-
ing 3.1. The interfaces of the individual KR modules are implemented as follows.

belief and goal bases B,G: the corresponding KR modules implement the interface of
the KR module M introduced in Example 2.5. The only difference is that from
now on, the operators corresponding to B and G will be subscripted by the corre-
sponding module identifier.
In the initial state, as specified in Listing 3.1, when Ape spots Bronja, among others
he adds also the facts ⊕Bperson(’Bronja’) and 	Bholds(’Bronja’, backpack) about her to his
belief base. Since both ���Bpatient(’Bronja’) and ���Btourist(’Bronja’) now evaluate to >, in
result, Ape believes that Bronja is a patient tourist. Similarly, Ape’s goals include
a desire to get to the Base Line terminal, i.e., ⊕Ggoal(achieve(at(’base_line_terminal’))).

43

Chapter 3 Modular BDI architecture

body E: the query operator |= takes a plain Java code snippet in the form of a string ϕ
and passes it to the running Java VM started with the initial program. The query
code must return a Boolean value according to the Java language semantics. The
update operator �ϕ behaves exactly the same way, except it does not care for the
return value. I.e., update formulae do not have to return any value and are treated
as arbitrary blocks of code.
When Ape spots Bronja, he derives from his body module for example the following
formulae �E see(’Bronja’), ���E isPerson(’Bronja’). In order to guide her to the Base Line
shuttle terminal, Ape should at some point navigate through the space by executing
(sequences of) updates, actions, such as e.g., �E turn(90) or �E forward(6).

Listing 3.2 shows a fragment of a possible Ape’s BSM agent program. Ape perceives the
environment and notices objects and humans around, as well as regularly updates his
current position. Whenever a person asks him for assistance, e.g., to get to a certain
destination, Ape adopts a goal to fulfill the request. When he eventually realizes that
the task is fulfilled, he drops the goal. Finally, in order to get to the destination, Ape
has a choice of two mutually exclusive behaviours to either move forward or to avoid the
obstacle, if he detects one in front of him. The last mst implementing Ape’s behaviour
in the environment demonstrates how a BSM code can be hierarchically structured.

3.4 Summary
Above, I describe a modular BDI architecture, an instantiation of the BDI architecture
as a BSM based agent template. The bulk of this chapter is based on my joint work
with Dix (Novák and Dix, 2006). The main contributions of the discussion presented in
this chapter follow.

KR modularity: inherited from the BSM framework itself, the scheme of modular BDI
behavioural template allows to plug-in different KR technologies for agent’s belief
base B and the goal base G. Moreover, it facilitates an easy integration with various
environments the agent can be embodied in through the body module E .

model of rationality: I show how a chosen model of rationality can be implemented as
a fragment of the agent’s BSM program. Because of the liberal nature of the BSM
framework, a developer is able to flexibly adapt the model of rationality w.r.t. parts
of the agent program (beliefs, goals and actions) to the particular needs of the
application. In this sense, the language for encoding BSM agent programs, mental
state transformers, can be seen as a meta-language for implementation of agent’s
deliberation cycle and its reasoning model.

44

Chapter 4

Logic for Behavioural State Machines

Source code modularity and reusability are one of the principal concerns of pragmatic
software engineering. To support reusability, especially in teams of programmers, the
code must provide clear interfaces and crisp semantic characterization of its functionality.
The maxim of such semantic characterization is a non-ambiguous language of formal
logic. A tight relationship between a programming framework and a logic for reasoning
about programs created in it is vital for a formal study of engineering non-trivial agent
systems.
According to the semantics of Behavioural State machines (cf. Definition 2.15), a BSM

program specifies a set of traces, a cut-out from the corresponding labeled transition
system over the space of agent’s mental states. To enable reasoning about execution
traces of such programs, in this chapter, I introduce Dynamic Computation Tree Logic
DCTL*. DCTL* is a novel extension of the full branching time temporal logic CTL*
(Emerson, 1990) with features of Dynamic Logic (Harel et al., 1984). To bridge the gap
between the flexible, but logic-agnostic programming framework of Behavioural State
Machines and DCTL*, the logic for verification of BSM programs, I introduce program
annotations in the form of formulae of Linear Time Temporal Logic (LTL) (Pnueli,
1977). While LTL provides a tool for relating mental state transformers to formulae of
temporal logic, DCTL* allows expressing and reasoning about properties of executions
of agent programs. For simplicity, I consider only ground BSM agent programs, i.e.,
mental state transformers without variables.

4.1 Linear Time Temporal Logic LTL

Mental states of BSM agents are composed of partial states, theories in logic-agnostic1

KR languages of the corresponding KR modules. For example, as demonstrated by
Example 3.2, the interface of one module can be based on Java, another on Prolog,
while queries and mst’s of yet another module can be given in the assembly language.
Later in this chapter, I show how a relationship between such KR modules and logical
formulae can be obtained by means of LTL annotations. Before doing so, however, this

1I do not assume any relationship between these languages and mathematical logic.

45

Chapter 4 Logic for Behavioural State Machines

section introduces a variant of logic LTL by Pnueli (1977), used in the remainder of this
chapter. First, an extension of behavioural frames with an interpretation of basic logical
statements follows.

Definition 4.1 (behavioural model). Let LTS(S,R) be the behavioural frame of a
behavioural template A = (M1, . . . ,Mn). The behavioural model of A is defined as
LTS(A) = (S,R,Π, π), where LTS(A) = (S,R) is the behavioral frame of A, Π = {p |
φ ∈ Q(A)} is the set of atomic propositions, and π : Π→ 2Π defines their valuations so
that they correspond to primitive queries: π(pφ) = {σ ∈ S | σ |= φ}.
Behavioural model of a BSM is defined as the behavioural model of the underlying

behavioural template: LTS(A,P) = LTS(A).

Informally, the notion of behavioural model translates the logic-agnostic structure of
a behavioural frame over a BSM states into a Kripke model (Kripke, 1963) over which
modal logic formulae can be interpreted.
LTL (Pnueli, 1977) enables reasoning about properties of execution traces by means

of temporal operators g (in the next moment) and U (until). Additional operators ♦
(sometime in the future) and � (always in the future) can be defined as ♦ϕ ≡ >U ϕ
and �ϕ ≡ ¬♦¬ϕ. In order to allow capturing the nature of sequential composition of
mental state transformers, in the following I introduce a version of LTL that includes the
“chop” operator C similar to that by Rosner and Pnueli (1986). I.e., when constructing
an aggregate annotation for τ1 ◦ τ2, the use of the chop operator ϕ1 C ϕ2 enforces that
the formula ϕ1 referring to τ1 is fulfilled before the execution of τ2, characterized by ϕ2,
begins.

Definition 4.2 (LTL syntax). Formally, the version of LTL is given by the following
grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | gϕ | ϕU ϕ | ϕ C ϕ
Other Boolean operators in LTL syntax, such as disjunction ∨, material implication
→, etc., are defined in the usual way.
The logic’s semantics is defined as a satisfaction relation between an LTL formula and

a BSM, together with its trace through the clauses below.

Definition 4.3 (LTL semantics). Let A be a BSM and λ ∈ T (A) is its trace. Then

• A, λ |= p iff λ[0] ∈ π(p) in LTS(A),

• A, λ |= ¬ϕ iff A, λ 6|= ϕ,

• A, λ |= ϕ1 ∧ ϕ2 iff A, λ |= ϕ1 and A, λ |= ϕ2,

• A, λ |= gϕ iff A, λ[1..∞] |= ϕ,

46

4.2 Dynamic Computation Tree Logic DCTL*

• A, λ |= ϕ1 U ϕ2 iff there exists i ≥ 0, such that A, λ[i..∞] |= ϕ2, and A, λ[j..∞] |=
ϕ1 for every 0 ≤ j < i,

• A, λ |= ϕ1 C ϕ2 iff there exists i ≥ 0, such that A, λ[0..i] |= ϕ1 and A, λ[i..∞] |= ϕ2.

LTL formula ϕ is valid in A (written A |= ϕ) iff ϕ holds on each trace λ ∈ T (A).

4.2 Dynamic Computation Tree Logic DCTL*
Later on, the LTL formulae will be used to capture the semantic characterization of
BSM mst’s. The idea is straightforward: to facilitate reasoning about BSM programs,
these should provide associated annotations in the language of LTL logic. Since each
annotation is assigned to a particular mst, there is no point in referring to the mst in
the object language. However, a richer logic for reasoning about programs and their
relationships is needed. Namely one, which allows to address a particular program
explicitly. To this end, I extend the branching-time logic CTL* (Emerson, 1990) with
explicit quantification over program executions. In the extension, [τ] stands for “for
all executions of τ”. The complementary form “there is an execution of τ” can be
defined as 〈τ〉ϕ ≡ ¬[τ]¬ϕ. As the agenda of the logic resembles that of “dynamic LTL”
by Henriksen and Thiagarajan (1999), the resulting logic is called “dynamic CTL*”,
DCTL* in short.

Definition 4.4 (DCTL* syntax). The syntax of DCTL* extends that of LTL as
follows

θ ::= p | ¬θ | θ ∧ θ|[τ]ϕ
ϕ ::= θ | ¬ϕ|ϕ ∧ ϕ| gϕ | ϕU ϕ | ϕ C ϕ

where τ is a program or an iterated program.

Definition 4.5 (DCTL* semantics). Let A be a BSM and λ ∈ T (A) be its trace.
The DCTL* semantics extends that of LTL (cf. Definition 4.3) with the clauses

• A, λ |= θ iff A, λ[0] |= θ,

• A, σ |= p iff σ ∈ π(p),

• A, σ |= ¬θ iff A, σ 6|= θ,

• A, σ |= θ1 ∧ θ2 iff A, σ |= θ1 and A, σ |= θ2,

• (A,P), σ |= [τ]ϕ iff for each λ ∈ T (A, τ), s.t. λ[0] = σ, we have that (A, τ), λ |= ϕ.

DCTL* formula θ is valid in A iff A, σ |= θ for every state σ. We also write A |= θ.

47

Chapter 4 Logic for Behavioural State Machines

The following proposition shows the relationship between LTL and DCTL* :

Proposition 4.6. For every BSM A = (M1, . . . ,Mn, τ) and an LTL formula ϕ, we
have

A |=ltl ϕ iff A |=dctl* [τ]ϕ.

The proof straightforwardly follows from LTL being subsumed by DCTL*.
Note the last point of the Definition 4.5. It extends the standard CTL* logic with

semantic definition for formulae resembling Dynamic Logic formulae. Unlike in Dynamic
Logic, however, such formulae do not specify what happens right after the execution
of the program τ , but rather speak out about what happens during execution of the
program. This difference is crucial as it allows a sound translation of logic-agnostic BSM
programs into the language of logic and subsequently reason about their executions.
The notion of semantic consequence is the basis for relating different characterizations

of the same BSM.

Definition 4.7 (semantic consequence). Formula ψ is a semantic consequence of ϕ,
i.e., ϕ⇒ ψ, iff for every BSM A, A |= ϕ implies A |= ψ.

Usually, I will use the notion of semantic consequence to write formulae of the form
[τ]ϕ ⇒ [τ∗]ψ. That is, if formula ϕ correctly describes possible executions of program
τ , then ψ holds for all possible iterated executions of the program.

4.3 Temporal annotations and verification of BSMs
The BSM framework allows us to encode agent programs in terms of compound mst’s
interpreted in a behavioural model over a behavioural template, a set of KR modules.
Now, the idea is to use LTL and DCTL* for reasoning about execution traces in such
models. To bridge the gap between the mental states of a BSM and interpreted states
of behavioural models, I introduce Annotated Behavioural State Machines, i.e, BSM s
enriched with LTL annotations of primitive queries and updates occurring in the cor-
responding agent program. The basic methodological assumption behind the proposal
is that a KR module supplies a set of basic test and procedures for programming agent
with it. I.e., the set of all primitive query and update formulae which can be constructed
from the module KR language L and its sets of operators Q and U . Complementary, the
corresponding annotations provide a re-interpretation of these from logic-agnostic pro-
gramming KR languages into a single language for reasoning about properties of agent
programs.

Definition 4.8 (annotated BSM). Annotated BSM is a tuple AA = (M1, . . . ,Mn,
P,A), where A = (M1, . . . ,Mn, P) is a BSM. Annotation function

A : (U(A) ∪Q(A))→ LTL

48

4.3 Temporal annotations and verification of BSMs

assigns an LTL annotation to each primitive query and update occurring in A.

Technically, it suffices to annotate only the queries and mst’s that occur in the program
P of the considered BSM. Annotations of primitive queries and mst’s are meant to be
provided by agent developer(s), according to their insight and expertise.
In order to enable reasoning about larger agent programs, higher level characteriza-

tions can be extracted from the lower level ones or even from primitive annotations.
Given a complex mst τ , its annotation is determined by the combination of the annota-
tions of its subprograms w.r.t. the outermost composition operator in τ .

Definition 4.9 (aggregation of annotations). Let AA be an annotated BSM. We
extend the function A to provide also LTL annotations for compound queries and mst’s
recursively as follows

• let φ, φ′ be queries, then A(¬φ) = ¬A(φ), A(φ∧φ′) = A(φ)∧A(φ′), and A(φ∨φ′) =
A(φ) ∨ A(φ′),

• let φ be a query and τ be an mst, then A(φ −→ τ) = A(φ)→ A(τ),

• let τ1, τ2 be mst’s, then A(τ1|τ2) = A(τ1) ∨ A(τ) and A(τ1 ◦ τ2) = A(τ1) CA(τ).

Note that in order to capture the composition of annotations for a sequential mst, I
use the LTL chop operator. The resulting formula states that exactly from the state
right after the finished execution of τ1 on, the remaining trace segment is characterized
by the annotation of the second component of the sequence, τ2.
As already noted above, annotations are not intended to be just arbitrary logical

formulae. They should capture the relevant aspects of the queries and programs that
they are assigned to. Thus, the annotations in AA are assumed to be sound in the
following sense.

Definition 4.10 (soundness of annotations). Let AA = (M1, . . . ,Mn,P,A) be an
annotated BSM.

1. A is sound in AA w.r.t. a query ϕ iff A(ϕ) holds in exactly the same mental states
of LTS(A) as ϕ,

2. A is sound in AA w.r.t. program τ iff A(τ) holds for all traces from
T (M1, . . . ,Mn, τ).

A is sound in AA iff it is sound w.r.t. a program P in AA. Note that A is sound in AA

iff A |= [P]A(P).

Proposition 4.11. If A is sound for every primitive query and update in AA, then A

is sound in AA.

49

Chapter 4 Logic for Behavioural State Machines

Proof. For every mst τ (resp. query ϕ), the soundness of A w.r.t. τ (resp. ϕ) follows by
induction on the structure of τ (resp. ϕ). Note that the aggregation rules in Definition 4.9
preserve soundness. ut

Provided an LTL specification and an annotated Behavioural State Machine, we are
usually interested whether the runs generated by the machine satisfy the specification.

Definition 4.12 (BSM verification). Let AA = (M1, . . . ,Mn,P,A) be an annotated
BSM and φ ∈ LTL be a specification. We say that the iterated execution of AA satisfies
the specification Φ iff

A |= [P∗]φ.

The following proposition turns out to be helpful in verification of BSM consisting of
a non-deterministic choice of mst’s.

Proposition 4.13. Let A be a behavioural template, A be a sound annotation function
w.r.t. A and τ1, τ2 be mst’s. Then, [(τ1|τ2)∗]�(♦A(τ1) ∧ ♦A(τ2)).

Proof. Follows immediately from the weak fairness condition, which ensures that from
any point on, in an mst τ1|τ2, both τ1, as well as τ2 will be executed infinitely often. ut

4.4 Verifying Ape
Example 4.14. Recall Ape’s BSM agent program from Example 3.2, Listing 3.2. Let
AApe = (B,G, E ,P) be a BSM, implementing Ape’s behaviour.
Let’s assume that the corresponding annotated BSM AA

Ape = (AApe,A) uses the “hu-
man centric” annotation function A as specified in Table 4.1. Moreover, Ape’s program-
mer knows that iterated execution of the complex behaviour τto_dest , shown in List-
ing 4.1, implements Ape wandering around the airport towards the destination point.
I.e., iterated execution of τto_dest eventually brings about that Ape arrives to the desired
destination. Formally,

A((τto_dest)∗) = ♦at(dest)

A single execution of τto_dest is supposed to take Ape closer to the destination point.
However, since the environment is unpredictable and Ape’s actions can fail, the program-
mer often cannot say too much about a single execution of an action in the environment.
Yet, repeated attempts to perform the behaviour can still eventually satisfy to the desired
aim.
Rewriting the agent program P in terms of DCTL* formulae it yields, we have
[P] ((see(person)→ gknows(person)) ∧

(not goto(dest) ∧ knows(person)→ ggoto(dest)) ∧
(goto(dest) ∧ at(dest)→ g¬goto(dest))).

50

4.4 Verifying Ape

primitive query/update A(τ)
���Ecamera.see(ObjectID) 7→ >
���Ecamera.recognize(ObjectID, human) 7→ see(person)
�Ebody.recognize(ObjectID, obstacle) 7→ >
���E says(Person, ’get me to ’ + Place) 7→ >
���Egps.location(X,Y,Z) 7→ >
�Ebody.forward(Steps) 7→ >
�Ebody.backward(Steps) 7→ >
�Ebody.turn(Angle) 7→ >
���Bobject(ObjectID) 7→ >
���Bperson(Person) 7→ knows(person)
���Bat(Place, coor(X,Y,Z)), at(self, coor(X,Y,Z)) 7→ at(dest)
���Bat(Place, coor(X,Y,Z)), angleTo(coor(X,Y,Z), Angle) 7→ >
⊕Bperson(Object) 7→ gknows(person)
���Ggoal(achieve(at(Place))) 7→ goto(dest)
⊕Gdesire(achieve(at(Place))) 7→ ggoto(dest)
	Gdesire(achieve(at(Place))) 7→ g¬goto(dest)

Table 4.1: Specification of the annotation function A for the primitive query and update
formulae occurring in Example 3.2.

Listing 4.1 An excerpt from Listing 3.2. τto_dest , a subprogram of the complete BSM
agent program P, implements Ape’s behaviour of moving towards a destination.

τto_dest = (
%% The way is free %%
not (���Ecamera.see(ObjectID) ∧ ���Ecamera.recognize(ObjectID, obstacle))

−→ (�Ebody.turn(Angle) ◦ �Ebody.forward(3);) |

%% Obstacle ahead %%
���Ecamera.see(ObjectID) ∧ ���Ecamera.recognize(ObjectID, obstacle)

−→ (
%% Avoid obstacle by stepping back and %%
%% either turning left or right %%
�Ebody.backward(3) ◦
(�Ebody.turn(90) | �Ebody.turn(−90)) ◦
�Ebody.forward(3) ◦

)
)

51

Chapter 4 Logic for Behavioural State Machines

At the same time, we also know
[P∗] (goto(dest) ∧ ¬at(dest)→ ♦at(dest)).

Straightforwardly, from the program P, and the additional information about the
annotation function A, we can derive

[P∗] (see(person)→ ♦at(dest))

Informally, whenever Ape meets a person which needs assistance with getting to a
destination, he will eventually bring about a state in which they together arrived to the
destination point.

4.5 Summary
The work presented in this chapter is a result of my joint work with Jamroga (Novák
and Jamroga, 2009). I introduce DCTL*, a hybrid of full computation tree temporal
logic CTL* by Emerson (1990) and Propositional Dynamic Logic due to Harel et al.
(1984). DCTL* is tailored to facilitate reasoning about ground BSM agent programs.
To bridge the gap between logic-agnostic query and update primitives, I introduce LTL
annotations of the primitive constructs. Subsequently, characterizations of higher level
mental state transformers, can be extracted from the lower level ones or even from
primitive annotations.
The presented logic, together with the verification result for DCTL* is the basis for

introducing BSM design patterns I discuss in Chapter 6.

52

Part II

Software engineering issues

... in which I describe a concrete instance of the proposed novel approach
to design of agent-oriented programming languages. On the substrate of a
generic language for programming reactive systems, I introduce a set of agent
oriented design patterns.

Let reactivity rule over
deliberation!

(The moral of this story)

Chapter 5

Jazzyk

The framework of Behavioural State Machines provides only formal means for encoding
of agent programs. In order to be able to use the framework in practice, programs
must be encoded in a machine readable code and subsequently executed according to
the BSM semantics. To this end, I introduce in this chapter a programming language
called Jazzyk, together with its interpreter. Finally, I discuss the use of macros defined
over the basic programming language. Macros transparently facilitate reusability and
modularization of the language without modifying its core semantics.

5.1 Language

Jazzyk closely implements the syntax of Behavioural State Machines introduced in Chap-
ter 2. The BSM framework provides only a mathematical notation, which needs to be
translated into a machine readable character set. The programming language thus con-
sists of a set of keywords and delimiters denoting 1) declaration and initialization of
agent’s KR modules, and 2) encoding of the associated agent program. The concrete
form of the keyword set and supplementary language notation is rather arbitrary and
completely at liberty of the language designer. In the language proposal, I commit to
the following two language design principles:

1. programs written with the language should have an intuitive syntax and thus
should be easily readable also to laymen, and

2. the structural notation should be inspired by that used in mainstream imperative
structured programming languages, such as C or Java.

Of course, the above two principles are rather a matter of my own personal taste and
preferences. Even though the readability requirement might lead to a “talkative” pro-
gramming language, I believe that when applied to an experimental academic language
it serves a better purpose than a dense notation cluttered with punctuation marks.1

1In contrast to e.g., Jason language by Bordini et al. (2007).

55

Chapter 5 Jazzyk

program ::= (statement)*
statement ::= module_decl | module_notify | mst*
module_decl ::= ‘declare’ ‘module’ <moduleId> ‘as’ <KRModuleType>
module_notify ::= ‘notify’ <moduleId> on

(‘initialize’ | ‘finalize’ | ‘cycle’) formula
mst ::= ‘nop’ | ‘exit’ |

update | block | sequence | choice | conditional
block ::= ‘{’ mst ‘}’
sequence ::= mst ‘,’ mst
choice ::= mst ‘;’ mst
conditional ::= ‘when’ query_exp ‘then’ mst [‘else’ mst]
query_exp ::= query_exp ‘and’ query_exp |

query_exp ‘or’ query_exp |
not ‘query’ | ‘(’ query_exp ‘)’ | query

query ::= ‘true’ | ‘false’ |
<operatorId> <moduleId> [variables] formula

update ::= <operatorId> <moduleId> [variables] formula
formula ::= ‘[{’ <arbitrary string> ‘}]’
variables ::= ‘(’ (<identifier> ‘,’)* <identifier> ‘)’ | ‘(’ ‘)’

Figure 5.1: Jazzyk syntax definition. The specification follows the EBNF variant in-
cluding regular expression specification, also called EBNF for XML and formally defined
by W3C (2008b).

5.1.1 Well formed programs

The Jazzyk syntax straightforwardly follows that of the BSM framework. Figure 5.1
lists the EBNF syntax of the Jazzyk language.
The core of the BSM syntax is provided by the Definition 2.4 of the syntax of mental

state transformers. In order to enable efficient use of such programs, few technical issues
have to be handled as well. In particular, a Jazzyk program consists of a sequence of
statements, which can take form of a module declaration, module notification or encode
a mental state transformer which must be encoded in the programming language.

KR module handling
KR modules have to be declared and subsequently bound to the corresponding plug-
ins implementing their functionality in a KR language of choice. Module declaration
statement module_decl facilitates declaration of a module identified by moduleId and indicates
that it is an instance of a plug-in identified by KRModuleType identifier.
Before a query or an update operation is invoked on a KR module, it should be

initialized by some initial state. This state is encoded as a corresponding KR language
formula, i.e., a block of a programming language code. Similarly, when a module is
about to be shut down, it might be necessary to perform a clean-up of the knowledge

56

5.1 Language

base handled by the module. In order to allow KR module initialization and shut-down,
Jazzyk introduces so called KR module notifications. They take a form of a statement
declaring a formula, a code block, to be executed when the KR module is loaded (initialize)
or unloaded (finalize).
Before an agent program is executed, all the initialization notifications are executed

and thus the initial states of corresponding KR modules are set. Similarly, the final-
ization notifications are executed right before the agent program finishes. This is the
case either 1) after an explicit invocation of the program end instruction (see below), 2)
after an error during program interpretation, or 3) after the last deliberation cycle was
performed in the case a limit on the number of agent deliberation cycles was specified
(cf. Jazzyk manual in Appendix A). The finalization should clean-up the states of KR
modules, i.e., release resources possibly held by them, disconnect devices, etc.
Additionally, as a purely technical feature, also a notification after each deliberation

cycle (cycle) is provided. It should serve strictly technical purposes like e.g., possible
query cache clean-up or time counter increment, in the case the KR module implements
such optimization techniques.

Mental state transformers
In the core of the Jazzyk syntax are rules of conditional nested mental state transformers
of the form query −→ mst. These are translated in Jazzyk as “when query_exp then mst”.
Mst’s can be joined using a sequence ‘,’ and choice ‘;’ operators, corresponding to BSM
operators ◦ and | respectively. The operator precedence can be managed using curly
braces ‘{’, ‘}’, resulting in an easily readable syntax of nested code blocks similar to
code blocks of e.g., the C language. Compound query expressions are a straightforward
translation of the syntax of BSM query formulae. They can be joined by Boolean
operators and, or and not and nested using parentheses ‘(’ and ‘)’.
Each KR module provides a set of named query and update operators, identifiers

of which are used in primitive query and update expressions. To allow the interpreter
to distinguish between arbitrary strings and variable identifiers in primitive query and
update expressions, Jazzyk allows programmers to provide an explicit declaration of a
list of variables used in them. The list in parenthesis follows the module identifier in the
query invocation construct.
A standalone update expression can be seen as a shortcut for a BSM rule of the type
> →<update>. For programmers’ convenience Jazzyk introduces the usual syntactic sugar
of “when−then−else” for conditional mst’s.

Supplementary keywords
To allow for the skip mst, Jazzyk includes the reserved keyword nop, no operation.
Finally, the keyword exit denotes the program end instruction and its execution stops
the agent’s deliberation cycle. It also triggers execution of KR modules’ finalization
notifications and finally stops the language interpreter.

57

Chapter 5 Jazzyk

The Jazzyk syntax closely matches that of the theoretical BSM framework. Note
however, two minor differences between Jazzyk and BSM agent programs. Unlike the
BSM syntax, Jazzyk also allows empty agent programs. Furthermore, the agent program
syntax, the root level mental state transformer allows interleaving declaration statements
and mst definitions. In result, the root level mst can be specified as a sequel of mst’s
without explicit composition operators between them. Such a set of mst’s is treated as
a non-deterministic choice mst. This feature supports agent code modularity described
in a closer detail in the Subsection 5.2.3 below. Briefly, agent programs are allowed to
be composed of a number of subprograms possibly defined in separate files which can
be included into the main program. Since the program developer cannot know a priori
whether the included file, a code module, contains a full fledged mst or only various
declarations, omission of the composition operator naturally yields a non-deterministic
choice mst.

5.1.2 Valid programs

Besides checking the well-formedness of agent programs described in the previous section,
the implemented Jazzyk interpreter also checks program validity, i.e., a set of not purely
syntactic conditions imposed on agent programs.

Definition 5.1. A well-formed Jazzyk program is also valid when it satisfies the follow-
ing conditions

1. query expressions can involve only query operators of the already declared KR
modules,

2. similarly, primitive update mst’s can involve only update operators of already
declared KR modules,

3. a KR module identifier can be used in a query or an update mst only after it was
previously declared,

4. finally, it must be the case that each variable occurring in a primitive update mst τ
had to already occur in a query expression of a higher level mst. I.e., in a preceding
mst of the sequence the update belongs to (· · · ◦ τ ◦ · · ·), or in a query expression
of some conditional mst including τ (φ −→ (· · · −→ (· · · τ · · ·) · · ·)).

The first two conditions straightforwardly follow from the BSM syntax. Since these
conditions are not of a purely syntactical nature, Jazzyk interpreter must check them
additionally after successfully parsing the program. Condition 3 supports good prac-
tices in programming, i.e., use only what was already declared before. Finally, the last
condition 4 secures groundness of primitive update executions (cf. Definition 2.8 and
Definition 2.9).

58

5.2 Interpreter

5.2 Interpreter
As already noted in Chapter 2, in order to allow efficient implementation of a BSM
interpreter, several pragmatic issues have to be addressed first. In the following, I
describe how I dealt with these issues in the implemented Jazzyk interpreter.

5.2.1 Principles
Shared domains To enable general, yet efficient information exchange between KR
modules of an agent, the Jazzyk interpreter restricts shared domains of KR modules to
a single domain. Namely that of ASCII character sequences, strings. Character strings
are available in all mainstream programming languages ranging from Prolog, through
LISP or Scheme to Java, C and C++, etc. Moreover, the advantage of strings is their
universality and versatility. For most data types available in various KR technologies,
there either already exists a well established conversion or a serialization technique to
strings, or it is rather straightforward to come up with one. By employing binary-to-
text encoding techniques, such as e.g., Base64 due to Josefsson (2006), it is for example
possible to transfer even binary data objects between KR modules of a Jazzyk agent.2

Variable substitution To handle the inherent non-determinism of the BSM framework
(cf. Remark 2.12), Jazzyk interpreter imposes constraints on KR modules’ query oper-
ators implementation. When a query operator is invoked on the actual state of a KR
module, it must return a single valid ground variable substitution, in the case such ex-
ists. The returned variable substitution is supposed to be the best according to the
internal semantics of the KR module. Although in theory this constraint severely limits
the BSM semantics implementation in the Jazzyk interpreter, it allows for an efficient
and fast agent program interpretation. The actual precise mechanism for selecting the
ground variable substitution by query operators of a KR module should be documented
by KR module developers.

Non-deterministic choice A BSM interpreter needs to choose from the set of updates
yielded by the agent program. As discussed above, a query operator implementation
must return a single variable substitution, when such exists. Thus, the Jazzyk interpreter
does not need to calculate the complete yielded update set in a bottom-up fashion as
defined by the yields calculus (Definition 2.9), i.e., yielded updates are supposed to be
collected from primitive mst’s up to the root mst. Instead, the interpreter processes
the agent program in a top-down fashion. When facing a choice among members of
a non-deterministic choice mst, the interpreter randomly selects one of them and tries
to recursively apply it to the current mental state. Chosen sequence mst’s are simply

2We actually apply this technique in practice in the Urbibot agent described in Chapter 7. There we
transfer Base64 encoded images from a camera sensor to agent’s belief base for further processing.

59

Chapter 5 Jazzyk

executed as a sequel of mst applications. In the case the chosen member mst does not
yield an update, the interpreter chooses a different one until no other choice member is
left, or an update is yielded. A mst yields no update when it does not directly contain
a primitive mst, possibly as a sequence member, and all queries of conditional mst’s
contained in it evaluate to false (⊥). In turn, the first yielded update is chosen for
execution. Thanks to the random mst selection from choice mst’s performed according
to a uniform selection probability distribution, the weak fairness property imposed by
the Definition 2.15 is also satisfied.

Query evaluation
Finally, to further optimize the agent program execution, the Jazzyk interpreter evaluates
compound query expressions from left to right. I.e., to evaluate a conjunction of queries,
the left-most is invoked first, and only when it evaluates to true (>), the interpreter
proceeds to the second one, etc. In the case some of the conjuncts evaluates to false
(⊥), the interpreter breaks the compound query evaluation and returns false as well.
The conjunction members right from the false one are not further executed.
Similarly, for a compound query disjunction, the interpreter searches for the first left-

most primitive query which evaluates to true (>). When it finds one, it breaks the query
evaluation and returns true. Note that only the variable substitution of the left-most
disjunct evaluated to true is taken to the right hand side of the conditional mst.
Finally, similarly to Prolog variable substitution, in the case a negation of a query

formula evaluates to true, no variable substitution is yielded and taken to evaluation of
the right hand side of the conditional mst.

5.2.2 Algorithm

The above discussed simplifications of the original BSM semantics were introduced to
make the process of agent program interpretation more efficient and more transparent
to the programmer. Algorithm 5.1 lists the commented pseudocode of the core of the
actual Jazzyk interpreter implementation, i.e., algorithm for applying a mental state
transformer to a mental state. In the case of primitive, conditional, block and skip mst’s,
the interpreter directly follows the BSM semantics’ yields calculus in a top-down fashion.
In the case of a non-deterministic choice mst, the interpreter randomly permutes the
order of choice members and then tries to apply its members one after another until one
of them executes, yields, a primitive update. Since the interpreter introduces a special
mst exit for terminating the agent’s lifecycle, the sequence mst handler must additionally
check whether a sequence member does not yield an exit primitive which immediately
breaks and terminates the interpreter. Algorithm 5.2 finally lists the straightforward
sketch of the actual Jazzyk interpreter pseudocode.
Finally, without a rigorous formal proof, the following proposition sketches the corre-

spondence between the Jazzyk interpreter as described by Algorithm 5.2 and the BSM

60

5.2 Interpreter

Algorithm 5.1 Pseudocode of the mst application in a mental state.
input: mental state transformer τ and current mental state σ = (σ1, . . . , σn)
return value: > indicates that τ yielded some update, ⊥ indicates that τ does not
yield any update in σ and finally × indicates that τ yielded the exit instruction
function Apply_mst(τ)

executed ← ⊥
switch (τ)

case ‘update� modulek [{ψ}]’: . primitive update
invoke update�(ψ) on σk ofMk . update the current state:
executed ← > . i.e., σ = (σ1, . . . , σk � ψ, . . . , σn)

case ‘when φ then τ ’: . conditional
if Eval_Query(φ) then . if the query is true in σ, then . . .

executed ←Apply_mst(τ) apply τ
end if

case ‘τ1; τ2’: . non-deterministic choice
i, j ←Random({1,2}) . randomly assign i, j ∈ {1, 2} s.t. i 6= i
executed ←Apply_mst(τi) . try the first choice
if executed = ⊥ then . if the first choice yielded no update. . .

executed ←Apply_mst(τj) try the second one
end if

case ‘τ1, τ2’: . sequence
executed ←Apply_mst(τ1) . apply the first sequence member
if executed 6= × then . if it didn’t yield exit. . .

executed ← executed ∧ Apply_mst(τ2) apply also the second
end if

case ‘{τ ′}’: . block
executed ←Apply_mst(τ ′) . simply apply τ ′

case ‘nop’: . skip mst
executed ← > . nop yields no operation

case ‘exit’: . interpreter exit
executed ← × . returning × terminates the interpreter’s cycle

end switch

return executed
end function

61

Chapter 5 Jazzyk

Algorithm 5.2 Pseudocode of the deliberation cycle of the Jazzyk interpreter.
input: Jazzyk BSM agent A = (M1, . . . ,Mn,P)
procedure Jazzyk_Interpreter(A = (M1, . . . ,Mn,P))

Load(M1, . . . ,Mn) . load agent’s KR modules
Initialize(M1, . . . ,Mn) . execute initialize notifications

repeat . interpreter: agent’s deliberation cycle
step_done=Apply_mst(P)) . single BSM step

until step_done = × . exit was invoked

Finalize(M1, . . . ,Mn) . execute finalize notifications
Unload(M1, . . . ,Mn) . unload agent’s KR modules

end procedure

semantics provided by Definition 2.11.

Proposition 5.2 (Jazzyk vs. BSM). Let A = (M1, . . . ,Mn,P) be a BSM and AJ
the corresponding Jazzyk agent.
The function Apply_mst(P) interpreting the agent AJ executes a primitive mst

‘update� moduleMi [{ψ}]’ in a state σ and returns > if and only if the BSM A
induces a labelled transition σ �iψ→ σ′ for some σ′.

Proof sketch. Informally, except for handling the newly introduced primitive mst exit,
the core difference between the function Apply_mst (cf. Algorithm 5.1) and the yields
calculus (cf. Definition 2.9) is the fashion in which choice mst’s are processed in order
to extract primitive updates from them. While the yields calculus facilitates collecting
of (derivation) all the updates enabled in a particular mental state, the function Ap-
ply_mst rather searches for a single applicable primitive update mst. When it finds
such, it immediately executes it and only indicates success or failure to do so.
I assume that the function Random shuffles the choice members according to the

uniform distribution, thus it is fair. Therefore, various invocations of Apply_mst on
the same mst τ in the same state σ result in eventually selecting every member of the
choice mst with equal probability. I.e., in the case both yield an update, both updates
will be selected for execution with a non-zero probability.
Note that the only case when a primitive update is not yielded by an agent program in

a given mental state, is when it is “shielded” by a query in a higher level conditional mst it
is contained in, which evaluates to false (⊥). However, when Jazzyk interpreter executes
a primitive update mst statement, all the higher level queries “above” the statement
had to evaluate to true (>). In turn, every executed primitive update statement cannot
be “shielded”. In turn, when interpretation of the agent AJ results in execution of a

62

5.2 Interpreter

primitive update mst statement, BSM A also yielded an update corresponding to the
update statement. ut

5.2.3 Macro preprocessor

Jazzyk interpreter was designed to provide a lightweight modular agent-oriented pro-
gramming language. Besides the vertical modularity, i.e., modularity w.r.t. heteroge-
neous KR technologies, Jazzyk interpreter support a horizontal modularity, i.e., modu-
larity of the source code. For a robust programming language it is desirable to provide
syntactical means to manipulate large pieces of code easily. Composition of larger pro-
grams from components is a vital means for avoiding getting lost in the, so called,
“spaghetti code”.
To support the horizontal modularity, Jazzyk interpreter integrates a powerful macro

preprocessor GNU M4 (M4 team, 2009). Before a Jazzyk program is fed to the interpre-
tation cycle (Algorithm 5.2), its source code is processed by the M4 preprocessor. The
preprocessor expands and interprets all the M4 specific syntactic constructs.
The language of Jazzyk programs is extended by the full M4 language syntax. At

the same time, the syntax of the Jazzyk language itself remains simple and clear, as the
macro preprocessor language introduces an entirely new layer of the language. Thereby,
I follow the tiered approach to designing a programming language (Meyer, 1990). I.e., the
program execution machinery features a layered structure. The core language interpreter
with a compiler integrating a macro preprocessor. The compiler translates programs
written in an extended language into an equivalent well-formed program in the core
language.
By integration of the M4 macro preprocessor into the Jazzyk interpreter, this gains

several important features almost “for free”: definition of macros and their expansion in
the source code, possibility of a limited recursive macro expansion, conditional macro
expansion, possibility to create code templates, handling file inclusion in a proper op-
erating system path settings dependent way, limited facility for handling strings and
regular expressions, etc.
M4 macros are defined using the standard GNU M4 syntax, i.e., by using the define

meta-macro with two arguments. The first defining the macro identifier, followed by the
body of the macro. The body is later expanded at places of reference. To support code
templates, M4 allows specification of parametrized macros. The arguments are referred
to in a positional manner. E.g., $3 refers to the third argument passed to the macro at
the point of instantiation. Furthermore, to distinguish arguments from arbitrary strings
belonging plainly to the expanded macro body, they are enclosed in quotes ‘. . .’ or
brackets [. . .]. Furthermore, M4 macro preprocessor allows to redefine the quote pairs.

63

Chapter 5 Jazzyk

Figure 5.2: Jazzyk compiler-interpreter scheme.

5.2.4 Implementation

Technically, Jazzyk interpreter is written in C++ as a standalone command line tool. It
was implemented in a portable way, so it can be compiled, installed and relatively eas-
ily ported to most POSIX compliant operating systems. As of now, the interpreter was
already ported to Linux, Windows/Cygwin and successfully compiled onMac OS X plat-
form as well. The first public release of the project was published in late 2007 under the
open-source GNU GPL v2 license and is hosted at http://jazzyk.sourceforge.net/,
including all to date implemented KR module plug-ins and demonstration applications.
As of the time of writing this dissertation, the newest published stable version of the
Jazzyk interpreter is 1.20. It was successfully used in several applications, also described
later in this dissertation (cf. Chapter 7).

To support implementation of 3rd party KR modules, I also published a KR module
software development kit Jazzyk SDK (cf. Appendix B) including template of a trivial
KR module together with all associated compile/package/deploy scripts.

The KR modules are implemented as shared dynamically loaded libraries (DLL) in-
stalled as standalone packages on a host operating system. When a KR module is loaded,
the Jazzyk interpreter forks a separate process to host it. The communication between
the Jazzyk interpreter and the set of the KR module subprocesses is facilitated by an OS
specific shared memory subsystem. This allows loading multiple instances of the same
KR module implemented in a portable way. Figure 5.2 depicts the technical architecture
of the Jazzyk interpreter.

Finally, to simplify debugging of agent programs, Jazzyk interpreter implements a
full-featured error reporting following the GNU C++ Compiler error and warning re-
porting format (GCC team, 2009). That allows an easier integration of the interpreter
with various standardized integrated development environments (IDE) or programmers’
editors, such as e.g., Eclipse, Emacs, or Vim.

Appendix A provides a brief overview of technical details of the implemented Jazzyk
interpreter, its additional features, as well as the full listing of the included Jazzyk ma-
nual.

64

http://jazzyk.sourceforge.net/

5.3 Ape in Jazzyk

Listing 5.1 Sketch of KR module declarations and notifications for the Jazzyk imple-
mentation of the Ape robot.

/∗∗∗ Module declarations ∗∗∗/
declare module beliefs as Prolog
declare module goals as Prolog
declare module body as Java

/∗∗∗ Module notifications ∗∗∗/
notify beliefs on initialize [{

%%% Fragment of Ape’s belief base B (cf. Listing 3.1, left) %%%
. . .

}]

notify goals on initialize [{
%%% Fragment of Ape’s goal base G (cf. Listing 3.1, bottom) %%%
. . .

}]

notify body on initialize [{
/∗∗∗ Fragment of Ape’s body implementation E (cf. Listing 3.1, right) ∗∗∗/
. . .
body.boot();

}]

notify body on finalize [{
body.shutdown();

}]

5.3 Ape in Jazzyk

Example 5.3. The sequel of listings 5.1, 5.2 and 5.3 list the agent program source code
from Example 3.2 in Chapter 3 rewritten in Jazzyk with M4 macros.
Listing 5.1 provides the Jazzyk code implementing Ape’s KR modules declarations

and notifications. The code listed in Listing 3.1 is fed directly into corresponding KR
modules’ initialize notifications. Additionally, when Ape is to be switched off, it needs
to shut down the hardware devices of its body, hence the finalization notification.
The subsequent Listing 5.2 provides an overview of the set of M4 macros implementing

parts of Ape’s behaviour. Macros ADOPT_GOAL, DROP_GOAL, HANDLE_GOALS and ACT imple-
ment respective parts of Ape’s agent program, as it was listed in Listing 3.2. Additionally,
macros HANDLE_GOALS, AVOID and ACT use other macros in their bodies. In particular,
HANDLE_GOALS makes use of the two fragmentary macros ADOPT_GOAL and DROP_GOAL
implementing the respective goal handling techniques. Avoiding obstacles implementa-
tion AVOID instantiates TURN and STEP primitives. And finally, ACT exploits macros TURN,
STEP and AVOID implementing reusable parts of Ape’s behaviour. Parametrized macro
PERCEIVE, STEP and TURN demonstrate use of macro arguments. Since the statements for
perception of atomic sensory inputs use the same pattern, the reusable macro PERCEIVE

65

Chapter 5 Jazzyk

enables for shorter agent program. The macro specifies three arguments. The first
stands for the list of variables shared among the left hand and the right hand side of the
conditional. The second and the third stand for the query and update formulae passed
to the body module E and the belief base B. Note that in the case of the belief base
B (resp. the goal base G), the query and update operators ���B (���G) and ⊕B, 	B (⊕G ,
	G) are denoted by the identifiers query, assert and retract respectively. In the case of the
interface to the Ape’s hardware B the operators ���E and �E are denoted as sense and act
respectively.
Finally, Listing 5.3 provides implementation of the agent program itself. The cor-

responding macros are expanded by the Jazzyk interpreter in situ. Additional macros
instantiated inside higher level macros are correctly expanded as well.

The use of macros in the example improves reading of the program. Later, Chapter 6
further describes use of parametrized macros for implementation of more advanced design
patterns.

5.4 Summary
This chapter provides an overview of the Jazzyk programming language, together with
its implemented interpreter. The bulk of the chapter is mainly based on my earlier paper
(Novák, 2008c).
While the framework of Behavioural State Machines allows for a variety of interpreter

implementations, the presented one focuses on efficiency and simplicity. In the inter-
preter development, I followed the tiered approach to design a programming language.
Thus, the core programming language is extensible by means of exploiting the integrated
macro preprocessor. It also facilitates further source code modularity and source code
reusability.
In the current incarnation the interpreter provides only basic facilities for program-

mer’s comfort. As of the latest version 1.20, it lacks an integrated development envi-
ronment (IDE) and the macro debugging facilities could be also improved, to name just
a few pending improvements. In the interpreter development, I focused on the bare-
bones functionality to enable rapid prototyping and implementation of proof-of-concept
demonstration applications implementation discussed later in Chapter 7. The successful
language use in several non-trivial case-studies also shows the potential of the Jazzyk
language.

66

5.4 Summary

Listing 5.2 Set of reusable M4 macros implementing parts of Ape’s behaviour.

define(‘PERCEIVE’, ‘when sense body($1) [{$2}] then assert beliefs($1) [{$3}]’)

define(‘ADOPT_GOAL’, ‘
when not query goals(Place) [{goal(achieve(at(Place)))}] and

query beliefs(Person) [{person(Person)}] and
query body(Person,Place) [{audio.hears(Person, ’get me to ’ + Place)}]

then assert goals(Place) [{desire(achieve(at(Place)))}]
’)

define(‘DROP_GOAL’, ‘
when query goals(Place) [{goal(achieve(at(Place)))}] and

query beliefs(Place) [{at(Place, coor(X,Y,Z)), at(self, coor(X,Y,Z))}]
then retract goals(Place) [{desire(achieve(at(Place)))}]

’)

define(‘HANDLE_GOALS’, ‘ADOPT_GOAL ; DROP_GOAL’)

define(‘STEP’, ‘act body [{body.forward($1);}] ’)

define(‘TURN’, ‘act body($1) [{body.turn($1)}]’)

define(‘AVOID’, ‘
STEP(−1) ,
{ TURN(90) ; TURN(−90) } ,
STEP(1)

’)

define(‘ACT’, ‘
when query goals(Place) [{goal(achieve(at(Place)))}] and

not query beliefs(Place,X,Y,Z) [{at(Place, coor(X,Y,Z)), at(self, coor(X,Y,Z))}] and
query beliefs(Place,X,Y,Z,Angle) [{at(Place, coor(X,Y,Z)), angleTo(coor(X,Y,Z), Angle)}]

then {
when not (sense body(ObjectID) [{camera.see(ObjectID)}] and

sense body(ObjectID) [{camera.recognize(ObjectID, obstacle)}])
then { TURN(Angle) , STEP(3) }
else AVOID

}
’)

Listing 5.3 Ape’s agent program (root level mst) implementation.

PERCEIVE(‘ObjectID’, ‘camera.see(ObjectID)’, ‘object(ObjectID)’) ;
PERCEIVE(‘ObjectID’, ‘camera.recognize(ObjectID, human)’, ‘person(ObjectID)’) ;
PERCEIVE(‘X,Y,Z’, ‘gps.location(X,Y,Z)’, ‘at(me, coor(X,Y,Z))’) ;

HANDLE_GOALS ;

ACT

67

Chapter 5 Jazzyk

68

Chapter 6

BSM design patterns:
commitment-oriented programming
In the previous chapter, I introduced Jazzyk, a simple programming language for pro-
gramming reactive systems integrating heterogeneous knowledge bases in a single agent
system. In order to evaluate whether a proposed programming language or a framework
is of any practical use, the question of an application methodology is of a major impor-
tance. In the case of the BSM framework and in turn also the Jazzyk language, we are
interested in the following question:

How to efficiently use the programming framework to build BDI-style
cognitive agents?

Moreover, we should be interested in such methods and guidelines, which encompass a
range of application domains. I.e., such, which can help us to design and implement BDI-
inspired agents ranging from embodied robots, through pure software personal assistant
agents to e.g., embedded agents of intelligent buildings.
Mainstream programming languages such as Java, Pascal, or C++ support developers

by providing guidelines for developing systems in two important ways. On one hand,
they feature powerful abstractions, such as objects, classes, procedures, or functions. En-
coding programs in terms of such concepts facilitates more intuitive understanding of and
informal reasoning about 3rd party code, without looking into deep implementation de-
tails. On the other hand, these languages facilitate development of application-domain-
independent reusable modules, subprograms, and thus speed up design, prototyping and
implementation of complex applications. To provide a similar level of support for agent
programmers in Jazzyk, reusable subprograms must also come with a clear description
of their intended functionality, i.e., a formal semantic functionality specification.
The BSM framework, and in turn also Jazzyk, already provides necessary ingredi-

ents to facilitate development of application-domain-independent subprograms and their
subsequent reuse. On the one hand, the Jazzyk interpreter, described in Chapter 5, in-
tegrates a state-of-the-art macro preprocessor allowing implementation of meaningful
Jazzyk subprograms as reusable macros. On the other hand, Chapter 4 introduced a
temporal logic tailored for the reasoning about fragments of BSM and Jazzyk agent
programs.

69

Chapter 6 BSM design patterns: commitment-oriented programming

Previously, in Chapter 3, I only informally discussed ways how the theoretical frame-
work of Behavioural State Machines can be used for implementation of intelligent agents,
such as Ape (cf. Section 3.3). This chapter discusses methodology of development of BDI
inspired cognitive agents.
Firstly, I recapitulate the naïve methodology for designing cognitive agents stemming

from the example of Ape, discussed in previous chapters. The presented methodological
discussion is a result of practical experimentation with Jazzyk in non-trivial case-studies,
I describe later in Chapter 7.
Different applications will always have different specialized requirements on method-

ology and software development process. Therefore, I do not provide an ultimate recipe
for programming BDI agents with Jazzyk. However, the successful attempts to apply
the framework in practice already provide sound evidence for the pragmatic usefulness
of the BSM framework and Jazzyk language.
Subsequently, on a background of re-implementing the Ape example in a more formal

way, I try to put the naïve methodology on a more solid foundation by introducing
Jazzyk (BSM) code patterns for BDI-style agents. The core idea behind the patterns,
code templates, respects the already mentioned tiered approach to design of program-
ming languages (cf. Chapter 5). By exploiting the integrated M4 macro-preprocessor,
the patterns are implemented as parametrized macros in the Jazzyk language. For
each such a reusable fragment of code, I provide a crisp DCTL* characterization of
their functionality w.r.t. the parameters passed to them. The chapter culminates with
the construction of code patterns implementing commitments towards achievement and
maintenance goals.
Further lifting the methodology, I finally propose commitment-oriented programming,

a novel design approach for development of agents with mental attitudes. I.e., a method
for designing agent programs in terms of interdependencies between specifications of
commitments towards agent’s mental attitudes, such as e.g., goals. The notion of a
commitment is for commitment-oriented programming about the same as the notions
of a class and objects are in the realm of object-oriented programming. In turn, the
notion of a commitment as a language construct, a blueprint for useful fragments of
application code, provides also an intuitive tool for agent program decomposition, i.e.,
a methodological guideline.
Besides presenting the agent-oriented code patterns and the generalization towards

the notion of commitment-oriented programming, one of the main contributions of this
chapter is demonstration of a novel approach to the design of agent programming lan-
guages. The mainstream agent-oriented programming languages feature a fixed set of
carefully selected first-class agent-oriented features supported by the language. I instead
propose a flexible and extensible generic language for reactive systems (e.g., the BSM
framework) which can be subsequently extended by special purpose, perhaps even appli-
cation specific, programming constructs. Unlike the traditional approach, my proposal
does not require customization of the language semantics and the interpreter. Thereby,

70

6.1 Ape example revisited: naïve methodology

it provides a versatile tool which programmers can customize according to their particu-
lar needs. In this sense, this chapter presents the culmination of the theoretical research
towards this dissertation and integrates the fragments presented in the previous chap-
ters. The remaining chapters provide additional substance to the claim of usefulness
of Jazzyk, as well as provide some extensions stemming from practical experiences with
using Jazzyk for non-trivial applications.

6.1 Ape example revisited: naïve methodology
In Example 3.2, I introduce a fragment of Ape’s BSM program. Subsequently, Exam-
ple 5.3 shows the same example rewritten with more advanced techniques employing the
Jazzyk’s macro preprocessing facility. Until now, I did not thoroughly discuss the devel-
opment process leading to the example program. However, the Jazzyk re-implementation
of Ape provides clues about the basic construction and hierarchical decomposition of
agent programs.
Ape’s agent program in Example 5.3 roughly implements the classic agent deliberation

cycle perceive-reason-act (cf. e.g. (Russell and Norvig, 2002)). In fact, without loss of
generality, the presented code rather implements a modified reasoning cycle, which can
summarized by the statement “In a single step, either perceive, reason about goals, or
act.” The standard perceive-reason-act sequel is reflected in the implemented program
by the flow of information in the agent system as discussed in Subsection 3.2.2. I.e.,
the information read from the environment is reflected in the agent’s belief base, subse-
quently the agent uses its beliefs to modify its goals, which finally trigger actions in the
environment again. In turn, these can cause events the agent might later perceive again.
From this perspective, the simple BDI architecture of Ape robot includes only a single

purely internal mental attitude, its goals. Because beliefs reflect the agent’s perceptions
and possibly derived knowledge about the world, the belief base is in a way subordinate
to input from agent’s sensors, i.e., the environment. Goals play a central role in analytical
decomposition of an agent system into an implemented program. This observation stands
in accord with the state-of-the-art literature on agent-oriented software engineering,
embodied in methodologies such as e.g., Tropos or MaSE (for a survey, cf. e.g., (Bergenti
et al., 2004)).
In the joint paper with Köster (Novák and Köster, 2008), we summarize the naïve,

goal-centric, methodology used for designing BDI-style agent systems similar to Ape. It
can be summarized into the following sequel of steps:

1. Choose the internal architecture of the agent. Assuming the KR module interfacing
the agent with its body/environment is fixed, the developer should decide on the
number and type of agent’s knowledge bases implementing its belief and goal bases.

2. Identify the set of agent’s goals and implement the internals of the goal base.

71

Chapter 6 BSM design patterns: commitment-oriented programming

I.e., encoding of interactions between the goals, subgoals and possibly even tasks,
w.r.t. the employed chosen KR technology.

3. Design the set of behaviours τact supposed to achieve those goals. The behaviours
are triggered by their corresponding goal base conditions.

4. Identify the adoption and satisfaction conditions for these goals and design their
concrete respective commitment strategies as an mst τcs.

5. Identify the relevant part of agent’s beliefs w.r.t. the conditions associated with
the goals and subsequently design the agent’s belief base including appropriate
relationships and interactions among the beliefs w.r.t. the employed KR technology.

6. Design the model of perception τperc by identifying the sensory information, per-
cepts, of the agent and link them to assertions or retractions of the corresponding
beliefs.

7. Finally, construct the root level agent program by appropriately structuring and
combining the mental state transformers τperc, τcs and τact into a control cycle, the
agent’s reasoning cycle.

Note that in essence the informal methodological steps presented above also respect the
flow of information in the agent system. Agent’s goals are the central element of any
BDI system. After their identification, the rest of the system implementation can follow
relatively straightforwardly. On one side, goals are manipulated only when the agent has
a reason to do so, i.e., believes it is necessary. On the other, its actions are purposeful,
i.e., triggered by the goals.

6.2 Jazzyk BSM code patterns

Ape’s re-implementation in Jazzyk listed in listings of Example 5.3 already provides
hints about macros or code patterns which can support the naïve methodology for de-
velopment with BSM. Below, I loosely follow the steps of the methodology and formally
introduce a set of code patterns supporting development of agents based on the be-
havioural template of the modular BDI architecture, as introduced in Chapter 3. The
patterns allow encoding of agent’s functionality in terms of a web of interdependencies
between agent’s beliefs, goals and behaviours, without being bound to a specific KR
language of the underlying KR modules. The main result of this section is introduction
of code templates formalizing the notions of achievement and maintenance goals.
Furthermore, for each of the introduced patterns, I provide also a formal characteriza-

tion of its functionality in the form of a DCTL* specification. The specifications almost
immediately follow from the compositionality of DCTL* formulae (cf. aggregation and

72

6.2 Jazzyk BSM code patterns

verification of DCTL* formulae in Definition 4.9 and Proposition 4.13), therefore I do
not provide their formal proofs.
The connection between the application-domain-independent and reusable code tem-

plates for BDI-style agents and their respective semantic characterizations provides one
of the main contributions of this dissertation. Discussion of the individual patterns is
accompanied by fragments of Ape’s program, the dissertation’s running example.
Strict reliance on proper quoting and positional notation of parameters in the orig-

inal M4 syntax would only clutter the following discourse. Therefore, for the sake of
readability, in the remainder of this chapter, I deviate from the original Jazzyk macro
syntax. Instead, I use the following, simplified, syntax for macro definitions:

define <macro−identifier>(<parameters>)
. . .
/∗ body ∗/
. . .

end

The syntax resembles function specification in structured programming languages.
After the macro definition keyword define, the macro identifier follows in front of the
macro body, together with an optional list of macro’s parameters. The definition ends
with the keyword end. Whenever the context is clear, I also omit the quotes around the
macro parameters. They will be referred to by their corresponding argument identifiers
declared in the list of parameters.
Furthermore, to emphasize the modular nature of the introduced code templates, I use

a notation mixing Jazzyk with the, rather mathematical, syntax of the BSM framework.
I.e., the Jazzyk syntax is interleaved with query and update formulae written as ���B
or ⊕G (cf. Definition 3.1). The concrete identifiers of declared KR modules, together
with their query and update operators used in patterns, remain abstract and can be
instantiates in the particular behavioural template.

6.2.1 Reusable capabilities
Agents act in an environment by executing primitive updates of the KR module repre-
senting the interface to their actuators. Their physical abilities are therefore determined
by the range of well formed formulae in the corresponding KR language, together with
the set of update operators of the module. Capabilities are mst’s constructed from this
universe. Primitive or compound, they encapsulate standalone, meaningful and reusable
behaviours of the agent. To enable their parametrization and thereby finer grained con-
trol of primitive actions, they can be possibly conditioned by agent’s beliefs. I.e., they
can include conditional mst’s constructed from lower level mst’s of the form QB −→ UE ,
QE −→ UE or plain updates UE .
In order to enable formal treatment of agent’s reusable capabilities in larger agent

programs, in Chapter 4, I introduce program annotations of primitive query and update
formulae. Recall, the formal annotation function A : (U(A) ∪ Q(A)) → LTL, defined

73

Chapter 6 BSM design patterns: commitment-oriented programming

in Definition 4.8. Furthermore, semantic characterizations of compound mst’s can be
extracted by annotation aggregation as provided by Definition 4.9.
It is easy to see that the amount of effort to annotate every single primitive query

and update formula occurring in an agent program does not scale up well with larger
programs. Therefore, it is easier to simply extend the possibility for a programmer
to annotate also higher level mst’s and subsequently only assume soundness of such
annotations (cf. Definition 4.10). This allows programmers to flexibly choose the level
of abstraction from which he or she wants to formally treat the resulting agent program.
Since the soundness of higher level annotation is only presumed, the benevolent ap-

proach comes with a threat that the provided annotations of capabilities are actually
incorrect w.r.t. the primitives included in them. I.e., the higher level annotation actu-
ally couldn’t be derived, aggregated, from the lower level ones. I believe, such concerns,
however, actually belong to the nature of program design process and can be tackled by
standard software engineering techniques, such as e.g., unit testing, etc.

Example 6.1 (Ape’s capabilities). In Example 5.3, Ape’s program includes several
basic capabilities, implemented as macros STEP, TURN and AVOID. Additionally, the cor-
responding annotation function of the primitive query formulae and primitive mst’s can
be found in Table 4.1.
Ape is a rather complex system capable of non-trivial interaction with its environment.

According to the introductory story from Chapter 1, he is also able to search for people
who seem to be in a need of a help. He monitors the energy level of its own batteries and
in the case of a need, charge them at the base station. In order to retrieve information
about various facilities at the airport he can also communicate with other agents.
To facilitate such a range of behaviours, without considering the deeper implementa-

tion issues in detail, Table 6.1 lists some of the capabilities and more complex behaviours
enabling such activities. Furthermore, these come with the corresponding characteriza-
tions providing descriptions of their intended functionality.
Ape’s basic capabilities include moving straight along its current orientation axis

(STEPS), turning (TURN), waiting for an approaching person (WAIT), initiating the bat-
tery charging when at the home base (CHARGE) and communicating with other agents
via the local airport network (INFORM). Furthermode, their combinations, together with
conditions on robot’s beliefs yield more complex capabilities, such as avoiding obstacles
(AVOID), leading a person to a destination (LEAD), homing to the charging base (HOME),
solving requests (SOLVE) and replying to the requester (REPLY).
In particular, AVOID capability could be implemented as a combination of STEPS and

TURN, together with conditions relying on Ape’s beliefs about the airport topology and his
actual sensor inputs. The capability τto_dest , introduced in Example 4.14 together with
the corresponding annotation, implements a basic capability of Ape for moving towards
a destination. It could further be exploited by LEAD capability, together with AVOID and
WAIT behaviours and the information about the destination where the guided passenger

74

6.2 Jazzyk BSM code patterns

capability τ A(τ)⇒ . . .

STEPS(Steps) 7→ (at(CurrPos) ∧ ¬see(obstacle))→
[STEPS(Steps)]♦(at(Pos) ∧∆(CurrPos,Pos,Steps))

TURN(Angle) 7→ azimuth(CurrAngle)→
[TURN(Angle)] gazimuth(CurrAngle + Angle)

AVOID 7→ see(obstacle)→ [AVOID∗]♦¬see(obstacle)

WAIT(Person) 7→ at(Person,PPos)∧ at(MyPos)∧∆(PPos,MyPos, 10)→
[WAIT(Person)∗]♦at(Person,MyPos)

LEAD(Person,Place) 7→ [LEAD(Person,Place)∗]♦(at(Person,Place)

CHARGE 7→ at(homebase)→ [CHARGE]♦charged

HOME 7→ low_battery → [HOME∗]♦charged

INFORM(Receiver, Msg) 7→ [INFORM(Receiver ,Msg)] gtold(Receiver ,Msg)

SOLVE(Request) 7→ ¬knows(Request)→ [SOLVE(Request)∗]♦(knows(Request)

REPLY(Receiver,Request) 7→ knows(Request) ∧ answer(Request,Answer)→
[REPLY(Receiver ,Request)] gtold(Receiver ,Msg)

Table 6.1: Some of Ape’s basic capabilities, together with their corresponding se-
mantic characterizations. The helping predicate ∆(Pos1,Pos2,Steps) is true when
|Pos1 − Pos2| > Steps.

wants to get to. Similarly to LEAD, the macro HOME for returning to the charging station
would also exploit capabilities for moving to a certain destination. Finally, Ape’s social
behaviours SOLVE and REPLY rely on macros for sending information to a receiver INFORM,
as well as Ape’s generic aural sensory abilities. REPLY capability would amount to merely
communicating the already known answer regarding the request to the receiver. Solving
requests could range from simply retrieving the information from Ape’s knowledge bases,
to rather complex behaviours including e.g., yellow pages look-up of agents capable of
solving the request, communicating with them, etc.

For the sake of brevity, in this chapter’s running example I abstract from deeper details
of Ape’s functionality. My intention is rather to sketch a credible and at the same time
reasonably detailed demonstration of code patterns utilization. Note also that the logic

75

Chapter 6 BSM design patterns: commitment-oriented programming

DCTL*, as defined in Chapter 4, is based on plain propositional logic formulae. Thus,
the assumptions about semantic characterizations of the macros with variables listed
in Table 6.1 should be understood as formulae schemata instantiated for each specific
instance of a tuple of macro arguments.

6.2.2 Perception

To enable reasoning about the environment and reacting to its changes, an agent must
constantly perceive its environment and store the retrieved information in its belief base.
The state of the belief base reflects the current state of the world from a subjective point
of view of the agent. As already noted in Chapter 3, perception can be encoded in BSM s
implementing the modular BDI architecture as rules of the form QE −→ UB. I.e., suc-
cessful information retrieval from the agent’s sensory interface yields the corresponding
update of its belief base. The following code pattern implements the domain-independent
macro for agent’s perception.

Definition 6.2 (PERCEIVE). Given a query formula ϕE ∈ LE evaluated on agent’s
body module, together with the corresponding belief base update formula ψB ∈ LB, the
macro implementing agent’s perception straightforwardly follows

define PERCEIVE(ϕE, ψB)
when ���E [{ϕE}] then ⊕B [{ψB}]

end

The macro PERCEIVE fulfills the following property:

A(���EϕE)→ [PERCEIVE(ϕE, ψB)] gA(⊕BψB) (6.1)

To support a more sophisticated implementation of perception mechanisms, consider
the following more abstract version of the PERCEIVE pattern.

Definition 6.3 (PERCEIVEX). Let’s assume that φ is a possibly compound query
formula constructed from the set of primitive body interface queries QE , together with
primitive belief conditions QB. I.e., φ does not contain a primitive subformula of the
form ���Gϕ. Let also τ be a, possibly compound, mst modifying only the belief base of
the agent, i.e., τ does not contain (inductively in the whole mst decision tree) an mst of
the form �Eψ or �Gψ. The following macro implements complex perception

define PERCEIVEX(φ, τ)
when φ then τ

end

Straightforwardly, the macro PERCEIVEX fulfills the following property:

A(φ)→ [PERCEIVEX(φ, τ)∗]♦A(τ) (6.2)

76

6.2 Jazzyk BSM code patterns

Both macros PERCEIVE and PERCEIVEX are implemented as simple conditional mst’s.
Their intended functionality is derived solely from the syntactic conditions imposed on
them by the corresponding definitions. In a real implementation, it would be difficult
and probably even useless to explicitly check whether the macros’ parameters satisfy the
conditions imposed on them. However, it still makes sense to use such code templates
as a means to indicate the design intention behind the implemented subprogram.

Example 6.4 (Ape’s perception). In order to be able to deliberate about its internal
mental attitudes and subsequently take actions in the environment, Ape must first be
able to perceive the current state of the world. The following instantiations of the
PERCEIVE pattern allow Ape to capture the relationship between elements of the physical
reality and their belief counterparts.

PERCEIVE(‘camera.see(ObjectID)’, ‘object(ObjectID)’)
PERCEIVE(‘camera.recognize(ObjectID, human)’, ‘person(ObjectID)’)
PERCEIVE(‘gps.location(X,Y,Z)’, ‘at(me, coor(X,Y,Z))’)
PERCEIVE(‘body.getBattery(Level)’, ‘energy(Level)’)
PERCEIVE(‘body.hears(ObjectId, Msg)’, ‘says(ObjectID, Msg)’)

Such elementary perception statements can be aggregated into higher level macros
implementing compound perceptions. Such compounds take care for perceiving larger
aspects of the environment dynamics. The following macros demonstrate this simple
idea.

define PERCEIVE_EYE
PERCEIVE(‘camera.see(ObjectID)’, ‘object(ObjectID)’) ;
PERCEIVE(‘camera.recognize(ObjectID, human)’, ‘person(ObjectID)’)

end

define PERCEIVE_LOCATION
PERCEIVE(‘gps.location(X,Y,Z)’, ‘at(me, coor(X,Y,Z))’) ;
PERCEIVE(‘camera.distance(ObjectID, Dist)’, ‘distance(ObjectID, Dist)’)

end

The mst PERCEIVE_EYE joins the perception statements by the non-deterministic choice
operator. In a single step the agent can either sense objects it can see, or perform
object and face recognition. Compound perception of one, right after another, would be
achieved by joining the two statements by the sequence operator.

Note also that while the template PERCEIVEX can be directly implemented as a self
contained piece of Jazzyk code, the definition of the simpler PERCEIVE macro is not self
contained, because it lacks specification of variables. For the sake of readability, I omit
treatment of variables also in the remainder of this chapter. As I already noted in
the previous chapter, the integrated GNU M4 macro preprocessor includes basic string
manipulation API. In principle, it is therefore possible to implement an automatic mech-
anism for recognizing variables directly from query and update formulae and then passing
them to the individual module invocations. The macro PERCEIVEX is immune to this issue,
since it takes a complete compound query, update, or mst statements as arguments.

77

Chapter 6 BSM design patterns: commitment-oriented programming

6.2.3 Goal-oriented behaviours

The problem of designing a BSM agent performing a specified range of behaviours, can
then be seen as the problem of managing activation, deactivation and interleaving of
the capabilities encoded as BSM mental state transformers. In each step of its execu-
tion, the agent performs a selection of a reactive behaviour to execute. To allow for an
explicit behaviour management, i.e., activation and deactivation of agent’s capabilities,
each capability mst should be triggered only when appropriate. Thus, behaviour acti-
vation becomes purposeful. Behaviour is triggered because an agent has a goal and the
behaviour is supposed to take the agent closer to the achieving it. In the remainder of
this section, I argue that the notion of a commitment towards a goal provides a technical
basis for management and programming of behaviour selection.
The explicit representation of a goal is a formula derived from the agent’s goal base.

The following code pattern implements agent’s capability τ triggered by derivation of
the goal formula ϕG from agent’s goal base.

Definition 6.5 (TRIGGER). Let ϕG ∈ LG be a goal formula and τ be an mst satisfying
the following independence condition

[τ]A(τ)⇒ (A(���GϕG)→ [τ∗]�A(���GϕG)) (6.3)

I.e., iterated execution of τ does not change the derivability of the associated goal
formula ϕG from the agent’s goal base.
Then, the following code template implements triggering of the goal oriented behaviour

τ according to derivability of the corresponding goal formula ϕG.
define TRIGGER(ϕG, τ)

when ���GϕG then τ
end

Straightforwardly, when an agent has a goal ϕG, iterated execution of TRIGGER always
eventually leads to satisfaction of the annotation of τ . I.e.,

[τ]A(τ)⇒ (A(���GϕG)→ [TRIGGER(ϕG, τ)∗]♦A(τ)) (6.4)

The TRIGGER code pattern allows conditional activation and deactivation of the capa-
bility τ , depending on the derivability of the condition ϕG from the agent’s goal base.
Similarly to the PERCEIVE pattern, even though the TRIGGER template takes the form of

a simple conditional mst, by its use, programmers can indicate the intended functionality
of the code chunk.

Example 6.6 (triggering Ape’s behaviours). To assist passengers at the airport,
Ape performs a variety of behaviours, basic capabilities (cf. Example 6.1), implementing
aspects of its functionality. These capabilities are purposeful, i.e., Ape executes them in

78

6.2 Jazzyk BSM code patterns

order to achieve a goal, to perform a task, or to maintain a certain state of affairs. Bind-
ing execution of the capabilities to their corresponding purposes, goals, is demonstrated
by following instantiations of the TRIGGER pattern.

TRIGGER(‘goal(achieve(at(Person,Place)))’, ‘LEAD(Person,Place)’)
TRIGGER(‘goal(achieve(inform(Person,Request)))’, ‘SOLVE(Request)’)
TRIGGER(‘goal(achieve(inform(Person,Request)))’, ‘REPLY(Person,Request)’)
TRIGGER(‘goal(maintain(energy))’, ‘HOME’)

I.e., whenever one of Ape’s goals is to guide a person to a certain place, he can execute
the behaviour LEAD to achieve this goal. Similarly, the two behaviours SOLVE and REPLY
are enabled for execution, when Ape is about to provide information to some person,
possibly on her or his request. Finally, the execution of the homing behaviour HOME
maintains Ape’s energy level sufficient for further functioning.

Note that the two behaviours SOLVE and REPLY in the Example 6.6 above, suitable for
achieving one and the same goal: to provide an information to a person. The semantic
characterizations of the SOLVE behaviour, provided in Table 6.1, does not specify that its
single execution directly leads to Ape knowing the answer to the request. I.e., only the
following weaker characterization holds

¬knows(Request)→ [SOLVE(Request)∗]♦(knows(Request).

In turn, instantiation of such a macro in a BSM shouldn’t be understood as a plan
for direct achievement of the corresponding goal, but rather as a complex behaviour
performing a step towards achieving the goal. A behaviour τ can be considered a proper
plan for achieving a goal ϕG if its semantic characterization looks similar to the following

[τ]♦ϕG,

or alternatively
[τ]>C�ϕG.

I.e., during a single execution of the behaviour τ , the goal formula eventually becomes
true and possibly it stays true till the end of the behaviour execution. Then, having
several behaviours τ1, . . . , τn with such semantic characterizations, we could construct
a proper, possibly non-deterministic, plan by combining them into a compound mst by
using choice and sequence operators.

Example 6.7. The following compound behaviour can be considered a proper plan.
define AVOID_PLAN

STEP(−3) ,
{ TURN(60) ; TURN(−60) } ,
STEP(5)

end

79

Chapter 6 BSM design patterns: commitment-oriented programming

The complex behaviour implements Ape’s strategy for avoiding simple obstacles such
as a piece of luggage on the ground and could possibly be a part of the complex behaviour
AVOID. Ape first moves 3 steps backwards, then non-deterministically chooses a direction
to avoid the obstacle and subsequently moves forward and thus passes the obstacle.
Under circumstances (cf. below), the AVOID_PLAN behaviour can satisfy the following
semantic characterization (also cf. Table 6.1).

see(obstacle)→ [AVOID_PLAN]♦¬see(obstacle)

In practice, however, more complex sequential plans can become impractical. They might
lead to longer, uninterruptible executions, during which preconditions for successful plan
execution might become invalid and thus, the plain can fail. In the case of the AVOID_PLAN
behaviour, this can happen whenever there is another obstacle located in the way of
the chosen avoidance maneuver (right or left). Moreover, extensive use of sequential
behaviours goes against the reactive spirit of the BSM framework (cf. Chapter 1).

6.2.4 Commitment strategy primitives
Above, I introduced patterns for encoding interdependencies between the environment
and agent’s beliefs on one hand (QE −→ UB), and between agent’s goals and its actions in
the environment on the other (QB −→ UE). What remains to complete the information
flow cycle in the modular BDI architecture (cf. Chapter 3), is to provide simple code
templates for encoding relationships between agent’s beliefs and the goals it pursues
(QB −→ UG).
Explicit goal representation allows conditional activation and deactivation of beha-

viours. However, to directly manage when exactly such a goal formula should be deriv-
able, programmer must choose an explicit algorithm, a goal commitment strategy.
A goal commitment strategy explicitly encodes the reasons for a goal adoption as

well as its dropping. When an agent believes it can adopt a goal, it should also add
its explicit representation, a goal formula, to its goal base. Similarly, when it believes
the goal can be dropped, it should remove the corresponding formula from the goal
base. The following two code patterns provide a toolbox for encoding an appropriate
commitment strategy for a given goal formula.

Definition 6.8 (ADOPT and DROP). Let ϕG ∈ LG be a goal formula and ψ⊕, ψ	 ∈
LB be formulae derivable from agent’s belief base. Macros ADOPT and DROP, implementing
respectively goal adoption and goal dropping are defined as follows.

define ADOPT(ϕG, ψ⊕)
when ���Bψ⊕ and not ���GϕG then ⊕G [{ ϕG }]

end

define DROP(ϕG, ψ)
when ���Bψ	 and ���GϕG then 	G [{ ϕG }]

end

80

6.2 Jazzyk BSM code patterns

For the ADOPT and DROP macros we can formulate the properties below. That is, the
following formulae are valid in every annotated BSM.

A(���Bψ⊕)→ [ADOPT(ϕG, ψ⊕)∗]♦A(���GϕG))
A(���Bψ)→ [DROP(ϕG, ψ)∗]♦¬A(���GϕG))

(6.5)

Note the use of behaviour iterations in the pattern characterizations. Stricter versions,
employing the gmodality instead of ♦, could be formulated for non-iterated executions
of the two patterns. However, as will become clear in the next subsections, the weaker
iterated variant will serve the purpose better.

Example 6.9 (Ape’s goal commitment strategies). According to Example 6.6,
Ape executes its basic capabilities to reach its goals. To explicitly manage activation
and deactivation of the behaviours, Ape’s programmer must encode the dynamics of the
goals themselves. This can be achieved by appropriately instantiating the ADOPT and
DROP patterns as follows.

ADOPT(‘goal(achieve(at(Person,Place)))’, ‘wants(Passenger,at(Place))’)
DROP(‘goal(achieve(at(Person,Place)))’, ‘at(Person,Place)’)
DROP(‘goal(achieve(at(Person,Place)))’, ‘refused(Person)’)

ADOPT(‘goal(achieve(inform(Person,Request)))’, ‘asks(Person,Request)’)
DROP(‘goal(achieve(inform(Person,Request)))’,‘answer(Request,Msg),told(Person,Msg)’)

ADOPT(‘goal(maintain(energy))’, ‘true’)

Ape adopts the goal to guide a passenger to a particular destination at the airport,
when he is asked to do so. The goal is considered to be satisfied when the passenger
finally arrives to the requested place. Furthermore, the goal is considered unachievable,
whenever the person for some reason refuses Ape’s help or leaves. Similarly, Ape adopts
the goal to provide an answer to a given request whenever a passenger asks him a question
and the goal is is dropped after Ape finds out the answer and informs the passenger.
Finally, there is no condition triggering the goal to maintain a sufficient energy level of
batteries. Hence, Ape keeps this goal throughout his whole lifetime.

Together with the associated commitment strategy, a goal oriented behaviour imple-
ments a commitment towards a goal, a goal pattern. Instantiations of the ADOPT and
DROP patterns serve as primitives for encoding the exact commitment strategy. In turn,
the goal formula becomes an explicit representation, a mere placeholder, for the goal. In
the following two subsections, I introduce two code patterns for particularly useful goal
types, the achievement goal and the maintenance goal.

6.2.5 Achievement goal
The notion of an achievement goal is one of the central constructs of agent-oriented
programming. Provided, an agent does not believe that a goal satisfaction condition is

81

Chapter 6 BSM design patterns: commitment-oriented programming

true in a given point of time, adopting an achievement goal specifies that the agent desires
to eventually make it true. After having satisfied the goal, it can be dropped. If the agent
believes the goal is unachievable, it can retract its commitment to it. Additionally, after
reaching the goal, the agent must be capable of recognizing that it was indeed satisfied.
The following code pattern implements the commitment towards an achievement goal.

Definition 6.10 (ACHIEVE). Let ϕG ∈ LG be an agent’s goal formula and ϕB, ϕ⊕,
ϕ	 ∈ LB be the corresponding satisfaction, adoption and drop conditions derivable from
the agent’s belief base. Let also τ be a capability triggered by ϕG. Finally, let τp be a
possibly complex perception behaviour constructed from instantiations of the PERCEIVE,
resp. PERCEIVEX pattern. The following pattern implements the notion of a commitment
towards an achievement goal, constructed from these ingredients.

define ACHIEVE(ϕG, ϕB, ψ⊕, ψ	, τp, τ)
τp ;
TRIGGER(ϕG, τ) ;
ADOPT(ϕG, ψ⊕) ;
DROP(ϕG, ϕB) ;
DROP(ϕG, ψ)

end

Let ϕE ∈ LE be a perception formula. Let’s assume that τ is a behaviour causing ϕE,
i.e.,

[τ∗]♦�A(���EϕE) (6.6)

Let’s also assume that τp is a perception behaviour, which allows to recognize validity
of ϕE and reflect it in the agent’s belief base. Formally,

A(���EϕE)→ [τp]♦A(���BϕB) (6.7)

We can formulate the following semantic characterization of the ACHIEVE macro

A(���GϕG)→ [ACHIEVE(ϕG, ϕB, ψ⊕, ψ	, τp, τ)∗]♦
((

A(���BϕB) ∨ A(���Bϕ)
)
U ¬A(���GϕG)

)
(6.8)

The code template for the commitment towards an achievement goal combines a goal
oriented behaviour, with a corresponding commitment strategy and perception. In a sin-
gle execution step, either the agent perceives, handles the goal commitment, or performs
the behaviour for its achievement. If the triggered behaviour is indeed “appropriate”
w.r.t. the considered goal (6.6) and the agent is able to recognize that the goal is satisfied
(6.7), iterated execution of τ eventually leads to the goal satisfaction and its subsequent
elimination. The goal can of course be dropped also prematurely, whenever the agent
recognizes it as unachievable, or irrelevant, i.e., the agent starts to believe that ϕ	 holds.
This, however, can be only caused by execution of other, not directly related, behaviours.
For the sake of simplicity, the condition 6.6 is rather strong. It requires τ to be such

a behaviour that its iterated execution can make ϕE true and afterwards keep it valid

82

6.2 Jazzyk BSM code patterns

forever. Actually, it would suffice if ϕE holds sometimes at the end of execution of τ ,
after which the perception mst τp is executed. Note also that the formula requires only
execution of τ . It might well be true that when other behaviours are executed, they
can make ϕE eventually invalid. Here, I also neglect the dynamics of the environment,
which is in general unpredictable. However, since I do not consider an explicit model
of an environment in the presented setting, for the purposes of reasoning about agent
program executions, I ignore the environment dynamics. It is relatively straightforward
to see how the setting could be transparently extended in this direction.

Example 6.11 (Ape’s achievement goals). Finally, we are ready to combine bits of
the puzzle from Example 6.6 and Example 6.9 and to formulate Ape’s achievement goals
for guiding a passenger to the requested destination and for resolving a request.

ACHIEVE(
‘goal(achieve(at(Person,Place)))’, /∗ goal formula ∗/
‘at(Person,Place)’, /∗ satisfaction condition ∗/
‘wants(Passenger,at(Place))’, /∗ adopt condition ∗/
‘refused(Person)’, /∗ drop condition ∗/
‘{ /∗ complex perception ∗/

PERCEIVE_LOCATION ;
PERCEIVE(‘body.hears(ObjectId, Msg)’, ‘says(ObjectID, Msg)’)

}’,
‘LEAD(Person,Place)’ /∗ triggered behaviour mst ∗/

)

ACHIEVE(
‘goal(achieve(inform(Person,Request)))’,
‘answer(Request,Msg),told(Person,Msg)’,
‘asks(Person,Request)’,
‘refused(Person)’,
‘PERCEIVE(‘body.hears(ObjectId, Msg)’, ‘says(ObjectID, Msg)’)’,
‘{ SOLVE(Request) ; REPLY(Person,Request) }’

)

When Ape believes he was asked by a passenger to guide her or him to a particular
destination, wants(Passenger,at(Place)) becomes true in his belief base. In reaction to that, Ape
eventually adopts the goal goal(achieve(at(Person,Place))). The goal subsequently triggers the
behaviour LEAD, designed to perform a step towards eventually getting to the destination.
At the moment when Ape realizes they arrived to the destination, he drops the goal. Ape
recognizes that he and the passenger arrived to the destination (at(Person,Place)) by means
of performing the sensing behaviour PERCEIVE_LOCATION. The goal is dropped also when
he realizes the goal is unachievable because the passenger for whatever reason turned
down Ape’s assistance.
Similarly, in the case of the second achievement goal supposed to provide an answer to

a request. Note however that the behaviour triggered by the achievement goal to reply
to the passenger, goal(achieve(inform(Person,Request))), is a non-deterministic choice of a step
towards solving the request and replying to the passenger. This can be done, because the
semantic characterizations of SOLVE and REPLY macros are mutually exclusive w.r.t. the

83

Chapter 6 BSM design patterns: commitment-oriented programming

truth value of knows(Request). Thus, in the case when REPLY will be performed before
Ape even finds an answer to the request, REPLY yields no operation. We assume here that
the semantic characterization of REPLY provided in the Table 6.1 is complete.

The provided implementation of a commitment towards an achievement goal imple-
ments a commitment strategy similar to that of the specification of persistent relativized
goal P-R-GOAL, defined by Cohen and Levesque (1990) as follows.

(P−R−GOAL x p q) def= (GOAL x (LATER p)) ∧ (BEL x ¬p) ∧
(BEFORE [(BEL x p) ∨ (BEL x �¬p) ∨ (BEL x ¬q)]
¬(GOAL x (LATER p))).

That is, whenever the agent x believes it is appropriate (q), it adopts the persistent
relativized goal to eventually achieve p (LATER p). Furthermore, before dropping the
goal, the agent either believes that it is achieved, or it is unachievable, or the reason for
its adoption q does not hold anymore.
In the proposal above, unlike for the P−R−GOAL, in order to instantiate the macro

ACHIEVE a programmer must explicitly encode the goal drop condition ϕ	 for the case
when the agent believes the goal is unachievable or not needed anymore. In the basic
setup of the modular BDI architecture discussed here, I do not assume introspective
capabilities of an agent.

6.2.6 Maintenance goal

Another particularly useful commitment strategy towards a goal is persistent mainte-
nance of a certain condition imposed on agent’s beliefs. Provided a belief condition ϕB
is an intended consequence of a capability τ , its violation should trigger the behaviour τ
supposed to re-establish its validity. Moreover, in the proposal below, the maintenance
efforts should never be dropped. I.e., in the case the goal cannot be derived from the
goal base, it should be re-instantiated.

Definition 6.12 (MAINTAIN). Let ϕG ∈ LG be a goal formula and ϕB ∈ LB be the
maintained belief condition. Let also τ be a behaviour capable of re-establishing the
condition ϕB. Finally, let τp be a possibly complex perception behaviour, capable of
recognizing validity of the maintained condition in the environment. The following code
pattern implements the notion of a commitment towards a maintenance goal.

define MAINTAIN(ϕG, ϕB, τp, τ)
τp ;
when not ���BϕB then TRIGGER(ϕG, τ) ;
ADOPT(ϕG, >)

end

Similarly to Definition 6.10, let ϕE ∈ LE be a sensory input bound to the belief ϕB.
Let’s also assume that the purpose of the goal oriented behaviour τ is to eventually re-
establish validity of the maintained condition ϕB and thus maintain the goal ϕG. I.e.,

84

6.3 Commitment-oriented programming

τ and τp satisfy conditions 6.6 and 6.7 from Definition 6.10. The code pattern MAINTAIN
satisfies the following property:

[A(���GϕG)→ MAINTAIN(ϕG, ϕB, τp, τ)∗](�(¬A(���BϕB)→ ♦A(���BϕB)) (6.9)

It can again be the case that the execution of the behaviour τ might not bring about the
validity of the maintained condition immediately. In the case the condition is violated,
τ ’s iterated execution should eventually re-establish its validity. Moreover, when, for
whatever reason, the goal ϕG is dropped, the macro MAINTAIN re-instantiates it in the
goal base, i.e., adopts it again.

Example 6.13 (Ape’s maintenance goal). To complement the two achievement goals
from Example 6.11 and to be able to serve airport passengers during long days, Ape must
maintain a sufficient level of charge in his batteries.

MAINTAIN(
‘goal(maintain(energy))’,
‘\+ low_battery’,
‘PERCEIVE(

‘body.getBattery(Level)’,
‘energy(Level)’

)’,
‘HOME’

)

Whenever Ape notices that the battery charge dropped below the critical threshold,
i.e., the predicate low_battery becomes derivable from his belief base (cf. Listing 3.1), he
enables execution of the homing and charging behaviour HOME. The perception pattern
implementing the connection between the consequences of the behaviour HOME and the
maintained condition is taken from Example 6.4. The condition \+ low_battery is to be
read as “it is not the case that the battery is low”.

6.3 Commitment-oriented programming
The BSM code patterns for commitment strategies towards an achievement and main-
tenance goals allow an agent programmer to clearly and concisely express relationships
between individual mental attitudes of the designed agent by means of self-contained
pieces of source code. In the previous section, I gradually designed a set of application-
domain-independent subprograms, which are finally composed into meaningful patterns.
To do so, I exploited the compositionality of mst’s provided by the BSM framework,
together with the macro preprocessor’s facilities for code encapsulation and reuse.
Compositionality of programs is a crucial means for modular software engineering. As

I show in this section, it allows scaling up the promoted development method towards
large applications. In order to support hierarchical decomposition of agent systems, we
need a powerful abstraction, allowing arbitrary nesting of constructs in a way similar

85

Chapter 6 BSM design patterns: commitment-oriented programming

to that of e.g., object-oriented languages. An object can consists of, or refer to, other
objects which, in turn, can keep further relations to other objects. A design abstraction
enabling composition of constructs, so that the resulting entity can be further composed
into objects of the same type, allows modular application development by possibly teams
of independent developers.
The goal patterns ACHIEVE and MAINTAIN, as considered in definitions 6.10 and 6.12,

do not straightforwardly employ such hierarchical nesting of arbitrary depth. Yet, it
is relatively easy to observe that there is nothing standing in a way to use compound
mst’s consisting of other goal specifications as the behaviours triggered in order to reach
a goal. I.e.,

Besides executing a commitment towards reaching a goal, the goal can also
be satisfied by reaching other goals, i.e., subgoals.

Lifting this observation even higher leads to an abstraction based on the notion of com-
mitment. I.e., a programmer designs an agent system in terms of a web of interrelated
commitments. I call such an agent programming style commitment-oriented program-
ming (COP). The essential idea behind commitment-oriented programming is a straight-
forward generalization of the observation about the goals above.

Commitment towards a mental attitude is a behaviour describing relation-
ships among a set of mental attitude objects, execution of which leads to a
well defined change of the attitude in focus. Furthermore, the change can be
often satisfied by a composition of commitments towards other related mental
attitudes, subcommitments.

Depending on the central focus of the design methodology in consideration, similar com-
mitment definitions could be defined towards various mental attitudes, such as e.g., goals,
obligations, norms, etc. The embedded compositionality allows hierarchical decomposi-
tion of higher level commitments into lower level ones, until execution of concrete low
level capabilities can be specified directly. For instance, a commitment to stand up to
an obligation might involve maintaining the obligation, a maintenance goal, combined
with a commitment to achieve the subject of the obligation, a goal.
A particularly useful instance of this abstraction is a commitment towards a goal

presented in the previous section. A commitment specification to a goal is defined in
terms of interrelationships between involved percepts, beliefs, goals and actions, and
possibly also in terms of other goals. In line with the nomenclature for COP, the goal-
centric programming style presented above could be coined goal oriented programming.
To treat goals as the central element of a methodology for construction of BDI-style

cognitive agents is rather characteristic to BDI inspired agent architectures. In terms of
the code patterns defined in the previous section, it means that regardless of the actual
nature of the goal pattern in consideration, a goal oriented behaviour τ triggered by

86

6.3 Commitment-oriented programming

the goal can be constructed from agent’s capabilities, as well as instances of other goal
commitment specifications, such as e.g., ACHIEVE and MAINTAIN patterns. The final agent
program for Ape’s functionality demonstrates this technique.

Example 6.14 (Finally Ape: putting it altogether). In the sequel of examples
earlier in this section, I gradually developed subprograms implementing parts of Ape’s
complex behaviour. namely, achievement goals for guiding a passenger to the desired lo-
cation, resolving his/her request (both in Example 6.11) and for maintaining a sufficient
level of energy in Ape’s batteries (Example 6.13). These provide some of the building
blocks, out of which Ape’s overall functionality can be built. In the following, I assume
that these goal behaviours are wrapped into higher level macros GOAL_GUIDE_PASSENGER,
GOAL_RESOLVE_REQUEST and GOAL_ENERGY respectively. Furthermore, I assume similarly
constructed macros GOAL_ROAM implementing the commitment towards moving to a ran-
dom location in the airport hall. Finally, GOAL_APPROACH_PASSENGER implements the
behaviour for approaching a passenger who seems to need assistance. The following
two macros implement commitments towards the behaviour for assisting passengers and
searching for new clients respectively.

/∗ General purpose goal for assisting passengers at the airport ∗/
define GOAL_ASSIST

ACHIEVE(
‘goal(achieve(satisfied(Person)))’,
‘says(Person,’’thank you’’)’,
‘meet(Person)’,
‘departed(Person)’,
‘PERCEIVE_EAR(Person)’,
‘{

GOAL_GUIDE_PASSENGER(Person) ;
GOAL_RESOLVE_REQUEST(Person)

}’
)

end

/∗ General purpose goal for seeking passengers in a need for assistance ∗/
define GOAL_SEEK

MAINTAIN(
‘goal(maintain(helping))’,
‘has_client’,
‘{ PERCEIVE_OBSERVE ; PERCEIVE_PHONE }’,
‘{

GOAL_ROAM ;
GOAL_APPROACH_PASSENGER

}’
)

end

In the first case GOAL_ASSIST, Ape has a desire to satisfy passenger’s request. In order to
do so, he actively listens to what the passenger says and depending on the current request,
he either makes a steps towards resolving it by communicating with other airport service
agents or a step towards guiding the client to the desired location. Similarly, in the second

87

Chapter 6 BSM design patterns: commitment-oriented programming

case GOAL_SEEK, when Ape has nothing to do, he roams around the airport premises,
identifies passengers who potentially need assistance and proactively approaches them.
During this activity, he actively observes the surroundings and checks its integrated
cellular phone for potential incoming requests from the central command.
Finally, since Ape is a service robot, an example main program for Ape could consist of

persistently maintaining a reasonable workload. This decomposes into an infinite cycle
of seeking potential clients, assisting them and maintaining the energy level at the same
time.

/∗ Ape’s root level agent program ∗/
MAINTAIN(

‘goal(main_activity)’,
‘false’,
‘{

GOAL_SEEK ;
GOAL_ASSIST ;
GOAL_ENERGY

}’
)

Note that even though I describe the introduced subprograms in terms of loose plans,
Ape executes, in the program listings above all the behaviours are connected by the
non-deterministic choice operator. This means that Ape’s lower level behaviours are
actually interleaved and in a single program execution cycle Ape always executes only
one of them. I.e., he makes a step towards achieving or maintaining the corresponding
goals. In the case, the lower level mst’s would be joined by the sequence operator
down to the primitive capabilities, Ape’s functionality could be interpreted in terms
of proper, uninterruptible plans. However, since interruptibility of behaviours is an
essential element of programming robust embodied agents, such a scheme would lead to
problems with reactivity of the whole system.

Flexibility and adjustable level of abstraction
The encapsulated specifications of commitments towards goals implement standalone
self-contained modules. In general, the decomposition design principle of commitment-
oriented programming promotes designing higher level goals in terms of lower level ones,
down to basic capabilities. On the other hand, however, this style of agent system
design also allows programmer to liberally decide the level of granularity. Below that
level, the agent program will be decomposed only into basic behaviours, capabilities.
The promoted style does not enforce the all-encompassing view, such as everything is a
commitment, rather, depending on the nature of the designed system, a designer should
be free to decide what is the appropriate level of abstraction under which the agent’s
functionality is to be implemented as low-level, perhaps more efficient, hard-wired Jazzyk
code. I.e., which aspects are better to be modeled in terms of commitments or similar
high level notions and which should remain opaque capabilities of the agent.
In the sequel of examples in this section, behaviours such as CHARGE or AVOID were

88

6.4 Summary

modeled as basic capabilities used later in implementation of goals GOAL_ENERGY or
GOAL_GUIDE_PASSENGER. That does not mean that in a different scenario, even such
primitive behaviours couldn’t be modeled as lower level of commitments composed of
even more primitive commitments and basic capabilities.

6.4 Summary
Example 6.14 closes the sequel of steps following the proposed methodology for devel-
opment of cognitive agents with the BSM framework. Besides proposing a methodology
for programming cognitive agent systems with the BSM framework, the list below sum-
marizes the main contributions of this chapter.

1. I gradually develop a set of high level language constructs, corresponding to com-
plex mental attitudes of an agent, such as the notions of commitments towards
achievement andmaintenance goals. The introduced high level language constructs
rely on the semantics of the lower level behaviours used as their components. De-
scriptions of lower level behaviours provide a clear semantic characterization of the
more complex, higher level, functionality.

2. Generalizing the naïve methodology of agent-oriented design presented troughout
the previous chapters, I propose commitment-oriented programming. This pro-
gramming paradigm promotes development of instance methodologies centered
around a particular mental attitude. In turn, an agent program is designed in
terms of a web of interdependent commitment specifications.

3. In order to enable reasoning about agent programs written in terms of high level
goals, designers are free to decide the level of specificity of the program annotations
of basic behaviours. Since these can be composed from even lower level construc-
tions, their semantic characterization can be either derived from the characteri-
zations of the components, or directly specified by the designer. Thereby, agent
system developers are free to adjust the level of abstraction on which the program
speaks in terms of well characterized commitments and below which the agent’s
functionality is implemented in terms of primitive, rather ad-hoc, behaviours.

This chapter is a culmination of the presented dissertation. It builds on my earlier papers
with Jamroga and Köster (Novák and Köster, 2008; Novák and Jamroga, 2009). In fact,
the chapter puts together the theoretical efforts of the previous parts of the dissertation.
I finally demonstrated the alternative approach to designing a high level agent-oriented
programming language. Instead of choosing a fixed set of agent-oriented features to
be implemented in a language interpreter, I propose a purely syntactic approach to
constructing high level language. It goes hand in hand with the semantic specification
of the introduced constructs, patterns, in terms of program annotations.

89

Chapter 6 BSM design patterns: commitment-oriented programming

90

Part III

Evaluation, extensions and beyond

... which finally demonstrates that the language can be practically applied
in a variety of domains and thus provides a proof-of-concept for the proposed
framework.

Chapter 7

Case studies

In the second part of this dissertation, I tried to approach the problem of pragmatics
of the framework of Behavioural State Machines. In particular, I proposed the ap-
proach of commitment oriented programming, an informal methodological approach for
development of cognitive agent systems with mental attitudes, supported by domain-
independent code patterns. While the question of methodology is of the highest impor-
tance for engineering real-world systems, in order to provide substrate for the theoretical
claims, a practical evaluation of the approach is needed.
To provide a proof-of-concept for the BSM framework, as well as to drive and nurture

the research towards the methodology of development with Jazzyk, I designed and man-
aged the development of three case-studies Jazzbot, Urbibot and AgentContest team. In
the course of their development, we collected a body of experience with programming in
Jazzyk. Especially the first proof-of-concept project, Jazzbot, served as the driver behind
the methodological results presented in Chapter 6.
In this chapter, I briefly describe the three implemented demonstration applications.

Jazzbot, the first case study, is a virtual bot in a simulated 3D environment of an open-
source first person shooter computer game Nexuiz (Nexuiz Team, 2007). Urbibot, on
the other hand, was developed as a step towards programming mobile robots. It is an
agent program steering a model of a simulated small mobile robot in a 3D environment
provided by a physical robotic simulator Webots (Cyberbotics Inc., 2009). The final
application, AgentContest team, is a step towards experiments with multi-agent systems
based on the BSM framework. It is our planned, non-competing, entry to the Multi-
Agent Programming Contest 2009 (Behrens et al., 2009b).

7.1 Jazzbot
Jazzbot is a virtual agent embodied in a simulated 3D environment of the first-person
shooter computer game Nexuiz (Nexuiz Team, 2007). Its task is to explore a virtual
building, search for certain objects in it and subsequently deliver them to the base. At
the same time, Jazzbot is supposed to differentiate between other players present in the
building and seek safety upon being attacked by an enemy player. When the danger
disappears, it should return back to the activities interrupted by the attack.

93

Chapter 7 Case studies

Figure 7.1: Screenshot of the Jazzbot virtual agents in the virtual building of the Nexuiz
game environment.

Jazzbot is a goal-driven BDI inspired cognitive agent developed with the Jazzyk lan-
guage. The Nexuiz death-match game takes place in a virtual building containing various
objects, such as e.g., weapons, flags or armor kits. The game engine is also capable of
simulating diverse terrains like solid floor or liquid and provides basic means for inter-
player interaction. Because of its accessibility, Nexuiz is published under the open source
GNU GPL licence, we chose the Nexuiz game server as the simulator for Jazzbot case-
study. Jazzbot was our first larger proof-of-concept application for the BSM framework
and Jazzyk. Figure 7.1 depicts a screenshot of the Jazzbot agent acting in the simu-
lated environment. Demonstration videos and source code can be found on the project
website (Novák, 2009a).
Jazzbot’s behaviour is implemented as a Jazzyk program. In the experimental scenario,

the bot searches for a particular item in the environment, which it then picks up and
delivers to the base point. For simplicity, the item to search for is hardcoded into
Jazzbot’s belief base in design time. During the search phase the agent tries to always
move to unexplored segments of the environment. On the other hand, when it tries to
deliver the found item, it exploits a path planning algorithm to compute the shortest
path to the base point. Hence, during the search phase, in every step the bot semi-
randomly selects a direction to move to a previously unexplored part of the building
and in the case there is none such, it returns to the nearest waypoint from which an
unexplored direction exists. The behaviour for environment exploration is interrupted,
whenever the bot feels under attack, i.e., an enemy player attempts to shoot at it. Upon
that, it triggers emergency behaviours, such as running away from the danger. After the
sense of emergency fades away, it returns back to its previously performed goals of item
search or delivery.
Jazzbot’s agent program was developed according to the naïve methodology, discussed

previously in Chapter 6. It served as a vehicle for development of the methodology

94

7.1 Jazzbot

Listing 7.1 Implementation of Jazzbot’s control cycle.

/∗ The actual Jazzbot agent program ∗/
PERCEIVE , HANDLE_GOALS , ACT

Listing 7.2 Code snippet from the Jazzbot agent program.

define(‘ACT’,‘{
/∗ The bot searches for an item, only when it does not have it ∗/
when ���G [{ task(search(X)) }] and not ���B [{ hold(X) }] then SEARCH(‘X’);

/∗ When a searched item is found, it picks it ∗/
when ���G [{ task(pick(X)) }] and ���B [{ see(X) }] then PICK(‘X’) ;

/∗ When the bot finally holds the item, it deliver it ∗/
when ���G [{ task(deliver(X)) }] and ���B [{ hold(X) }] then DELIVER(‘X’) ;

/∗ Simple behaviour triggers without guard conditions ∗/
when ���G [{ task(wander) }] then WALK ;
when ���G [{ task(safety) }] then RUN_AWAY ;
when ���G [{ task(communicate) }] then SOCIALIZE

}’)

and the associated code patterns Therefore, only preliminary versions of the actual code
patterns were used in it. The main control cycle, listed in Listing 7.1, consists of three
steps that are executed sequentially. First, the bot reads its sensors (perception). Then,
if necessary, deliberates about its goals and finally, it selects a behaviour according to its
actual goals and beliefs (act). Listing 7.2 provides an example code implementing selec-
tion of goal oriented behaviours, realized as parametrized macros, triggered by Jazzbot’s
goals. While the bot’s goals simply trigger behaviours for walking around, danger aver-
sion and social behaviour, executions of behaviours finally leading to getting an item are
additionally guarded by belief conditions.
Figure 7.2 provides an overview of Jazzbot’s architecture. The agent features a belief

base, consisting of two KR modules for representation of agent’s actual beliefs and
storing the map of the environment. The goal base encodes interrelationships between
various agent’s goals. Finally, bot interacts with the simulated environment by a module
connecting it to a remote game simulation server.
JzNexuiz KR module (cf. Section 8.3), the Jazzbot’s interface to the environment, the

body, provides the bot with capabilities for sensing and acting in the virtual world served
by a Nexuiz game server. The bot can move forward, backward, it can turn or shoot.
Additionally, Jazzbot is equipped with several sensors: GPS, sonar, 3D compass and an
object recognition sensor. The module communicates over the network with the Nexuiz
game server and thus provides an interface of a pure client side Nexuiz bot. I.e., the
bot can access only a subset of the perceptual information a human player would have
available.

95

Chapter 7 Case studies

Figure 7.2: Shared internal architecture of Jazzbot and Urbibot agents.

Jazzbot’s belief base is composed of two modules, JzASP (cf. Section 8.1) and JzRuby
(cf. Section 8.2). The first integrates an Answer Set Programming solver Smodels by
Syrjänen and Niemelä (2001) and contains an AnsProlog* (Baral, 2003) logic program
reflecting agent’s beliefs about itself, the environment, objects in it and other players.
The second, based on an interpreted object oriented programming language Ruby (Mat-
sumoto, 2009), stores the map of the agent’s environment. Listing 7.3 lists a code chunk
implementing a part of the AnsProlog* component of the Jazzbot’s belief base.
To represent Jazzbot’s information about the topology of its environment, the agent

uses a circle-based waypoint graph (CWG) (Rabin, 2004) to generate the map of its
environment. CWG’s are an improved version of waypoint graphs, extended with a
radius for each waypoint. The radius is determined by the distance between the avatar
and the nearest obstacle. This technique ensures, especially in large rooms and open
spaces, a smaller number of waypoints within the graph, what in turn speeds up the path
search algorithm. Figure 7.3 shows a graphical representation of the CWG for a sample
walk of the Jazzbot agent from the spawn point to the point marked by the arrow.
Additionally, each waypoint stores a list of objects present within its range, as well as

about walls touching it and information about unexplored directions, i.e., such in which
there is no connection to another waypoint or a wall. By employing a breadth-first graph
search algorithm, the agent can compute the shortest path to a particular object or a
position.
The CWG graph is constructed by the agent so that in each step it determines whether

its current absolute position corresponds to some known waypoint. If that is not the
case, it turns around in 60◦ steps and by checking its distance sensor, it determines the
nearest obstacle. Subsequently, the newly added waypoint is incorporated into the CWG

96

7.2 Urbibot

Figure 7.3: CWG map representation of the environment used by Jazzbot. The graph is
a result of a sample walk through the room.

by connecting it to all the other waypoints with which it overlaps. All the perceived
objects, together with all the directions in which the agent can see a wall are stored
within the node.
Jazzbot’s goal base is again an AnsProlog* logic program representing its current goals

and their interdependencies. Goals can be either of a declarative, goals-to-be or perfor-
mative nature, goals-to-do, or tasks. In the Jazzbot implementation, each goal-to-do acti-
vates one or more tasks, which in turn trigger, one or more corresponding behaviours of
the agent. The relationship between the two is encoded as an AnsProlog∗ logic program,
as listed in the excerpt from the Jazzbot’s belief base implementation in Listing 7.4.
On the ground of holding certain beliefs, the agent is also allowed to adopt new or drop

old goals, which are either satisfied, irrelevant, or subjectively recognized as impossible
to achieve. The agent thus implements goal commitment strategies. While Chapter 6
summarized the overall design methodology resulting from Jazzbot development, we
discuss concrete details about the Jazzbot design in the joint paper with Köster (2008).
Furthermore, Chapter 8 provides details on the implementation of the Jazzbot’s KR
modules.

7.2 Urbibot
Urbibot is the second case-study, developed as a step towards applications of the BSM
framework in the mobile robotics domain. It is an agent program steering a small, two-
wheeled mobile robot in an environment provided by the physical robotic simulator.
Urbibot explores a maze, where it searches for red poles and then tries to bump into
each of them. At the same time it tries to avoid patrols policing the environment. Upon

97

Chapter 7 Case studies

Listing 7.3 Jazzbot’s belief base implementation in AnsProlog∗.

% Initially the bot does not hold the box %
% The bot can later hold other objects as well %
¬hold(box(42)).

% Reasoning about the health status %
alive :− health(X), X > 0.
dead :− health(X), X <= 0.
attacked :− health(X), X <= 90.
wounded :− health(X), X <= 50.

% Reasoning about friendliness of other players %
friend(Id) :− see(player(Id)), not attacked, player(Id).
enemy(Id) :− see(player(Id)), not friend(Id), player(Id).

player(1..5).

Listing 7.4 Jazzbot’s goal base implementation in AnsProlog∗.

% Initially the bot has two maintenance goals and %
% a single achievement goal. %
maintain(happy).
maintain(survive).
achieve(get(box(42))).

% Subgoals of the goal maintain(happy) %
task(communicate) :− maintain(happy).
task(wander) :− maintain(happy).

% Subgoals of the goal maintain(survive) %
task(wander) :− maintain(survive).
task(safety) :− maintain(survive).
task(energy) :− maintain(survive).

% Subgoals of the goal achieve(get(Object)) %
task(search(X)) :− achieve(get(X)), not achieve(get(medikit)), item(X).
task(pick(X)) :− achieve(get(X)), not achieve(get(medikit)), item(X).
task(deliver(X)) :− achieve(get(X)), not achieve(get(medikit)), item(X).

% Specialized subgoals of the goal achieve(get(medikit)) %
task(search(medikit)) :− achieve(get(medikit)).
task(pick(medikit)) :− achieve(get(medikit)).

% Ressurect after being killed %
task(reborn) :− achieve(reborn).

% Definition of items %
item(medikit).
item(X) :− box(X).

box(1..50).

98

7.2 Urbibot

(a) (b)

Figure 7.4: Left, photograph of e-puck in life-size (Mondada et al., 2009) (re-printed
with courtesy of authors). Right, a screenshot of the Urbibot in Webots simulator.

encounter with such a patrol, the robot runs away to finally return to the previously
interrupted activity when safe again. Urbibot is embodied as an e-Puck (Mondada et al.,
2009; EPFL, 2006), a small educational two-wheeled mobile robot simulated in Webots,
a 3D physics simulator developed by Cyberbotics Inc. (2009) (also cf. (Michel, 1998)).
The robot is steered using URBI, a highly flexible and modular robotic programming
platform based on event-based programming model. URBI platform is developed by
Gostai (2009a). The main motivation for using URBI is the direct portability of the
developed agent program from simulator to the real robot.
Similarly to Jazzbot, the overall agent design is derived from the modular BDI archi-

tecture introduced in Chapter 3. It also some parts of the code developed for Jazzbot. In
turn, except for using JzASP KR module to represent agent’s beliefs about itself, Urbibot
features similar agent architecture as the one depicted in the Figure 7.2 for the Jazzbot
agent. Urbibot’s beliefs comprise exclusively information about the map. The interface
to the simulator environment is provided by the JzUrbi KR module (cf. Section 8.4).
As already noted above, Urbibot’s behaviour is similar to that of Jazzbot agent. How-

ever instead of controlling the agent’s body with rather discrete commands, such as
move forward or turn left, URBI allows a more sophisticated control by directly accessing the
robot’s actuators through the URBI programming language primitives (Gostai, 2009c,b).
In the particular case of the e-Puck robot, these are only its two wheels. The robot also
features a mounted camera, a directional distance sensor and an additional GPS sensor,
our sole customization of the original e-Puck robot model. In the JzRuby module, the
robot analyzes the camera image stream and by joining it with the output of the distance
and GPS sensors it constructs a 2D map of the environment. Figure 7.5a depicts the
grid representation of the simulated environment as the Urbibot stores it in its JzRuby

99

Chapter 7 Case studies

(a) (b)

Figure 7.5: Left, representation of the environment grid map as the Urbibot represents
it. On the right, a screenshot of the Urbibot exploring the maze. The lower right corner
provides the current snapshot of the camera perception.

belief base. Black cells represent walls the robot recognizes, grey area is free space in
which it can move and finally the white cells represent areas about which the robot has
no information. The figure also depicts the robot’s camera view and orientation angle.
Upon encountering a patrol robot, the bot calculates an approximation of the space the

patrol robot can see, and subsequently tries to navigate out of this area. To plan paths
between two points, Urbibot uses A∗ algorithm. Again, the details on the implementation
of the Urbibot’s KR modules can be found later in Chapter 8. Figures 7.4b and 7.5b
depict screenshots of the Urbibot agent acting in the maze environment. Furthermore,
demonstration videos and source code are provided in the corresponding section of the
Jazzyk project website (Novák, 2009a).

7.3 AgentContest team

The final application developed in the context of my research is the AgentContest team,
our non-competing entry to the Multi-Agent Programming Contest 2009.
Multi-Agent Programming Contest (Behrens et al., 2009b) is a tournament of multi-

agent systems in a simple simulated environment. It is an attempt to stimulate research
in the area of multi-agent system (MAS) development and programming, with the aim to
identify key problems of programming MASs (Behrens et al., 2009b). Furthermore, the
ambition of the project is to develop benchmark problem instances serving as milestones
for testing multi-agent programming languages, platforms and tools. We published the

100

7.3 AgentContest team

reports on the past editions of the competition in a sequel of papers (Dastani et al.,
2005a, 2006, 2008a,b).
In the 2009 edition, participants should implement a team of agents playing cowboys

herding cows. The agents navigate in a grid game environment in which there are herds
of cows, which should be “pushed” into corrals. The team scores a point for each cow
which is forced into the team’s corral during the game. Apart from cows and cowboy
agents, the environment contains also trees, obstacles, and fences, which can be opened
by pushing an associated button. The game is designed in such a way that the team
of agents is forced to cooperate in order to score points. The cooperation is enforced
by the behaviour of cows, which tend to group in compact herds and are repelled by
a cowboy standing in a vicinity. I.e., they perform behaviours, also know as flocking
and dispersion. Thus, to move a group of cows in a certain direction, a team effort is
required. Similarly, in order to open a fence gate, the team has to decide which member
will push the button and the rest has to coordinate in order to push the herd through
the gate. Figure 7.6 depicts an example of the game visualization.
Development of AgentContest team is a step towards evaluating the more advanced

techniques for programming with the BSM framework, such as the goal oriented pro-
gramming code patterns presented in Chapter 6, in a multi-agent setting. I.e., unlike in
Jazzbot and Urbibot studies, the stress in this project is on communication and coordi-
nation among agents, rather than on their reactivity and pro-activity.
The single agent architecture for individual AgentContest team members remains the

same as in the previous two case-studies. I.e., the agents feature a belief base written
mostly in Ruby and a goal base implemented using technique similar to that used for the
Jazzbot agent (cf. Listing 7.4). However, unlike the previous two projects, the interface
to the environment comprises a union of two modules, JzMASSim and JzOAAComm,
described in Section 8.5 and Section 8.6 respectively. JzMASSim connector plug-in pro-
vides an interface to the game environment simulated by the tournament server MAS-
Sim (Behrens et al., 2008, 2009a). JzOAAComm KR module provides communication
facilities for the multi-agent system by exploiting the communication middleware plat-
form SRI Open Agent Architecture (Cheyer and Martin, 2001; SRI International, 2007).
Figure 7.7 shows a screenshot of the OAA agent monitor, with a team of communicating
agents.
At the time of writing this thesis, the MAS implementation is still in development,

therefore I provide here only a rough overview of the team’s functionality. Similarly
to the Urbibot agent, the AgentContest team members use A∗ path planning algorithm
within the belief base KR module providing representation of the environment topology.
Since the environment provides only incomplete information about the grid, the agents
share the information about their perceptions of their surroundings by broadcasting it
upon local modification. On the command of a leader agent, the team coordinates in
order to organize itself into group formations for pushing cow herds towards the desired
direction. When needed, the team reorganizes the formation in order to change the

101

Chapter 7 Case studies

Figure 7.6: Example of the of the AgentContest 2009 scenario simulation environment
grid. The squares depict corrals of teams, the gray ovals represent cows and black circles
are two teams of cowboys (agents). Finally, the crosses between the blocks of tress (grey
circles) represent fences which can be opened by standing on the button cell on sides of
the fences.

Figure 7.7: Screenshot of the OAA agent monitor depicting five connected agents com-
municating via the OAA Facilitator agent.

102

7.4 Summary

direction in which cows are being pushed, or it sends a team member to open a fence
standing in the way. In order not to act in a counter-productive manner, agents avoid
the cow herd while moving around to arrange themselves into a formation, or while going
to open a fence. To maintain the scalability of the approach, the team members invoke
the A∗ path planning algorithm only when necessary, i.e., when a need to move from one
point to another arises. Otherwise, they move between the extracted path plan nodes,
crossroads where the agent should change its general walk direction, in a greedy manner.

7.4 Summary
Above, I briefly presented the three demonstration applications, which we developed to
put the programming framework of Behavioural State Machines to a test, as well as a
vehicle for driving and motivating the theoretical side of the research on methodology
and pragmatics of Jazzyk. The chapter is based on the joint paper (Köster et al., 2009)
and parts of (Novák and Köster, 2008), together with information from master’s theses
I co-supervised (Fuhrmann, forthcoming, 2009; Dereń, forthcoming, 2009).
Jazzbot virtual agent served as a proof-of-concept and demonstration of feasibility of

doing advanced programming with mental attitudes in Jazzyk. One of the results of the
project was the proposal of the naïve methodology for the BSM framework and first
attempts to design reusable code patterns.
Urbibot allowed us to further experiment with the proposed code patterns and is meant

as a platform on top of which, we can further experiment with cognitive robotics. One
of the important requirements of the project was portability of the used technology and
of the resulting agent program to real-world physical robots.
Finally the development of the AgentContest team should serve as the first attempt

towards further experimentation with multi-agent and multi-robotic systems with the
emphasis on individual cognitive agents. One of the results of the project is the proposal
for a next-generation communication middleware for open heterogeneous multi-agent
systems discussed later in Chapter 14.
One of the important by-products of the attempts to develop agent systems described

above is the proof-of-feasibility for applications of non-monotonic reasoning (NMR) in
BDI style cognitive agents. We showed that NMR can be used efficiently, without being
the bottleneck in a very dynamic agent application. We achieved this by limiting the
usage of logic programming techniques, Answer Set Programming (ASP), to tasks it is
efficient in. Instead of using ASP for complete control of the robot, we use it solely
for reasoning about static aspects of the world, such as relationships between objects
and phenomena in the environment, agent’s beliefs about itself etc. The reasoning about
topology of the environment, such as object positions, distances between objects, or sizes,
etc., is left to an object oriented language which provides better facilities for encoding
algorithms over such information.

103

Chapter 7 Case studies

104

Chapter 8

Implemented Jazzyk modules

The core concept of the framework of Behavioural State Machines and the programming
language Jazzyk is that of a Knowledge Representation module. While the language itself
allows writing agent programs in terms of specification of interactions between modules,
the actual reasoning, complex computations and interaction with an environment hap-
pens within the KR modules of an agent.
The notion of a KR module is an abstraction, encapsulating arbitrary knowledge

bases of the agent. I adopt here a rather liberal view on what kind of technology can be
considered a knowledge representation technology, rather similar to that of Davis et al.
(1993). I.e., any technology, which allows a system designer and in turn the agent as
well, to capture, express and efficiently manipulate the information required w.r.t. the
application domain in focus.
In general, from the point of view of the Jazzyk language interpreter, a KR module

is treated as a blackbox, providing only a generic interface (cf. Definition 2.1). The
representation language, as well as the concrete semantics behind the knowledge ma-
nipulation operators, is hidden within the module itself. Due to this simplicity and
generality, the notion of a KR module not only allows encapsulation of knowledge rep-
resentation approaches in the traditional sense, but also any other information storage
with the interface for query and update. I.e., not only those using some sort of symbolic
logic based representation of objects and phenomena of the environment, but also other,
rather non-traditional ones, such as e.g., relational and object databases, virtual ma-
chines, solvers of interpreted programming languages, or even artificial neural networks.
Various knowledge representation approaches come in a form of a programming lan-

guage with an interpreter or a solver. On the other hand, agents interact with their
environments by querying their sensors and controlling their effectors. The KR module
generic query/update interface is able to accommodate both flavours of KR modules
and thus make them accessible to Jazzyk agent programs. In line with behavioural
roboticists, a KR module interfacing an agent program with an external environment
can be seen as knowledge base representing itself, i.e., the environment is its own best
representation.
This chapter discusses several KR modules, Jazzyk plug-ins, enabling development of

the case studies described in Chapter 7. I describe six KR modules of the two flavours.

105

Chapter 8 Implemented Jazzyk modules

Firstly, JzASP (Section 8.1) and JzRuby (Section 8.2) provide interfaces to logic and
object oriented programming engines respectively. Secondly, JzNexuiz (Section 8.3),
JzUrbi (Section 8.4) and JzMASSim (Section 8.5) provide interfaces to various environ-
ments, agents of case studies in Chapter 7 act in. Finally, I discuss a KR module, which
rather falls to the second category, but is useful in application independent settings.
JzOAAComm (Section 8.6) interfaces agent programs with an inter-agent communica-
tion middleware, thus enabling communication and cooperation among agents.

8.1 Answer Set Programming KR module
Answer Set Programming (ASP) is a declarative logic programming framework. It
stems from stable model semantics for logic programs, proposed by Gelfond and Lif-
schitz (1988). To enable logic based knowledge bases with non-monotonic reasoning for
Jazzyk agents, we developed JzASP KR module. In the following, I briefly summarize
AnsProlog* syntax and semantics. Subsequently, I describe the JzASP KR module,
facilitating ASP in Jazzyk agent programs, itself.

8.1.1 Answer Set Programming
According to supported features, such as default negation, integrity constraints, etc.,
AnsProlog comes in several flavours. Here, I consider the most general form coined
AnsProlog* (Baral, 2003), sometimes also referred to as A-Prolog.
An AnsProlog* program P is a set of disjunctive rules of the form

a1 ∨ · · · ∨ an : − b1, . . . , bk, not bk+1, . . . , not bm. (8.1)

n ≥ 0, m ≥ k ≥ 0, n + m ≥ 0 and a1, . . . , an, b1, . . . , bm are atoms. An atom is an
expression of the form p(t1, . . . , tl), where p is a predicate symbol of arity α(p) = l ≥ 0
and each ti is either a variable or a constant. A literal is an atom a or its negation
not a. The head of a rule r, of the form 8.1, is the set H(r) = {a1, . . . , an} and the
body of r is the set B(r) = {b1, . . . , bk,not bk+1, . . . ,not bm}. Furthermore, we denote
B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. We also denote r as H(r) : −B(r).
Let UP be the Herbrand Universe of P , i.e., the set of all constants appearing in P . BP

denotes the Herbrand Base of P , i.e., the set of all literals constructable from predicate
symbols in P and elements of UP . We say that a program P is ground, iff it contains
no variables in literals. A ground program, denoted Ground(P), can be obtained from
the original AnsProlog* program P by applying to each rule of P the set of all possible
substitutions from the variables of P to elements of the Herbrand Universe UP .
We say that a ground rule r is satisfied by the interpretation I, a set of ground atoms,

iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies the program P , iff
each rule r ∈ P is satisfied by I. For a non-ground AnsProlog* program P , we say that
I satisfies P , iff I satisfies each rule r ∈ Ground(P).

106

8.1 Answer Set Programming KR module

Listing 8.1 Example of JzASP usage in Jazzyk. Adapted from the Jazzbot case-study.

declare module brain as asp

notify brain on initialize [{
% Integrity constraints %
:− peaceful, attacked.
:− friend(Person), enemy(Person), person(Person).

% Basic inference rules for bot’s situation %
peaceful :− health(X), X>50, not attacked.
attacked :− health(X), X<=50.

% Reasoning about peer agents %
friend(F) :− not enemy(F), person(F).

}]

when sure_believes brain(Person) [{friend(Person)}] and poss_believes brain [{attacked}]
then add brain(Person) [{enemy(Person).}]

Finally, we say that an interpretation M is an answer set of P , iff it is the minimal
interpretation (w.r.t. the set inclusion ⊆) and satisfies the Gelfond-Lifschitz reduct of P
(Gelfond and Lifschitz, 1988) defined as

PM = {H(r) : −B+(r) | I ∩B−(r) = ∅ ∧ r ∈ Ground(P)}. (8.2)

In other words, an interpretation is an answer set of a program, iff it is the least model
of the corresponding Gelfond-Lifschitz reduct. AS(P) denotes the set of all answer sets
of P .
We also say that a ground atom a is a credulous (also possible or brave) consequence of

P , iff there exists an answer set (at least one) A ∈ AS(P), s.t. a ∈ A. Complementary,
we say that a is a cautious (also certain or skeptical) consequence of P , iff for each
A ∈ AS(P) we have a ∈ A.

8.1.2 JzASP
JzASP KR module (Köster, 2008) facilitates non-monotonic reasoning capabilities of
Answer Set Programming to Jazzyk agent programs. It integrates an ASP solver Smodels
by Syrjänen and Niemelä (2001), with accompanying logic program grounding tool lparse
by Syrjänen (1998). The stored knowledge base of the module consists of a logic program
in the AnsProlog* language, introduced above, with some additional features provided
by lparse and Smodels.
The knowledge base of the module can be accessed by two query operators surebelieves

and possbelieves, corresponding to the credulous and cautious consequence relations respec-
tively. The stored logic program can be updated by two complementary update methods
add and del corresponding to a fact, rule, assertion and retraction. Internally, the JzASP

107

Chapter 8 Implemented Jazzyk modules

module processes the program by passing it to the lparse library and subsequently lets
the Smodels solver to compute the program’s answer sets. The actual query is answered
by meta-reasoning over the program’s answer sets.
Before a query formula is processed by the module, all the free variables occurring in it

are substituted by their actual valuations in Jazzyk interpreter. Subsequently, the query
method attempts to match the remaining free variables to terms from the computed
answer sets. The variable substitution treatment for update formulae is similar to that
in processing queries. Listing 8.1 shows an example of Jazzyk code using the JzASP KR
module. Further examples can be found in previous chapters.
In the current incarnation, the JzASP KR module implements only a naïve LP up-

date mechanism, based on plain assertion and retraction of facts or rules, with the same
semantics as in Prolog (cf. e.g., (Shapiro and Sterling, 1994)). I.e., the formula is either
added or deleted from the knowledge base, without implementing some repair mech-
anisms for the case, the asserted formula would cause inconsistency of the knowledge
base. It is actually responsibility of the Jazzyk agent programmer to ensure that the
updates during the agent’s lifecycle won’t violate the consistency of the knowledge base.
In the future, a more sophisticated mechanism based on a kind of bounded Dynamic
Logic Programming (Leite, 2003) could be implemented.

8.2 Ruby KR module
In the course of development of the case studies discussed in Chapter 7, AnsProlog*
turned out to be a very efficient tool for encoding parts of agent’s knowledge bases.
However, logic programming also turns out not to be a very practical tool for describing
and reasoning about topologies of 3D environments or reasoning about distances between
object, arithmetics, or even camera image classification. To facilitate such types of
knowledge representation tasks, we implemented JzRuby KR module. It integrates an
object-oriented scripting programming language Ruby and thus makes the interpreter
available to Jazzyk agent programmers. The following two subsections briefly describe
the language and the implemented module.

8.2.1 Ruby language
Ruby is a general purpose object-oriented programming language first invented by Mat-
sumoto (2009) (for a more comprehensive overview, cf. e.g., the book by Flanagan and
Matsumoto (2008)). Additionally, it supports also functional style of programming and
its main features include dynamic typing, reflection and automatic memory management.
In the last years, Ruby has reached a certain level of maturity and broader acceptance.

Ruby standard library includes support for the basic software development toolbox,
such as arithmetics, collection of containers such as arrays, vectors, sets, etc., exception
handling, string manipulation routines, full networking stack support, IO support, file

108

8.2 Ruby KR module

Listing 8.2 Example of JzRuby usage in Jazzyk. Informally extends the previous
Example 8.1.

declare module map as ruby
declare module brain as asp
...

notify map on initialize [{
Initialize and load the code package
require ’rubygems’
load(’jazzbotmap.rb’)

class JazzbotMap
public
def initialize

@graph = RGL::DirectedAdjacencyGraph.new
...

end
...
end
...

jbmap = JazzbotMap.new
}]

when poss_believes brain(Person) [{see(Person)}] then {
when not query map(Person) [{jbmap.currCell.contains($Person)}]
then update map(Person) [{jbmap.currCell.addObject($Person)}]

}

manipulation, (de-)compression routines, etc. Other notable packages developed by the
Ruby community include complex libraries such as e.g., graph representation structures
and manipulation routines, support for semantic web tasks, or XML handling.
Finally, the syntax of Ruby is flexible, simple and supports code modularization. It is

also fairly familiar to programmers coming from other object-oriented languages, such
as e.g., C++ or Java.

8.2.2 JzRuby

Since Ruby is an interpreted scripting language, it is relatively simple to access the
language interpreter in run-time and integrate it as a library into a 3rd party program.
This feature enabled integration of Ruby interpreter into a Jazzyk KR module JzRuby.
The JzRuby plug-in (Fuhrmann, forthcoming, 2009) features a simple query/update

interface, allowing evaluation of arbitrary Ruby expressions. It consists of a single query
operator query and a single update operator update. The functionality of the Ruby KR
module resembles the interactive mode of the Ruby interpreter, in which the user enters
an arbitrary programming language expression on the command line and the interactive
interpreter executes it and returns its value. Thus, the KR module is initialized with a

109

Chapter 8 Implemented Jazzyk modules

Figure 8.1: JzNexuiz implementation scheme.

regular Ruby program, possibly including external modules and libraries. Subsequently,
each query/update invocation takes a formula, again a regular Ruby program, and passes
it to the Ruby interpreter for evaluation. In the case of a query invocations the return
value is captured and evaluated, 0 amounts to⊥ and any non-zero value yields>. Update
operator invocations are plainly executed in a synchronous manner, without evaluating
the return value.
Before execution of a formula in the Ruby interpreter, query/update formulae variables

are not directly substituted. Instead, they are declared as global name-space variables
and substituted values are assigned to them. In turn, programmer refers in query/update
formulae to global variables prepended by the dollar sign $. Listing 8.2 briefly shows an
example of Jazzyk code using JzRuby KR module.

8.3 Nexuiz KR module

To enable development of the Jazzbot project, the first environment interface KR module
developed for Jazzyk programming language was JzNexuiz. The KR module allows to
connect to the Nexuiz game engine, which provides interface for interaction with a
simulated 3D environment.

8.3.1 Nexuiz

Nexuiz is a free open-source first-person shooter game developed by AlienTrap Software
group (AlienTrap Community, 2009) and published at the Nexuiz game website (Nexuiz
Team, 2007). Nexuiz is based on a modified DarkPlaces Quake game engine by Hale
(2009). A player in the game moves around a 3D space, usually a large multi-store
building. According to the game mode, the task is either to kill other enemy players
by shooting at them, defend a basis, or to capture the flag of the opponent team. The
game provides a fully rendered graphical view to the simulated world including various
visual and aural effects, such as explosions, etc.

110

8.3 Nexuiz KR module

Listing 8.3 Example of a code using JzNexuiz KR module.

declare module body as nexuiz

notify body on initialize [{include(‘config.cfg’)}]

when sense body [{sonar}] then {
act body [{turn left 90}] ;
act body [{turn right 90}] }

else {
act body [{move forward 1}]

}

The game software consists of two main components. The game simulation server and
the client. While the server runs the game simulation and provides multi-player platform
for interaction and communication, the client merely receives perceptions of the virtual
avatar in the game and sends player’s atomic commands, key strokes, to the server. The
server subsequently updates the state of the simulated environment accordingly.

8.3.2 JzNexuiz

JzNexuiz module (Mainzer, 2008) integrates the Nexuiz game client and uses it to con-
nect to the game server, as depicted in Figure 8.1. Technically, the module connects
over TCP/IP with a Nexuiz server. The plug-in integrates a stripped down and cus-
tomized Nexuiz client source code. In turn, the bot’s actions are implemented as the
corresponding key strokes performed by a human player.
The intended consequence of the technical setup described above, is that an agent

using JzNexuiz module is a pure client-side bot. That means that in order to faithfully
mimic the human player style environment for the bot, the sensory interface is designed
so that it provides only a (strict) subset of the information of that a human game
player can access. For instance, a Jazzyk bot with JzNexuiz module can only check
the scene in front of it using the directional sonar sensor. The rendering of the whole
scene is inaccessible to it, so only a single object can be seen at a time. Similarly to a
human player, the bot can reach only to the local information about its environment.
Information about objects which it cannot see, or are located behind the walls of the
space it stands in, are inaccessible to it.
The JzNexuiz KR module implements the game client functionality and facilitates the

bot’s interaction with the game server. The list of sensors agents can exploit includes
the body health sensor, liquid sensor, ground sensor, gps device, 3D compass device, sonar, map ID
information, eye sensor and ear sensor listen. Similarly, the list of actuators contains basic
capabilities move, turn, jump, use, attack and say. Each query formula starts with the name
of the accessed virtual sensor device, followed by the corresponding arguments being
either constants or variables facilitating retrieval of information from the environment.

111

Chapter 8 Implemented Jazzyk modules

Similarly, the update formulae consist of the action to be executed by the avatar followed
by a list of arguments specifying the command parameters. The truth value of a query
formula evaluation depends on the sensory input retrieved from the environment. In the
case the query evaluates to true (>), the additional information about e.g., the distance
of an obstacle or the reading of the body health sensor is stored in the provided free
variables. Listing 8.3 provides a sample program demonstrating the use of the JzNexuiz
KR module.

8.4 URBI plug-in

Urbibot agent, described in Chapter 7, is an agent steering a small mobile robot. To
enable development of Urbibot, as well as to provide a general purpose interface to
robotic hardware, we implemented the JzUrbi plug-in. It utilizes the special purpose
robot programming language URBI.

8.4.1 Urbi

URBI, Universal Real-Time Behavior Interface developed by Gostai (2009a), is a soft-
ware platform for development of applications for robotics. It is based on URBI, an
event-driven programming language supporting parallelization. Rather than supporting
general purpose programming features, URBI ’s aim is to enable efficient creation of pro-
grams from components called UObjects. Thus, URBI allows “gluing” of heterogeneous
components, representing parts of the robot hardware body, into a functional complex.
Instead of synchronization constructs, URBI supports mixing modes for variables shared
among threads of executions. I.e., in the case a variable represents the speed of a servo
engine and two threads set it to two different values at the same time, the actual resulting
speed is calculated as a mix of the two, e.g., an arithmetic average.
URBI platform is a portable cross-platform tool, featuring the familiar C++ style

syntax. It is divided into two components, the URBI server and the client. While the
server interprets commands directly on the UObject components, representing hardware
parts of the robot, the client is merely a thin telnet client which allows remote execution
of the URBI program.

8.4.2 JzUrbi

In order to interface Jazzyk programs with a robotic body, the JzUrbi KR module
(Fuhrmann, forthcoming, 2009) integrates the URBI programming language client side
interpreter. Similarly to the JzNexuiz module, it connects over TCP/IP to an URBI
server on the simulator’s side or with the URBI robot controller that controls the robot’s
body.

112

8.5 MASSim client plug-in

The single query method query provides the agent program with the sensor information
from the body. Jazzyk variables are treated the same way as in JzRuby, i.e., as global
variables of the underlying URBI interpreter. Similarly, the single update method update
simply sends the provided update formula, an URBI program, to the URBI server.
To steer the robot’s hardware components, an agent connects over the JzUrbi module

with the URBI server, running either in theWebots simulator by Cyberbotics Inc. (2009)
or on the actual robot controller (on-board or off-board). In the particular case of the
Urbibot, the sensory input accessed the following sensors: camera, distance sensor, GPS,
touch-sensor and a light-sensor. Together with the update interface steering the Urbibot’s
two wheels, these two methods provide the basic interface for the robot control.

8.5 MASSim client plug-in
The last implemented Jazzyk KR module interfacing agent programs with the environ-
ment for the third case-study AgentContest 2009 team presented in Chapter 7 is the
JzMASSim module.

8.5.1 MASSim

In the last years, in the Computational Intelligence Group of Clausthal University of
Technology, we implemented and ran the infrastructure for theMulti-Agent Programming
Contest (Dastani et al., 2005a, 2006, 2008a,b; Behrens et al., 2009b). As already noted
in Chapter 7, AgentContest is a tournament of multi-agent systems in a simple simulated
environment. The tournament is executed remotely. I.e., the game simulation runs on
the tournament server called MASSim, while the individual agents connect to it via
Internet by utilizing the standard TCP protocol. In each step of the game, the server
sends to the connected agents information about their individual local perceptions, i.e.,
an XML message describing the contents of cells in the relevant small cut-out of the
overall grid. Agents then have limited time to deliver an answer, again a XML message,
describing their individual actions in the environment. Failing to act, amounts to no
action. Furthermore, agents can test the connectivity to the game server by sending
ping messages. In the case of a network connection disruption, agents can reconnect.

8.5.2 JzMASSim

The communication protocol between the MASSim server and the connected agents is
based on XML standard (W3C, 2008a) and follows a request-response scheme. Thus,
even when the actual contents of the exchanged XML messages change from edition to
edition, the overall protocol stays the same. This allowed development of a general, on
a concrete game scenario independent, connector to the MASSim server infrastructure
(Behrens et al., 2008), JzMASSim (Yi, 2009).

113

Chapter 8 Implemented Jazzyk modules

Listing 8.4 Example of a Jazzyk program utilizing JzMASSim KR module.

declare module client as MASSClient
declare module brain as ruby

/∗ Initialization with the connection data: server IP/port and agent username/password ∗/
notify mclient on initialize [{

ip=127.0.0.1, port=12300,
usr=botagent1, pwd=mypassword

}]

notify parser on initialize [{
/∗ Ruby program for deciding the next action. ∗/

}]

when isStarted client [{ }] then {
/∗ either retrieve the next message from the mailbox ∗/
when getMsg mclient (Msg) [{ }] then {

/∗ incorporate the new perceptions and delete the queue head ∗/
update brain(Msg) [{ map.addPerception($Msg) }] ,
delMsg client [{ }]

} ;
/∗ ... or act ∗/
when query brain (Action) [{ $Action = me.nextAction }] then sendMsg client (Action) [{ }]

}

JzMASSim plug-in basically implements a mailbox for the XML messages exchanged
with the MASSim server. The mailbox is asynchronous, i.e., the mailbox collects mes-
sages in a queue as they come from the MASSim server and upon a query from the
Jazzyk agent program a message can be retrieved. The KR module provides two query
operators getInboxSize and getMsg retrieving the current size of the mailbox queue and the
message in the queue head. The retrieved message is filled into a provided free variable,
therefore query formulae can be arbitrary, i.e., they do not bear any semantics. The
query/update semantics is provided by the operators themselves.
To act in the simulated environment, agents are supposed to send theMASSim server a

well-formed XML message describing the action, the agent intends to execute in the next
simulation step. The update operator sendMsg provides this functionality. The message
to be sent to the server is supposed to be contained in the argument variable again.
Additionally, the module provides an update operator delMsg which deletes the message
in the head of the mailbox queue.
Note that in order to keep the module general and reusable across several AgentContest

editions, the JzMASSim module cannot deal with the semantics of the delivered or
sent XML messages directly. Instead, the agent programmer must use another KR
module, which provides XML parsing capabilities to decode, analyze and encode the
XML messages. As a suitable option, the JzRuby KR module can be used. Listing 8.4
shows an example of a small Jazzyk program utilizing JzMASSim KR module.

114

8.6 OAA connector KR module

Listing 8.5 Example of a Jazzyk program utilizing JzOAAComm module.

declare module comm as oaacomm

notify comm on initialize [{
oaa_params(’192.168.0.3’, ’3378’),
register(’Agent007’)

}]

notify comm on finalize [{oaa_disconnect}]

when query comm (Msg) [{get_message}]
then update comm [{tell(’Agend42’, ’I’ve got a message!’)}]
else update comm [{broadcast(’Send me a message please.’)}}

8.6 OAA connector KR module

The above described Jazzyk KR modules primarily support development of single-agent
systems. Communication and coordination between agents lie on the way towards multi-
agent systems development. Multi-agent communication middleware platforms provide
support for inter-agent communication. To support development of the AgentContest
team, we exploit the Open Agent Architecture (OAA) by SRI International (2007) and
described also in detail by Cheyer and Martin (2001).

8.6.1 Open Agent Architecture

OAA is “a framework for integrating a community of heterogeneous software agents in
a distributed environment” (SRI International, 2007). The core component of the OAA
platform is the Facilitator, an agent whose capabilities involve distributing and coordi-
nating tasks within the multi-agent system. Its tasks include maintaining a yellow pages
registry of connected agents and their capabilities, called solvables, as well as routing
peer-2-peer messages, broadcasts and multi-casts betwen distributed agents. Further-
more, given a complex task, solving of which requires decomposition into a plan of single
agent capability invocations, it can plan and facilitate the execution of the task. Subse-
quently it collects the resulting partial answers into a compound solution to the complex
request. Agents connected to the OAA platform communicate by exchanging messages
encoded in OAA’s proprietary Interagent Communication Language (ICL). ICL’s syn-
tax resembles that of Prolog (Shapiro and Sterling, 1994) and thus is easily accessible to
casual MAS programmers.

8.6.2 JzOAAComm

Module JzOAAComm (Dereń, forthcoming, 2009) interfaces Jazzyk agent programs with
the OAA Facilitator agent. Similarly to the JzURBI and JzMASSim plug-ins, it wraps

115

Chapter 8 Implemented Jazzyk modules

a client side connector which communicates over TCP/IP network stack with the sever-
side OAA Facilitator agent. The query/update interface consists of two operators query
and update respectively. The module is initialized with the configuration for connecting
to the Facilitator. Jazzyk agent is supposed to provide an IP address and port of the
node where the Facilitator is listening. The agent can also register its unique identifier
by means of the register/1 predicate and the list of registered capabilities, solvables, of the
agent by means of the solvables/n predicate. Solvables are simple ICL terms.
The query and update formulae take the form inspired by ICL terms, i.e., requests and

commands are encoded as predicate symbol with zero or more arguments. The avail-
able query requests include get_message/0, get_community/0, can_solve/1 and registered_solvables/1.
These respectively extract a message from the mailbox queue, extract the list of agents
registered with the Facilitator agent, extract the list of agents, which can solve the solv-
able provided as the argument and finally extract the list of solvables registered with the
Facilitator. The update formulae can be built from the following commands broadcast/1,
multicast/2 and tell/2. The first takes as an argument only the message to be broadcasted to
the community, while the latter two also require specification of recipients. In the case
of the multicast command, the argument is a solvable and the message will be sent to
all the agents which registered it. Finally, the simple peer-2-peer message send requires
specification of an identifier of the agent on the receiving side of the communication
channel.
Unlike the JzMASSim module, JzOAAComm does not maintain a mailbox for the

Jazzyk agent locally. Instead, the agents’ mailboxes are managed centrally by the Facil-
itator agent and the JzOAAComm module simply queries it to extract the message at
the head of the queue. Listing 8.5 lists a short program showing usage of JzOAAComm
KR module for communication among agents in a small multi-agent systems.

8.7 Summary
The presented chapter briefly describes six Jazzyk plug-ins, KR modules, which were used
in development of the case-studies described earlier in Chapter 7. The first two facilitate
exploitation of two proper knowledge representation technologies, logic programming
and object-oriented programming languages. The subsequent three provide interfaces to
various environments agents can be embodied in. The last plug-in facilitates inter-agent
communication in a multi-agent system consisting of heterogeneous collaborating agents.
The work presented here is a result of several diploma theses (Köster, 2008; Fuhrmann,

forthcoming, 2009; Dereń, forthcoming, 2009; Mainzer, 2008) and a student project (Yi,
2009) written under my co-supervision in the Computational Intelligence Group at Claus-
thal University of Technology. The KR modules were implemented in C++ programming
language, on top of the Jazzyk SDK, Jazzyk software development kit for KR module
plug-ins. Appendix B presents the Jazzyk SDK package in more detail.

116

Chapter 9

Probabilistic Behavioural State Machines

Situated cognitive agents, such as mobile service robots, operate in rich, unstructured,
dynamically changing and not completely observable environments. Since various phe-
nomena of real world environments are not completely specifiable, as well as because of
limited, noisy, or even malfunctioning sensors and actuators, such agents must operate
with incomplete information.
On the other hand, similarly to mainstream software engineering, robustness and

elaboration tolerance are some of the desired properties for cognitive agent programs.
Embodied agent is supposed to operate reasonably well, also in conditions previously
unforeseen by the designer. It should degrade gracefully in the face of partial failures
and unexpected circumstances (robustness). At the same time, the program should be
concise, easily maintainable and extensible (elaboration tolerance).
Agent programs in the reactive planning paradigm are specifications of partial plans

for an agent, about how to deal with various situations and events occurring in the
environment. On one side, the inherent incomplete information stems from the level
of knowledge representation granularity chosen at the agent’s design phase, i.e., it is
impossible to model the full detail of reality in an embodied agent. On the other, as
engineers, we are striving for robust and easily maintainable programs, so these should
be readable, well structured and at the same time expressive enough for the application
in consideration. The tension between the two sets of requirements yields a trade-off of
intentional underspecification of resulting agent programs.
Most BDI inspired agent-oriented programming languages on both sides of the spec-

trum, between theoretically founded to pragmatic ones (I provide an overview in Chap-
ter 1), facilitate encoding of underspecified, non-deterministic programs. Any given sit-
uation or an event can at the same time trigger multiple behaviours, which themselves
can be non-deterministic, i.e, can include alternative branches.
A precise and exclusive qualitative specification of behaviour triggering conditions is

often impossible due to the, at the design time chosen and fixed, level of knowledge
representation granularity. This renders the qualitative condition description a rather
coarse grained means for steering agent’s life-cycle. In such contexts, a quantitative
heuristics steering the language interpreter’s choices becomes a powerful tool for encoding
developer’s informal knowledge or intuitions about agent’s run-time evolutions. For

117

Chapter 9 Probabilistic Behavioural State Machines

example, it might be appropriate to execute some applicable behaviours more often
than others, or some of them might intuitively perform better than other behaviours in
the same context, and therefore should be preferably selected.
This chapter presents Probabilistic Behavioural State Machines (P-BSM), a probabilis-

tic extension of the BSM framework. The core idea is straightforward. Language rules
(mst’s) coupling a triggering condition with an applicable behaviour are extended with
labels denoting the probability, with which the interpreter’s selection mechanism should
choose the particular behaviour in a given context. One of the elegant implications of
the extension is that subprograms with labelled rules can be seen as specifications of
probability distributions over actions applicable in a given context. This allows steering
agent’s focus of deliberation on a certain subbehaviour with only minor changes to the
original agent program. I call this technique adjustable deliberation.
In the following, I first introduce the probabilistic extension of the original BSM

framework and subsequently, I also present Jazzyk(P), the corresponding extension of
the Jazzyk programming language.

9.1 Probabilistic Behavioural State Machines
In the plain BSM framework, the syntactic construct of a mental state transformer
encodes a transition function over the space of mental states of a BSM (cf. Defini-
tion 2.10). Hence, an execution of a compound non-deterministic choice mst amounts
to a non-deterministic selection of one of its components and its subsequent application
to the current mental state of the agent. In order to enable finer grained control over
this selection process, the core idea behind the P-BSM framework is the extension of
the BSM formalism with specifications of probability distributions over components of
choice mst’s.
The P-BSM formalism, below, heavily builds on associativeness of BSM composition

operators of non-deterministic choice and sequence (cf. Remark 2.13). We also informally
say that an mst τ occurs in a mst τ ′ iff τ ′ can be constructed from the set of all mst’s
T, by using composition operators as defined by Definition 2.4.

Definition 9.1 (Probabilistic BSM). A Probabilistic Behavioural State Machine (P-
BSM) Ap is a tuple Ap = (M1, . . . ,Mn,P,Π), where A = (M1, . . . ,Mn,P) is a BSM
and Π : τ 7→ Pτ is a function assigning to each non-deterministic choice mst of the
form τ = τ1| · · · |τk ∈ P occurring in P a discrete probability distribution function
Pτ :τi 7→ [0, 1], s.t.

∑k
i=1 Pτ (τi) = 1.

W.l.o.g. it is safe to assume that each mst occurring in the agent program P can be
uniquely identified, e.g., by its position in the agent program.

The probability distribution function Pτ assigns to each component of a non-deter-
ministic choice mst τ = τ1|τ2| · · · |τk a probability of its selection by a BSM interpreter.

118

9.1 Probabilistic Behavioural State Machines

Note that because of the unique identification of mst’s in an agent program P, the
function Π assigns two distinct discrete probability distributions Pτ1 and Pτ2 to choice
mst’s τ1, τ2, even when they share the syntactic form but occur as distinct components
of P. To distinguish from the BSM formalism, we call mst’s occurring in a P-BSM
probabilistic mental state transformers. BSM mst’s as defined in Definition 2.4 will be
called plain.
Similarly to plain mst’s, the semantic counterpart of a probabilistic mst is a probabilis-

tic update. A probabilistic update of a P-BSM Ap = (M1, . . . ,Mn,P,Π) is a tuple p:ρ,
where p ∈ R, s.t. p ∈ [0, 1], is a probability and ρ = (�, ψ) is an update from the BSM
A = (M1, . . . ,Mn,P). In turn, the semantics of a probabilistic mental state transformer
in a state σ, formally defined by the yieldsp predicate below, is the probabilistic update
set it yields in that mental state.

Definition 9.2 (yieldsp calculus). A probabilistic mental state transformer τ yields
a probabilistic update p:ρ in a state σ, iff yieldsp(τ, σ, p:ρ) is derivable in the following
calculus:

>
yieldsp(skip,σ,1:skip)

>
yieldsp(�ψ,σ,1:(�,ψ)) (primitive)

yieldsp(τ,σ,p:ρ), σ|=φ
yieldsp(φ−→τ,σ,p:ρ)

yieldsp(τ,σ,θ,p:ρ), σ 6|=φ
yieldsp(φ−→τp,σ,1:skip) (conditional)

τ=τ1|···|τk,Π(τ)=Pτ ,∀1≤i≤k: yieldsp(τi,σ,pi:ρi)
∀1≤i≤k: yieldsp(τ,σ,Pτ (τi)·pi:ρi)

(choice)

τ=τ1◦···◦τk, ∀1≤i≤k: yieldsp(τi,σi,pi:ρi)∧σi+1=σi
⊕

ρi

yields(τ,σ1,
∏k

i=1 pi:ρ1•···•ρk)
(sequence)

The modification of the plain BSM yields calculus, introduced in Definition 2.9, for
primitive and conditional mst’s is rather straightforward. A plain primitive mst yields
the associated primitive update for which there’s no probability of execution specified.
A conditional mst yields probabilistic updates of its right hand side if the left hand
side query condition is satisfied. It amounts to a skip mst otherwise. The function
Π associates a discrete probability distribution function with each non-deterministic
choice mst and thus modifies the probability of application of the probabilistic updates
yielded by its components accordingly. Finally, similarly to the plain yields calculus, a
sequence of probabilistic mst’s yields sequences of updates of its components, however
the joint application probability equals to the conditional probability of selecting the
particular sequence of updates. The following example illustrates the sequence rule of
the probabilistic yieldsp calculus.

Example 9.3. Consider the mst (0.3:τ1 | 0.7:τ2) ◦ (0.6:τ3 | 0.4:τ4). Let’s assume that for
each of the component mst’s τi, we have yieldsp(τi, σ, pi:ρi) in a state σ. The plain yields

119

Chapter 9 Probabilistic Behavioural State Machines

calculus yields the following sequences of updates ρ1 •ρ3, ρ1 •ρ4, ρ2 •ρ3 and ρ2 •ρ4. The
probability of selection of each of them, however, equals to the conditional probability of
choosing an update from the second component of the sequence, provided that the choice
from the first one was already made. I.e., the probabilistic yieldsp calculus results in the
following sequences of probabilistic updates 0.18:(ρ1 • ρ3), 0.12:(ρ1 • ρ4), 0.42:(ρ2 • ρ3)
and 0.28:(ρ2 • ρ4).

The corresponding adaptation of the mst denotational semantics from Definition 2.10
straightforwardly follows.

Definition 9.4 (probabilistic mst denotational semantics). Let Ap = (M1, . . . ,
Mn,P,Π) be a P-BSM. A probabilistic mental state transformer τ encodes a transition
function fpτ : σ 7→ {p : ρ|yieldsp(τ, σ, p : ρ)} over the space of mental states σ ∈ S, where
σ = 〈σ1, . . . , σn〉 and S = S1 × · · · × Sn is the space of the agent’s mental states.

According to the Definition 9.1, each mst occurring in a P-BSM agent program can
be uniquely identified. Consequently, also each probabilistic update yielded by the pro-
gram can be uniquely identified by the mst it corresponds to. The consequence is that
w.l.o.g. we can assume that even when two probabilistic updates p1:ρ1, p2:ρ2, yielded
by the agent program P in a state σ, share their syntactic form, i.e. p1 = p2 and ρ1, ρ2
encode the same plain BSM update, they both independently occur in the probabilistic
update set fp(σ).
The following lemma shows that the semantics of probabilistic mst’s embodied by

the yieldsp calculus can be understood as an encoding of a probability distribution or
a probabilistic policy over updates yielded by the underlying plain mst. Moreover, it
also implies that composition of probabilistic mst’s maintains their nature as probability
distributions.

Lemma 9.5. Let Ap = (M1, . . . ,Mn,P,Π) be a P-BSM. For every mental state trans-
former τ occurring in P and a mental state σ of Ap, we have∑

p:ρ∈fpτ (σ)
p = 1 (9.1)

Proof of Lemma 9.5. The proof follows by induction on nesting depth of mst’s. The nest-
ing depth of an mst is the maximal number of steps required to derive yieldsp(τ, σ, p:ρ)
in the yieldsp calculus for all σ from Ap and all p:ρ yielded by τ .

depth = 1: Equation 9.1 is trivially satisfied for primitive updates from Ap of the form
skip and �ψ.

depth = 2: Let’s assume τ1, . . . , τk are primitive mst’s yielding 1:ρ1, . . . , 1:ρk in a state
σ respectively, and φ be a query formula. We recognize three cases

120

9.1 Probabilistic Behavioural State Machines

conditional: In the case σ |= φ, we have yieldsp(φ −→ τ1, σ, 1:ρ1). Similarly for
σ 6|= φ, we have yieldsp(φ −→ τ1, σ, 1:skip), hence Equation 9.1 is satisfied in
both cases.

choice: According to Definition 9.2 for each 1 ≤ i ≤ k we have

yieldsp(τ1| · · · |τk, σ, Pτ1|···|τk(τi):ρi)

where Π(τ1| · · · |τk) = Pτ1|···|τk . Since Pτ1|···|τk is a discrete probability distri-
bution (cf. Definition 9.1) over the elements τ1, . . . , τk, we have∑

1≤i≤k
Pτ1|···|τk(τi) = 1

hence Equation 9.1 is satisfied as well.
sequence: For the sequence mst, we have yieldsp(τ1 ◦ · · · ◦ τk, σ, 1:(ρ1 • · · · • ρk)),

so Equation 9.1 is trivially satisfied again.

depth = n: Assume that Equation 9.1 holds for mst’s of nesting depth n− 1, we show it
holds also for mst’s of depth n. Again, we assume that φ is a query formula of Ap
and τ1, . . . , τk are compound mst’s of maximal nesting depth n − 1 yielding sets
of updates fpτ1(σ), . . . , fpτk(σ) in a mental state σ respectively. Similarly to the
previous step, we recognise three cases:

conditional: According to the derivability of φ w.r.t. σ, for the conditional mst
φ −→ τ1 we have either fpφ−→τ1(σ) = fpτ1(σ) or fpφ−→τ1(σ) = {1:skip}. For
the latter case, Equation 9.1 is trivially satisfied and since τ1 is of maximal
nesting depth n− 1, we have

∑
p:ρ∈fpφ−→τ1 (σ) p =

∑
p:ρ∈fpτ1 (σ) p = 1 as well.

choice: Let Pτ1|···|τk be the probability distribution function assigned to the choice
mst τ1| · · · |τk by the function Π. We have

fpτ1|···|τk(σ) =
{
p:ρ|∃0 ≤ i ≤ k : yieldsp(τi, σ, pi:ρ) ∧ p = Pτ1|···|τk(τi) · pi

}
Subsequently,

∑
p:ρ∈fpτ1|···|τk (σ)

p =
∑

0≤i≤k

Pτ1|···|τk(τi) ·
∑

p:ρ∈fpτi (σ)
p

However, because of the induction assumption that the Equation 9.1 holds
for mst’s τi with maximal nesting depth n− 1, for all i

∑
p:ρ∈fpτi (σ) p = 1, and

since Pτ1|···|τk is a discrete probability distribution function, we finally arrive
to ∑

p:ρ∈fpτ1|···|τk (σ)
p =

∑
0≤i≤k

Pτ1|···|τk(τi) = 1

121

Chapter 9 Probabilistic Behavioural State Machines

sequence: For the sequence mst τ1 ◦ · · · ◦ τk, we have

fpτ1◦···◦τk(σ) =
{

k∏
i=1

pi:(ρ1 • · · · • ρk)|∀1 ≤ i ≤ k : yieldsp(τi, σ, pi:ρi)
}

and subsequently,

∑
p:ρ∈fpτ1◦···◦τk (σ)

p =
∑∏k

i=1 pi:(ρ1•···•ρk)∈fpτ1◦···◦τk (σ)

k∏
i=1

pi (9.2)

Observe that if we fix the update sequence suffix ρ2 • · · · •ρk, the sum 9.2 can
be rewritten as ∑

p1:ρ1∈fpτ1 (σ)
p1

 ·
 ∑∏k

i=2 pi:(ρ2•···•ρk)∈fpτ2◦···◦τk (σ)

k∏
i=2

pi

Finally, by reformulation of the sum of products 9.2 as a product of sums
and by applying the induction assumption for the mst’s τ1, . . . , τk of nesting
depth n− 1, we arrive to

k∏
i=1

∑
p:ρ∈fpτi (σ)

p =
k∏
i=1

1 = 1

Hence, the Equation 9.1 is satisfied.
ut

Finally, the operational semantics of a P-BSM agent is defined as a set of traces in
the induced transition system enabled by the P-BSM agent program.

Definition 9.6 (P-BSM operational semantics). A P-BSM Ap = (M1, . . . ,Mn,
P,Π) can make a step from state σ to a state σ′ with probability p, iff σ′ = σ

⊕
ρ, s.t.

p:ρ ∈ fpτ (σ). We also say that with probability p, Ap induces a, possibly compound,
transition σ p:ρ→ σ′.
A possibly infinite sequence of states ω = σ1, . . . , σi, . . . is a run of P-BSM Ap, iff for

each i ≥ 1, A induces the transition σi
pi:ρi→ σi+1 with probability pi.

Let pref (ω) denote the set of all finite prefixes of a possibly infinite computation run
ω and |.| the length of a finite run. P (ω) =

∏|ω|
i=1 pi is then the probability of the finite

run ω.
The semantics of an agent system characterized by a P-BSM Ap, is a set of all runs

ω of Ap, s.t., all of their finite prefixes ω′ ∈ pref (ω) have probability P (ω′) > 0.

122

9.2 Jazzyk(P)

Informally, the semantics of an agent system is a set of runs involving only transitions
induced by updates with a non-zero selection probability. Additionally, we require an
admissible P-BSM interpreter to fulfill the following specialisation of the weak fairness
condition for the plain BSM framework (cf. Definition 2.15), for all the induced runs.

Condition 9.7 (P-BSM weak fairness condition). Let ω be a possibly infinite
computation run of a P-BSM Ap. Let also freqp:ρ(ω′) be the number of transitions
induced by the update p:ρ along a finite prefix of ω′ ∈ pref (ω).
We say that ω is weakly fair w.r.t. Ap iff for all updates p:ρ we have that if from some

point on p:ρ is always yielded in states along ω, 1) it also occurs on ω infinitely often,
and 2) for the sequence of finite prefixes of ω ordered according to their length holds

lim inf
|ω′|→∞
ω′∈pref (ω)

freqp:ρ(ω′)
|ω′|

≥ p

Similarly to the plain BSM weak fairness condition, Condition 9.7 embodies a mini-
mal requirement on admissible P-BSM interpreters. It admits only P-BSM interpreters
which honor the intended probabilistic semantics of the non-deterministic choice selec-
tion of the yieldsp calculus. The first part of the requirement is a consequence of the
plain BSM weak fairness condition, while the second states that in sufficiently long
computation runs, the frequency of occurrence of an always yielded probabilistic update
corresponds to its selection probability in each single step.

9.2 Jazzyk(P)

Jazzyk is a programming language instantiating the plain BSM theoretical framework
introduced in Chapter 5. This section informally describes its extension Jazzyk(P), an
instantiation of the framework of Probabilistic Behavioural State Machines introduced
above.
Jazzyk(P) syntax differs from that of Jazzyk only in specification of probability distri-

butions over choice mst’s. Jazzyk(P) allows for explicit labellings of choice mst members
by their individual application probabilities. Consider the following labelled choice mst
p1:τ1 ; p2:τ2 ; p3:τ3 ; p4:τ4 in the Jazzyk(P) notation. Each pi ∈ [0, 1] denotes the proba-
bility of selection of mst τi by the interpreter. Furthermore, to ensure that the labelling
denotes a probability distribution over the choice mst, Jazzyk(P) parser requires that∑k
i=1 pi = 1 for every choice mst p1:τ1 ; . . . ; pk:τk occurring in the considered agent

program. Similarly to Jazzyk, during the program interpretation phase, Jazzyk(P) in-
terpreter proceeds in a top-down manner subsequently considering nested mst’s from
the main agent program, finally down to primitive update formulae. When the original
Jazzyk interpreter faces a selection from a non-deterministic choice mst, it randomly

123

Chapter 9 Probabilistic Behavioural State Machines

Listing 9.1 Example of Jazzyk(P) syntax. Adapted from the Jazzbot project. The oper-
ators subscripted withM, correspond to Jazzbot’s KR module handling the topological
map of the environment.

when ���B [{ threatened }] then {
/∗ ∗∗∗Emergency modus operandi∗∗∗ ∗/

/∗ Detect the enemy’s position ∗/
0.7 : when ���B [{ attacker(Id) }] and ���E [{ eye see Id player Pos }]
then �M [{ positions[Id] = Pos }] ;

/∗ Check the camera sensor ∗/
0.2 : when ���E [{ eye see Id Type Pos }] then {
⊕B [{ see(Id, Type) }] ,
�M [{ objects[Pos].addIfNotPresent(Id) }]

}

/∗ Check the body health sensor ∗/
when ���E [{ body health X }] then ⊕B [{ health(X). }]

} else {
/∗ ∗∗∗Normal mode of perception∗∗∗ ∗/

/∗ Check the body health sensor ∗/
when ���E [{ body health X }] then ⊕B [{ health(X). }] ;

/∗ Check the camera sensor ∗/
when ���E [{ eye see Id Type Pos }] then {
⊕B [{ see(Id, Type) }] ,
�M [{ positions[Id] = Pos }]

}
}

selects one of them assuming a discrete uniform probability distribution. I.e., the proba-
bility of selecting from a choice mst with k members is 1

k for each of them. The extended
interpreter Jazzyk(P) honors the specified selection probabilities. It generates a random
number p ∈ [0, 1] and selects τs, s.t.

∑s−1
i=1 pi ≤ p ≤

∑s
i=1 pi.

For convenience, Jazzyk(P) enables use of incomplete labellings. An incompletely
labelled non-deterministic choice mst is one, containing at least one member mst with-
out an explicit probability specification such as p1:τ1 ; p2:τ2 ; τ3 ; τ4. In such a case,
the Jazzyk(P) parser automatically completes the distribution by uniformly dividing
the remaining probability range to unlabelled mst’s. I.e., provided an incompletely la-
belled choice mst with k members, out of which m < k are labelled, p1:τ1 ; . . . ; pm:τm ;
τm+1 ; · · · ; τk, it assigns the residual probability p to the remaining mst’s τm+1, . . . , τk.
The probability p is then calculated as follows

p = 1−
∑m
i=1 pi

k −m
(9.3)

Listing 9.1 provides an example of a Jazzyk(P) code snippet adapted from the Jazzbot

124

9.3 Adjustable deliberation

Listing 9.2 Example of focusing bot’s attention during emergency situations rewritten
with reusable macros.

when ���B [{ threatened }] then {
/∗ ∗∗∗Emergency modus operandi∗∗∗ ∗/
0.7 : DETECT_ENEMY_POSITION ;
0.2 : SENSE_CAMERA ;

SENSE_HEALTH
} else {

/∗ ∗∗∗Normal mode of perception∗∗∗ ∗/
SENSE_HEALTH ;
SENSE_CAMERA

}

project described in Chapter 7. The code chunk implements an example perception mst
of the agent. In the normal mode of operation, the bot in a single step queries either
its camera or its body health status sensor with the same probability of selection for
each of them, i.e., 0.5. However, in the case of emergency, the bot focuses more on
escaping the attacker, therefore, in order to retrieve the attacker’s position, it queries
the camera sensor more often (selection probability p = 0.7) than sensing objects around
it (p = 0.2). Checking it’s own body health is of the least importance (p = 0.1), however
not completely negligible.
In an implemented program, however, the Listing 9.1 would be rewritten using the

macro facility of the Jazzyk interpreter and reduced to a more concise code shown in
Listing 9.2.

9.3 Adjustable deliberation
The proposed extension allows finer grained steering of the interpreter’s non-determi-
nistic selection mechanism and has applications across several niches of methodologies
for rule-based agent-oriented programming languages. The first experiments in the con-
text of the Jazzbot application have shown that labelling probabilistic mst’s is a useful
means to contextually focus agent’s perception (cf. Listing 9.2). Similarly, the labelling
technique is useful in contexts, when it is necessary to execute certain behaviours with a
certain given frequency. For example, approximately in about every 5th step broadcast
a ping message to peers of the agent’s team. Finally, the technique can be used when
the agent developer has an informal intuition that preferring more frequent execution of
certain behaviours over others might suffice, or even perform better in a given context.
For instance, when we want to prefer cheaper, but less efficient behaviours over resource
intensive, but rather powerful. Of course writing such programs makes sense only when
a rigorous analysis of the situation is impossible or undesirable and at the same time a
suboptimal performance of the agent system is acceptable.
An instance of the latter technique for modifying the main control cycle of the agent

125

Chapter 9 Probabilistic Behavioural State Machines

program is what I coin adjustable deliberation. Consider the following plain Jazzyk code
implementing Jazzbot’s main control cycle as listed in Listing 7.1:

PERCEIVE ; HANDLE_GOALS ; ACT

The macros PERCEIVE, HANDLE_GOALS and ACT encode behaviours for perception, similar
to that in the Listing 9.1, goal commitment strategy implementation and action selection
respectively. In the case of emergency, it might be useful to slightly neglect deliberation
about agent’s goals, in favour of an intensive environment observation and quick reaction
selection. The following reformulation of the agent’s control cycle demonstrates the
simple program modification:

when ���B [{ emergency }] then { PERCEIVE ; HANDLE_GOALS ; ACT }
else { 0.4 : PERCEIVE ; HANDLE_GOALS ; 0.4 : ACT }

9.4 Summary
The presented chapter is based on my recent paper (Novák, 2009b). Its main contri-
bution is introduction of Probabilistic Behavioural State Machines framework, with the
associated agent programming language Jazzyk(P). P-BSM, and in turn Jazzyk(P), al-
low labelling of alternatives in non-deterministic choice mental state transformers. Thus,
they provide a means for specification of a probability distribution over the set of en-
abled transitions for the next step in agent’s life-cycle. In turn, the informal reading of
a P-BSM choice mst’s can be “a specification of the probability, with which the next
transition will be chosen from the function denoted by the particular member mst”. In
other words, a probability of applying the member mst function to the current mental
state.
Finally, its worth to note that the introduced language Jazzyk(P) is a proper extension

of the plain Jazzyk. As I note in Subsection 5.2.1, Jazzyk assumes uniform probability
distribution over components of non-deterministic choice mst’s. On the other hand, plain
mst’s can be seen as incompletely labelled probabilistic mst’s. The corresponding resid-
ual probabilities are computed by the Jazzyk(P) interpreter according to Equation 9.3,
i.e., Jazzyk(P) assumes uniform distribution over the components of the choice mst. In
consequence, w.l.o.g. Jazzyk interpreter can treat every plain agent program as a proba-
bilistic one. This relation, however, does not necessarily hold between BSM and P-BSM
frameworks. The BSM abstract interpreter (cf. Section 2.3) does not have to satisfy
the weak fairness condition, but must not necessarily assume uniform distribution on
yielded updates.

126

Chapter 10

Embedding GOAL in Behavioural State
Machines

The BSM framework is a relatively new contribution to the field of agent programming
languages. While it clearly aims at pragmatic issues in programming cognitive agents
with mental attitudes, by providing a solid and crisp semantics, it falls into the category
of theoretically founded experimental agent programming frameworks (for an overview,
cf. Chapter 1). While most of these languages facilitate programming agent systems
with mental attitudes, at the same time, they sometimes significantly differ in some
aspects of the underlying theory and background ideas. The task to compare them and
establish the relative expressive power thus becomes crucial to the advancement of the
research field.
On the other hand, implementation and rapid prototyping of experimental agent-

oriented programming languages from scratch in e.g., Java, is a large, non-trivial and
error-prone effort. Moreover, a disadvantage of such an effort is that it is difficult
to ascertain that such an implementation is faithful to the agent language semantics.
Therefore, it would be useful to have an intermediate language that provides a core
instruction set of more high-level programming constructs than e.g., Java provides,
and that could be used to compile agent programs into. I.e., considering only plain
programming languages per se, there is a need for a core agent programming language
which

1. is minimal w.r.t. the set of language constructs, yet

2. facilitates semantics preserving translations from other agent-oriented program-
ming languages into directly executable programs, and thus

3. provides enough expressive power, so that it enables a natural link to formal meth-
ods enabling reasoning about agents in terms of mental attitudes.

Mainstream languages, such as Java, do not facilitate ex post reasoning about developed
systems in terms of mental attitudes. The main reason is that even though they provide
a concise general-purpose instruction set, translating agent programs to them is not
semantics preserving. The resulting programs are executed in terms of imperative or

127

Chapter 10 Embedding GOAL in Behavioural State Machines

object-oriented instruction flows, rather than in terms of interactions between agent’s
mental attitudes.
Unlike the BSM framework, the language GOAL, by Hindriks (2001), provides first-

class agent-oriented notions such as beliefs and goals. In this chapter, I will show how
agent programs written in GOAL can be translated in a semantics-preserving manner
to BSM agent programs. As it turns out, the BSM agent programming framework pro-
vides an interesting option for compiling agent programs into. While the requirement of
the language minimality stated above is not approached directly, the translation demon-
strates that the BSM framework does indeed provide a sufficient architecture and a set
of primitives, needed to emulate agent languages, such as GOAL. The main contribution
of the chapter is a formal proof, showing that it is relatively easy to compile GOAL
agents into BSM programs. It also demonstrates the usefulness of BSM, and in turn
also Jazzyk, as a target language of an agent program compiler. In the following, after a
brief overview of the GOAL language, I introduce the translation function C from GOAL
to BSM agent programs. For simplicity, in the transformation, I consider only ground
programs, i.e., those without variables.

10.1 GOAL
The agent programming language GOAL, Goal-Oriented Agent Language, was first in-
troduced by Hindriks (2001) and later described and improved in (de Boer et al., 2007)
and (Hindriks, 2009). It incorporates declarative notions of beliefs and goals, and a
mechanism for action selection based on these notions. That is, GOAL agents derive
their choice of action from their beliefs and goals.

Definition 10.1 (GOAL agent). A GOAL agent A represented as a tuple A =
〈Σ,Γ,Π, A〉, consists of four sections:

1. a set of beliefs Σ, collectively called the belief base,

2. a set of goals Γ, called the goal base,

3. a program section Π, which consists of a set of action rules, and

4. an action specification section A that consists of a specification of the pre- and
postconditions of actions of the agent.

For illustration, Listing 10.1 lists an example of a simplified GOAL agent that manip-
ulates blocks on a table.

10.1.1 Beliefs and Goals
The beliefs and goals of a GOAL agent are drawn from a KR language such as Prolog
(Shapiro and Sterling, 1994). In the following, however, I abstract from particularities

128

10.1 GOAL

Listing 10.1 Example of a GOAL agent program manipulating blocks on the table in
a blocksworld environment.
:main: blocksWorld {

//∗∗∗ Initializations omitted ∗∗∗/
:beliefs{. . .}

:goals{. . .}

:program{
if bel(on_table([B|S]), clear(B), block(C), clear(C)), goal(on_table([C,B|S]))
then move(C,B).

if goal(on(B,A)), bel(on_table([C|S]), clear(C), member(B,S))
then move(C,table).

}

:actionspec{
move(X,Y) {

:pre{ clear(X), clear(Y), on(X,Z), not(on(X,Y)) }
:post{ not(on(X,Z)), on(X,Y) }

}
}

}

of a specific KR language and consider only a template of the KR technology used in
GOAL.

Definition 10.2 (KR Technology). A KR technology is a triple 〈L,Q,U〉, where:

• L is some logical language, with a typical element φ ∈ L,

• Q is a set of query operators |=∈ Q such that |=⊆ 2L × L,

• U is a set of update operators � ∈ U of type : 2L × L → 2L.

The definition above is quite abstract and only specifies the types of operators which
are associated with a knowledge representation language. It allows for a wide range of
KR technologies that fit introduced KR schema. The only assumption made, is that the
special symbol ⊥ is part of the KR language L. Intuitively, it is interpreted as falsum,
i.e., when ⊥ can be derived from a set of sentences this set is said to be inconsistent. The
definition is inspired by the discussion on the foundations of knowledge representations
by Davis et al. (1993). Apart from minor differences, it corresponds to the notion of a
KR module in the BSM framework (cf. Definition 2.1).
W.l.o.g we can assume that GOAL is defined over a specific schema of a KR technology
K0 = 〈L, {|=}, {⊕,	}〉, where |= is an entailment relation on L, ⊕ is a revision operator
and 	 is a contraction operator. |= is used to verify that a sentence follows from a
particular set of sentences. ⊕ adds a new sentence to a the set and finally, 	 removes

129

Chapter 10 Embedding GOAL in Behavioural State Machines

(contracts) a sentence from a set of sentences. Both ⊕ as well as 	 are assumed to yield
consistent sets of sentences, i.e., for arbitrary theory T and φ, we have that T ⊕ φ 6|= ⊥
and T 	 φ 6|= ⊥. From now on, I use the label K0 to refer to arbitrary KR technologies
following this scheme and used by GOAL agents.
The belief base Σ and the goal base Γ of a GOAL agent are defined as subsets of

sentences, a theory, from the KR language L. Together the belief and the goal base of
an agent make up a mental state m of a GOAL agent.

Definition 10.3 (GOAL agent mental state). m = 〈Σ,Γ〉 is said to be a GOAL
agent mental state, when

1. the belief base Σ is consistent, i.e., Σ 6|= ⊥,

2. the individual goals γ ∈ Γ are consistent, i.e., {γ} 6|= ⊥ for each γ.

3. additionally, the agent does not believe it achieved its goals, i.e., for all γ ∈ Γ, we
have Σ 6|= γ.

10.1.2 Action Selection and Specification
A GOAL agent chooses an action by means of a rule-based action selection mechanism.
A program section in a GOAL agent consists of action rules of the form

if ψ then a.

These action rules define a mapping from states to actions, together specifying a non-
deterministic policy or course of action. The condition of an action rule, typically de-
noted by ψ, is called a mental state condition. It determines the states in which the
action a may be executed. Mental state conditions are Boolean combinations of basic
formulae bel(φ) or goal(φ), with φ ∈ L. For example, ¬bel(φ0) ∧ goal(φ0 ∧ φ1) is a
mental state condition.

Definition 10.4 (mental state condition semantics). Given a mental state m =
〈Σ,Γ〉, the semantics of a mental state condition, is defined by the following four clauses:

m |=g bel(φ) iff Σ |= φ,
m |=g goal(φ) iff there is a γ ∈ Γ s.t. {γ} |= φ,
m |=g ¬ψ iff m 6|=g ψ,
m |=g ψ1 ∧ ψ2 iff m |=g ψ1 and m |=g ψ2.

Actions are specified in GOAL using a STRIPS-like specification.
The action specification section consists of specifications of the form

action { :pre{φ} :post{φ′} }. (10.1)

130

10.2 Compiling a GOAL agent into a BSM

Such a specification of an action action consists of a precondition φ and a postcon-
dition φ′. An action is enabled whenever the agent believes the precondition to be true.
Upon its execution, the agent updates its beliefs by the postcondition φ′. Thereby, indi-
rectly, it can update also its goals. In line with STRIPS-style action specifications, the
postcondition φ′ of an action consists of two parts φ′ = φd∧φa. φd denotes a list of neg-
ative literals (negated facts), also called the delete list, and φa stands for a conjunction
of positive literals (facts), also called the add list. Each action is assumed to match with
exactly one corresponding action specification.

10.1.3 Semantics of a GOAL Agent
The semantics of a GOAL agent execution is defined in terms of Plotkin-style transition
semantics (Plotkin, 1981). It is sufficient to present here the semantics for executing
a single action by a GOAL agent. In Section 10.2, I show how this semantics can be
implemented by means of a BSM.

Definition 10.5 (action semantics). Letm = 〈Σ,Γ〉 be a mental state, if ψ then a be
an action rule, and a {:pre{φ} :post{φa ∧φd} } be a corresponding action specification
of a GOAL agent. The following semantic rule is used to derive that action a can be
executed

m |= ψ,Σ |= φ

m
a−→ m′

Σ′ = (Σ	 φd)⊕ φa and m′ = 〈Σ′,Γ \ {γ ∈ Γ|Σ′ |= γ}〉. We also say that m a−→ m′ is a
possible computation step in m.

Besides user specified actions, GOAL has two built-in actions adopt and drop, modi-
fying agent’s goal base. The following axioms define their semantics

〈Σ,Γ〉 adopt(φ)−−−−−−→ 〈Σ,Γ ∪ {φ}〉

〈Σ,Γ〉 drop(φ)−−−−−→ 〈Σ,Γ \ {γ ∈ Γ | {γ} |= φ}〉

(10.2)

The drop action features a non-trivial semantics. Besides removing the goal formula
φ from the goal base Γ, if it is present there, it also retracts all the goals, which can
indirectly cause the agent to further pursue the goal φ.

10.2 Compiling a GOAL agent into a BSM
This section shows that GOAL agents can be implemented as, or compiled into, Be-
havioural State Machines. The compiler is abstractly represented by a function C that
translates, compiles, a GOAL agent into a BSM. The main result is a proof that for every

131

Chapter 10 Embedding GOAL in Behavioural State Machines

GOAL agent A = 〈Σ,Γ,Π,A〉, there is a BSM C(A) = (M1, . . . ,Mn, τ) implementing
that GOAL agent. In fact, I will show that a BSM C(A) = (MΣ,MΓ, τ) with precisely
two KR modules, MΣ corresponding to the belief base Σ and MΓ realizing the goal
base Γ, implements the original GOAL agent A.
To show the transformation, I will first define the KR modules MΣ and MΓ of the

BSM. Subsequently, I will show how to construct the BSM agent program τ that im-
plements the action rules in the program section Π and action specifications A of the
GOAL agent. Finally, I will prove the equivalence of the GOAL agent with its BSM
counterpart C(A), by showing that both are able to generate the same computation runs.

10.2.1 Knowledge bases
GOAL knowledge bases take the form of KR technologies K0 = 〈L, {|=}, {⊕,	}〉. Be-
cause of the close similarity with the notion of KR module, a GOAL belief base can
be straightforwardly mapped onto a BSM KR module, which implements a query cor-
responding to evaluation of a mental state condition bel(φ) on Σ, as well as provides
updates corresponding to performing an action in GOAL. The GOAL belief base Σ can
be simply mapped onto a BSM moduleMΣ of the form

MΣ = Cbb(Σ) = 〈Σ,L, {|=}, {⊕,	}〉 (10.3)

While the underlying KR technology is implicitly assumed in a GOAL agent, this as-
sumption is made explicit in the corresponding BSM KR module.
The translation of the goal base of a GOAL agent into a BSM KR module is less

straightforward. A KR module that corresponds to the goal base needs to be able to
appropriately implement 1) the evaluation of a mental state condition goal(φ) on the
goal base, as well as 2) the execution of updates on it. Furthermore, the goals that
have been achieved by recent belief updates are considered satisfied and must, in turn,
be retracted. Because the query operator goal has a somewhat non-standard semantics
(cf. Definition 10.4), we need to define a non-standard KR technology associated with
the KR module implementing the goal base. The following mapping of a goal base Γ
onto the moduleMΓ provides the needed translation

MΓ = Cgb(Γ) = 〈Γ,L, {|=goal}, {⊕adopt,	drop,	achieved}〉, (10.4)

where

• Γ |=goal φ iff there is a γ ∈ Γ such that {γ} |= φ,

• Γ⊕adopt φ = Γ ∪ {φ},

• Γ	drop φ = Γ \ {γ ∈ Γ | {γ} |= φ},

• Γ	achieved φ = Γ \ {φ}.

132

10.2 Compiling a GOAL agent into a BSM

|=goal is used to implement goal(φ), ⊕adopt implements adopt, 	drop is used to im-
plement drop. Finally, 	achieved implements the goal update mechanism to remove
achieved goals. Note that 	drop operator cannot be used for removing a goal formula
from the goal base. To remove an agent’s goal, the goal update mechanism of GOAL
(cf. Definition 10.4) requires a simple set operator such as 	achieved.

10.2.2 Action rules

Using the KR technology translations, it is now possible to translate mental state condi-
tions ψ used in GOAL action rules of the form if ψ then a. As noted above, C(bel(φ))
can be mapped onto the BSM query |= φ. Similarly, we can define C(goal(φ)) = (|=goal
φ). Boolean combinations of mental state conditions are translated into Boolean com-
binations of compound BSM queries.
In the case, when a is either adopt or drop action, its translation into a BSM men-

tal state transformer is rather straightforward. Since both adopt(φ) and drop(φ) are
always enabled, they are simply mapped to corresponding primitive update operators as
follows

C(adopt(φ)) = ⊕adoptφ

C(drop(φ)) = 	dropφ
(10.5)

Compilation of user defined actions, i.e., actions specified in the action specification
section A, into a BSM depends on the action specification A of the original GOAL
agent. Such actions are mapped to conditional mst’s of the form ϕ −→ τ . The precon-
ditions of an action are mapped to the query part ϕ of the mst. Similarly, the effects
of that action, expressed by a postcondition in GOAL, are translated into a sequential
mst τ . Assuming that a is a GOAL action with the corresponding action specification
a {:pre{φ} :post{φd ∧ φa}, we define

C(a) = (|= φ −→ 	φd ◦ ⊕φa) (10.6)

Note that the BSM operators |=, ⊕, and 	 are associated with the KR moduleMΣ,
implementing the belief base of the GOAL agent, i.e., the precondition φ is evaluated
w.r.t. the set of agent’s beliefs. In line with Definition 10.5, the postcondition φd ∧ φa is
used to update that belief base.
Combining the translations of mental state conditions and actions yields a translation

of action rules in the program section of a GOAL agent. It is also convenient to introduce
a translation of a complete program section Π. Note that the order of translation is
unimportant. The GOAL program section translation follows.

C(if ψ then a) = C(ψ) −→ C(a)
C(∅) = skip
C(Π) = C(r) |C(Π \ {r}) , if r ∈ Π

(10.7)

133

Chapter 10 Embedding GOAL in Behavioural State Machines

Finally, we need to ensure that the resulting BSM implements the blind commitment
strategy of the GOAL language. I.e., a goal is removed, whenever it is believed to be
completely achieved. To this end, it is convenient to introduce the notion of a possibly
adopted goal. φ is said to be a possibly adopted goal, whenever it is possible that the
agent may come to adopt φ as a goal. I.e., whenever it is already present in the goal
base, or there is an action rule of the form if ψ then adopt(φ) in Π. Thus, the set of
possibly adopted goals PA of a GOAL agent A = 〈Σ,Γ,Π, A〉 can be defined by

PA = Γ ∪ {φ | if ψ then adopt(φ) ∈ Π}. (10.8)

We can model the part of the resulting BSM, responsible for the implementation of
the GOAL’s blind commitment strategy by a sequential mst that consists of a sequence
of conditional removals of goals from PA. In the case φ ∈ PA is believed to be achieved,
φ must removed from the goal base.

Cbcs(∅) = skip
Cbcs(PA) = (|= φ −→ 	achievedφ) ◦ Cbcs(PA \ {φ}) , if φ ∈ PA

(10.9)

Finally, putting all the pieces of the puzzle together, we arrive to translation of GOAL
agent into a BSM.

Definition 10.6 (translation of GOAL agent to BSM). The compilation of a
GOAL agent 〈Σ,Γ,Π, A〉 into a BSM is defined as

C(〈Σ,Γ,Π, A〉) = (MΣ,MΓ,C(Π) ◦ Cbcs(PA)).

Listing 10.2 shows the GOAL program section from Listing 10.1 translated into a
corresponding mental state transformer.

10.2.3 Correctness of the Translation Function C

The main effort in proving that the compilation of a GOAL agent A = 〈Σ,Γ,Π, A〉 into
the BSM C(A) = (MΣ,MΓ,C(Π) ◦ Cbcs(PA)) is correct, consists of showing that the
action rules Π of the GOAL agent generate the same sequences of mental states as the
mental state transformer C(Π) ◦ Cbcs(PA). In order to prove this, it is convenient to
first show some useful properties of the translation. Lemma 10.7 shows that Cbcs(PA)
implements the goal update mechanism of GOAL. Subsequently, Lemma 10.8 provides
the relation of GOAL mental states resulting from action execution to the application
of updates to BSM mental states. Finally, Lemma 10.9 shows that the evaluation of
mental state conditions in GOAL corresponds to the evaluation of their translations in
BSM. The proofs are rather straightforward and follow from definitions above.
Lemma 10.7, below, shows that a BSM state after removing goals that are believed

to be achieved is also a proper GOAL mental state. Furthermore, it shows that the mst
Cbcs(PA) implements this goal update mechanism.

134

10.2 Compiling a GOAL agent into a BSM

Listing 10.2 Translation of the GOAL program from Listing 10.1 to a corresponding
Jazzyk program.

/∗∗∗ Modules initialization omitted ∗∗∗/
{

/∗∗∗ C(Π) ∗∗∗/
when |= [{on_table([B|S]), clear(B), block(C), clear(C)}] and |=goal [{on_table([C,B|S])}] then {

when |= [{clear(C), clear(B), on(C,Z), not(on(C,B))}]
then ⊕ [{not(on(C,Z)), on(C,B)}]

} ;
when |=goal [{on(B,A)}] and |= [{on_table([C|S]), clear(C), member(B,S)}] then {

when |= [{clear(C), clear(table), on(C,Z), not(on(C,table))}]
then ⊕ [{not(on(C,Z)), on(C,table)}]

}
} ,
{

/∗∗∗ Cbcs(PA)) ∗∗∗/
when |= [{on(b,a), on(a,table)}] then 	goal [{on(b,a), on(a, table)}] ,
when |= [{on_table([a,b])}] then 	goal [{on_table([a,b])}] ,
when |= [{on_table([b])}] then 	goal [{on_table([b])}]

}

Lemma 10.7. Let m = 〈Σ,Γ〉 be a BSM state, such that Σ 6|= ⊥. Let also Γ ⊆ PA and
ρ be an update 	achievedγ1 • . . . • 	achievedγn. Then yields(Cbcs(PA),m, ρ) if and only
if

1. 〈Σ,Γ
⊕
ρ〉 is a GOAL mental state according to Definition 10.3, and

2. there is no Γ′, s.t., Γ
⊕
ρ ⊆ Γ′ ⊂ Γ, where 〈Σ,Γ′〉 is a GOAL mental state.

Proof. Both directions follow immediately from the construction of Cbcs(PA) (Equa-
tion 10.9) and PA (Equation 10.8). We have that γ1, . . . , γn are all the goals satisfied
w.r.t. the current agent’s beliefs, i.e., ∀1 ≤ i ≤ n : Σ |= γi. After removing them from
Γ, the resulting mental state 〈Σ,Γ

⊕
ρ〉 satisfies the Definition 10.3, hence point 1 holds.

Similarly, from the construction of Cbcs(PA) we have that no unsatisfied goal (w.r.t. Σ)
was removed from Γ by application of ρ. I.e., Γ

⊕
ρ is the result of a minimal change

on Γ, so that it becomes a proper GOAL mental state. Hence, also point 2 holds. ut

The following Lemma 10.8 furthermore proves that the GOAL states resulting from
executing an action can also be obtained by applying updates of a particular structure.
This allows relating GOAL actions to BSM updates.

Lemma 10.8. Let A = 〈Σ,Γ,Π, A〉 be a GOAL agent and C(A) = (MΣ,MΓ, τ) its
BSM compilation. Also let a be a user defined action of GOAL agent A, with action
specification a {:pre{φ} :post{φa ∧ φd}}. Then

1. m a−→ m′ ⇐⇒ ∃n ≥ 0 : m′ = m
⊕

(φd • ⊕φa • 	achievedγ1 • . . . • 	achievedγn),

135

Chapter 10 Embedding GOAL in Behavioural State Machines

2. m drop(φ)−−−−−→ m′ ⇐⇒ m′ = m
⊕

(dropφ),

3. m adopt(φ)−−−−−−→ m′ ⇐⇒ m′ = m
⊕

(⊕adoptφ), and finally

4. if yields(τ,m, ρ), then ρ is either of the form 	φd • ⊕φa • 	achievedγ1 • . . . •
	achievedγn for some n ≥ 0, or one of the 	dropφ, or ⊕adoptφ.

Proof sketch.

1. Follows from the GOAL action semantics in Definition 10.5, the construction of
C(a) and Lemma 10.7.

2-3. Again, both follow straightforwardly from the definition of adopt and drop se-
mantics (Equation 10.2), the constructions of C(adoptφ) and C(dropφ) (Equa-
tion 10.5).

4. Follows from the construction of C(A) in Definition 10.6 and the fact that since
adopt, nor drop (resp. ⊕adopt and 	drop) do not touch the belief base Σ, none
of the conditional mst’s in Cbcs(PA) can yield an mst.

ut

Finally, Lemma 10.9 relates the evaluation of GOAL mental state conditions to the
evaluation of their BSM translations in the same state.

Lemma 10.9. Let ψ be a mental state condition. Then the following holds

m |=g ψ ⇐⇒ m |=goal C(ψ)

Proof. Immediately follows from Definition 10.4 of mental state condition semantics and
the construction ofMΓ (Equation 10.4). ut

Finally, Theorem 10.10 shows that the updates generated by the translation of a
GOAL agent to a BSM produce the same mental states as the execution of actions by
that GOAL agent. That shows that the BSM implements the GOAL agent,the main
result of this chapter.

Theorem 10.10 (correctness of the GOAL-2-BSM compilation). Let A = 〈Σ,Γ,
Π, A〉 be a GOAL agent being in mental state m = 〈Σ,Γ〉. Let also C(A) = (MΣ,MΓ, τ)
be its corresponding BSM translation. Then for all ρ, we have

∃a : m a−→ m
⊕
ρ ⇐⇒ yields(τ,m, ρ).

Proof. Informally, to show the left to right direction (=⇒), we have to show that if a
GOAL action a is enabled in a mental state m, there exists an update ρ such that 1)
the state resulting from performing a is m

⊕
ρ, and 2) ρ is yielded by τ in this state.

Note that the expression on the left hand side denotes both, a BSM, as well as a GOAL
transition. From Lemma 10.8 we have that such a ρ exists and bears the form

136

10.3 Summary

1. ρ = 	φd • ⊕φa • 	achievedγ1 • . . . • 	achievedγn for user specified actions a,

2. ρ = 	dropφ if a = drop(φ), and

3. ρ = ⊕adoptφ if a = adopt(φ).

Suppose now that m a−→ m
⊕
ρ and a is a user defined action (the other cases dealing

with a = drop(φ) and a = adopt(φ) are similar). This means there is an action
rule if ψ then a, a precondition φ and a postcondition φd ∧φa associated with action a.
Moreover, we assume thatm |=g ψ and Σ |= φ. It remains to show that the corresponding
update ρ is also yielded by τ . By construction, we must have that

τ = (...|(C(ψ) −→ (|= φ −→ 	φd ◦ ⊕φa))|...) ◦ Cbcs(PA)

Since we have m |=g ψ and Σ |= φ, using Lemma 10.9, it is immediate that we have
yields(C(ψ) −→ (|= φ −→ 	φd ◦ ⊕φa),m,	φd • ⊕φa). Finally, from Lemma 10.7, we
have that yields(Cbcs(PA),m

⊕
(φd • ⊕φa), {	achievedγ1 • . . . • 	achievedγn) and by

applying sequential composition on the resulting updates we are done.
(⇐=) For the other direction, we have to prove that the updates performed by C(A)

correspond to enabled actions of theGOAL agentA. So suppose that yields(τ,m, ρ), and
ρ is of the form 	φd•⊕φa•	achievedγ1•. . .•	achievedγn (using Lemma 10.8, point 4; the
other cases with ρ = 	dropφ and ρ = ⊕adoptφ are again similar). From the construction
of C it follows that we must have yields(C(ψ) −→ (|= φ −→ 	φd◦⊕φa)◦Cbcs(PA),m, ρ).
From the rule for conditional mst in the yields calculus (cf. Definition 2.9) it follows that
m |=j C(ψ) and m |=j (|= φ). By Lemma 10.9 we then have m |=g ψ and Σ |=
φ. It must also be the case that there exists an action rule if ψ then a with action
specification a {:pre{φ} :post{φa∧φd}, such that m a−→ m

⊕
(φd•⊕φa•	achievedγ

′
1•

. . . • 	achievedγ
′
m) (cf. Lemma 10.8, point 1). It remains to show that 	achievedγ1 •

. . . • 	achievedγn is equal to 	achievedγ
′
1 • . . . • 	achievedγ

′
m. This, however, follows

immediately from Lemma 10.7. ut

10.3 Summary
This chapter presents results, I published earlier in a joint paper with Hindriks (Hindriks
and Novák, 2008). Above, I showed that any GOAL agent can be compiled into a
Behavioural State Machine and thus to Jazzyk agent program. More precisely, I proved
that every possible computation step of a GOAL agent can be emulated by the BSM
resulting from compilation of the GOAL agent to a BSM.
An elegant consequence of the presented translation is that the compilation procedure

is compositional. I.e., any modification or extension of the GOAL agent’s belief base, goal
base, the program or the action specification sections only locally affects the translated
knowledge bases of the resulting BSM, as well as the compiled agent.

137

Chapter 10 Embedding GOAL in Behavioural State Machines

As mentioned above, BSM does not commit to any particular view on the KR modules.
This flexibility allowed us to implement the goal base of a GOAL agent by means of
explicit emulation of the goal update mechanism. On the other hand, it is relatively
easy to note that the introduced compilation function provides a means to translate
GOAL agents into BSM s, but the relationship does not hold not vice versa.

138

Conclusion

... where I discuss the broader context and implications of the introduced
theoretical and engineering results, give a future work outlook beyond single
agent systems and in which I finally conclude the body of this dissertation.

Chapter 11

Part I: Theoretical foundations

The framework of Behavioural State Machines, in the form presented in Chapter 2,
is a culmination of a sequel of papers (Novák and Dix, 2006, 2007; Novák, 2008a,c;
Novák and Jamroga, 2009), presented on various conferences and workshops. The BSM
framework was originally devised as a generalization of agent programming languages,
such as 3APL by Hindriks et al. (1999) and AgentSpeak(L) by Rao (1996) so that it
could enable accommodation of heterogeneous knowledge representation technologies in
a single agent system. Gradually, however, it became clear that in order to achieve
the desired level of generality and interoperability or KR technologies, I have to tackle
the more fundamental issues of agent-oriented programming first. Thus, BSM came to
life, as a programming framework of its own, with development mainly driven by the
case-studies presented in Chapter 7. Below, I discuss distinctive features of the BSM
framework w.r.t. the state-of-the-art BDI agent programming frameworks and related
theoretical work. I discuss the most important contributions of the BSM framework
to the state of the art of cognitive agent programming. I.e., its support for what I
call vertical and horizontal modularity, support for implementing flexible model of agent
reasoning and finally its tight relationship to a logic for reasoning about BSM programs.

11.1 Vertical modularity
To facilitate implicit interactions between agent’s knowledge bases, such as beliefs and
a goal base, the mainstream theoretically founded agent programming languages are
strongly bound to a single knowledge representation technology employed across the
knowledge bases. In all the cases it is a variant of the first-order logic. For instance,
consider a language object, a goal formula φ, denoting an agent’s desire to bring about
a certain state described by φ in a goal base G. In the case the agent believes that it
already reached that state, i.e., the belief base B entails the goal φ, B |= φ, the goal
should be dropped from G. To enable entailment |= of a goal formula from the belief
base B, straightforwardly, the easy solution can to implement both the goal base, as well
as the belief base with the operator |= as first-order logic entities.
Unlike that family of agent programming languages, the approach taken by the BSM

framework is rather liberal and provides support for vertical modularity, i.e., modularity

141

Chapter 11 Part I: Theoretical foundations

w.r.t. the underlying KR technologies. One of the consequences of this liberal approach
is however a loss of implicit purposes ascribed to knowledge bases. The syntax of the
language is also agnostic of mental attitudes. I.e., the BSM framework does not provide
explicit first-class concepts such as a belief or goal and the agent program only encodes
relationships between various formulae of agent’s knowledge bases. It is agent designer’s
responsibility to ascribe cognitive purposes, mental attitudes, to the knowledge bases
and KR language objects stored in them, as well as to encode their interrelationships
in the BSM program explicitly. While on one hand moving this burden on agent de-
signer’s shoulders, on the other it enables a high degree of flexibility in implementation
of various models of agent reasoning, such e.g., I-System rationality axioms, described
in Section 3.1.
Because of the liberal approach taken by the BSM framework, it could also be argued1

that because of the lack of first-class constructs for agent’s mental attitudes and their
interdependencies, the BSM framework is too abstract, oversimplified and thus it does
not qualify as a proper agent-oriented programming language. In Chapter 3, I argue
that actually the lack of a fixed set of language constructs for mental attitudes and
their interdependencies allows programmers to implement BDI-style cognitive agents in
a more flexible and modular way. To demonstrate that it is indeed the case, later in the
dissertation, I describe applications of the BSM framework in programming cognitive
agents, which make use of the framework’s flexibility and modularity.
By exploiting the plug-in architecture of the BSM framework, the modular BDI ar-

chitecture introduced in Chapter 3 provides a template, a BSM behavioural template,
for development of BDI inspired cognitive agents. It facilitates the use of heteroge-
neous knowledge representation technologies in agent’s knowledge bases and by the same
mechanism it also enables a straightforward integration with legacy software, 3rd party
software, or external environments. Thus agent’s deliberation abilities reside in the KR
modules, while its behaviours are encoded as a mental state transformer, a BSM agent
program.
One of the precursors and sources of inspiration of the modular BDI architecture is

IMPACT, an agent platform by Subrahmanian et al. (2000). Similarly to the BSM
framework, IMPACT allows encapsulation of interfaces to various 3rd party or legacy
systems into logic programming style wrappers, which were later used by IMPACT
agents. Unlike BSM, however, the semantics of IMPACT programs was based on logic
programming and also parts of agent’s knowledge base had to be written as a logic
program. Instantiation of IMPACT as a BDI style agent system with knowledge bases
storing and maintaining agent’s mental attitudes was thus not as straightforward as
for BSM. In turn, IMPACT does not support a straightforward implementation and
adaptation of the agent reasoning model according to the specific application domain
requirements. Rather, agent’s actions for the next step are selected directly on the

1And indeed, it was many times pointed out on various occasions.

142

11.2 Horizontal modularity

ground of its beliefs, information from the external modules.
According to my knowledge, the modular BDI architecture (Novák and Dix, 2006),

was probably the first proposal for modularizing the BDI architecture with heteroge-
neous underlying KR technologies. In the recent work with Dastani et al. (2008d), we
formally study translation techniques between heterogeneous KR technologies used in
such a modularized BDI architecture. To facilitate integration of heterogeneous KR
technologies, the approach taken there aims at preservation of the implicit agent rea-
soning model of the underlying language. E.g., unlike in the modular BDI architecture,
the language interpreter itself drops a goal, whenever its belief counterpart becomes
derivable from the belief base. I introduce a technique emulating that mechanism in the
GOAL language in Chapter 10.

11.2 Horizontal modularity
In its first incarnation, the modular BDI architecture (Novák and Dix, 2006), the BSM
framework did not provide means for structuring of agent programs, such as nesting of
mental state transformers. Similarly to languages, such as 3APL or AgentSpeak(L), the
agent program was encoded as a plain set of context aware production rules. The flat
program structure, however, does not scale up well with a growing number of rules. This
very pragmatic problem led to introduction of the nested structure of agent programs.
The BSM framework introduces the construct of a mental state transformer, as a means
for encapsulating meaningful subprograms. The mst construct is inspired by the notion
of a GOAL mental state transformer by Hindriks (2001). However, GOAL mst’s are
rather constrained to atomic updates of agent’s mental state, while BSM ’s mst can
denote a complex function over agent agent’s knowledge bases. In turn, the functional
semantics of mental state transformers provides a powerful abstraction for hierarchical
decomposition of agent programs.
The nested structure and semantics of mst’s was inspired by Gurevich’s Abstract State

Machines2 (ASM) (Börger and Stärk, 2003), which a general purpose model of compu-
tation over heterogeneous variable domains. In this sense, BSM could be informally
seen as a particular instantiation of the ASM framework, providing structured reactive
control over heterogeneous knowledge bases. In result, mental state transformers denote
functions, reactive policies, over the space of mental states.
The notion of mental state transformer as an encapsulated subprogram, a function,

provides a basis for modularizing agent programs. In Chapter 5, I describe a concrete
implementation of the BSM framework as the programming language Jazzyk. It inte-
grates a macro preprocessor, which in turn enables writing agent programs in terms of
reusable named subprograms with encapsulated functionality. Even though the idea of
purely syntactical macros expanded troughout a program is straightforward and rather

2Formerly known as Evolving Algebras invented by Gurevich (1994).

143

Chapter 11 Part I: Theoretical foundations

trivial in itself, in practice, it has important consequences. It enables easy scaling of
agent programs written with the BSM framework. Furthermore, it also facilitates natu-
ral management of large number of program statements, rules, in a manner programmers
know from mainstream structured imperative programming languages, such as Pascal,
C, or alike.
Recently, there were several attempts to introduce modules into theoretically founded

an agent programming language were made in the field. Probably incomplete list in-
cludes the efforts by Dastani et al. (2004) and by van Riemsdĳk et al. (2006b) for 3APL,
by Hindriks (2007) for GOAL, Dastani et al. (2008e) for 2APL, or the papers (Mad-
den and Logan, 2009; Hübner et al., 2006b,a) for AgentSpeak(L)/Jason. Unlike the
straightforward, purely syntactic, technique implemented for the BSM framework, these
approaches to modularization of an agent language are heavily based on introducing new
semantic constructs and in turn adapting the original language semantics. In the case
of the BSM framework, this is not necessary. In result, the hierarchical structuring of
BSM agent programs, together with the powerful abstraction of mental state transform-
ers facilitating functional encapsulation provides a high level of scalability and thus also
programming convenience.

11.3 Agent reasoning model

Agent programming languages such as GOAL, 3APL, or AgentSpeak(L) provide a fixed
implicit agent reasoning model embedded in the semantics of the language. A program-
mer then focuses only on encoding agent’s functional behaviour, while it is the language
interpreter, which takes care for interdependencies between agent’s mental attitudes be-
hind the scenes. As already mentioned in Section 11.1, the BSM framework, and thus
in turn also the modular BDI architecture introduced in Chapter 3, does not definitely
fix the set of agent’s mental attitudes and the axiomatic system of their relationships
and interdependencies. As a consequence, it does not implicitly provide mechanisms
managing agent’s mental attitudes behind the scenes, directly in the semantics of the
language. Instead, the programmer is free to define a number and type of individual
knowledge bases according to a particular-application domain-specific requirements and
subsequently encode such interrelationships among knowledge bases in an explicit man-
ner. While on one hand this requires more effort on the side of the agent designer, on
the other the BSM framework allows for application-domain-specific adaptation of the
agent reasoning model on the language level. As in the case of introducing the modu-
larization support to agent languages, such arbitrary adaptations would yield changes
in the programming language semantics and in turn a modified interpreter. An attempt
to leverage this issue in AgentSpeak(L) was recently made by Winikoff (2005a), result-
ing in implementation of a meta-interpreter for the programming language. The BSM
framework supports such adaptations as a first-class concept. In this sense, the BSM

144

11.4 Logic for programming agents

framework can be also seen as a meta language for specifying and encoding the agent
reasoning model tailored for the specific system in development.

11.4 Logic for programming agents

Since its inception, the problem of development of a formal approach to cognitive agent
programming is connected with the issue of logic for reasoning about the resulting pro-
grams. In the past, often it was the logic for agent systems, which was proposed first
and only subsequently a suitable programming framework or a language followed. For
instance, this was the case for the BDI logic (Rao and Georgeff, 1991) and the AgentS-
peak(L) (Rao, 1996) language. However, a tight formal relationship between a program-
ming framework and a reasoning framework for agent behaviours is not always estab-
lished in such a way that it enables practical use of the logic as a formal specification
language.
To provide the basis for a formal specification language, as well as to enable reason-

ing about BSM agent programs, in Chapter 4, I introduced DCTL* logic tailored for
the BSM framework. Together with the proposal for program annotations, allowing
translation of logic-agnostic BSM mental state transformers into the temporal logic, it
enables extraction of semantics characterization from agent programs and their subse-
quent verification. Later, in Chapter 6, I used this tight relationship for development
of practical design patterns, supporting and simplifying programming with the BSM
framework. Moreover, I showed that DCTL* logic allows formalization of the notion of
an achievement goal, similar to persistent relativized goal, one of the central notions of
Cohen and Levesque’s BDI style logic (1990).
Several logics for agent systems with mental attitudes were proposed. As already

mentioned, AgentSpeak(L) and in turn the Jason framework are inspired by Rao and
Georgeff’s BDI logic (1991). Additionally, Bordini et al. (2003) provide a formal approach
to model checking AgentSpeak(F), a restricted version of AgentSpeak(L) w.r.t. LTL spec-
ifications. ConGolog by Levesque et al. (1997) is an agent programming language based
on the situation calculus (Levesque et al., 1998). In turn, the results for the situation
calculus can be used almost directly for reasoning about ConGolog programs. de Boer
et al. (2007) propose a verification framework for the GOAL agent programming lan-
guage developed first by Hindriks (2001). Similarly, Dennis and Farwer (2008) propose
a verification framework for the language Gwendolen. van Riemsdĳk et al. (2004; 2006a)
proposes a version of dynamic logic for reasoning about a restricted version of 3APL
language. Finally, Concurrent MetateM described by Fisher (1993; 1994) and Fisher
and Hepple (2009) is a language based on the direct execution of temporal formulae.
Thus, it directly facilitates both, an a priori program specification and verification, as
well program execution in the same language.
Because of their bond to an imperative language, pragmatically oriented programming

145

Chapter 11 Part I: Theoretical foundations

frameworks, such as JACK or Jadex, provide only limited support for formal approaches
to reasoning about programs written with them. On the other hand exactly because
of that relationship, they provide a high level of comfort and familiarity to system
developers.
The BSM framework tries to strike a balance between the two worlds. It provides

a clear semantics, enabling a tight bond with a formal logic for reasoning about its
programs and at the same time it strives to provide similar level of flexibility and software
engineering convenience as the pragmatic approaches do.

146

Chapter 12

Part II: Software engineering issues

The second part of this dissertation deals with pragmatic issues of using the framework
of Behavioural State Machines. It stems mainly from parts of earlier papers (Novák,
2008c) and (Novák and Jamroga, 2009). While the BSM framework sets the theoret-
ical scaffolding for a particular way of thinking about design of cognitive agents, the
programming language Jazzyk provides concrete tools for using it in practice. In this
section, I discuss the main contributions of the proposed approach to designing exten-
sible agent-oriented programming languages. I also provide an overview of the broader
context and the state of the art in the field.

12.1 The programming language

Jazzyk is an instantiation of the framework of Behavioural State Machines in a concrete
implemented programming language. While the introduced Jazzyk interpreter provides
a reference BSM implementation, the requirements imposed on admissible BSM in-
terpreters in Chapter 2 still leave space for slightly different solutions to particulari-
ties, such as the specifics of shared domains, variable substitutions mechanism, or non-
deterministic choice. As an example of an admissible language adaptation, Chapter 9
provides an extension of the implementation of the non-deterministic choice mechanism.
Similarly to the other state-of-the-art agent-oriented programming languages, such

as the already discussed Jason/AgentSpeak(L), 3APL, 2APL, or GOAL, Jazzyk is an
experimental language. While on one side, it is highly desirable to evaluate and use it
for larger case-studies and demonstration applications, in the presented work, I focused
on enabling experimentation with the core language features and the design style it
promotes. Thus, it does not provide a high level of comfort for developers in terms of
accompanying tools such as an IDE or a debugger. In the context of the state-of-the-
art theoretically founded languages, Jazzyk’s syntax is comparatively simple and highly
readable, though perhaps a bit “talkative”.
The main contributions of Jazzyk to the state-of-the-art approach to designing an

agent-oriented programming language lie in its two most distinctive features. Firstly,
it introduces hierarchical structuring of source code of agent programs, and secondly, it

147

Chapter 12 Part II: Software engineering issues

relies on syntactic macro facilities for handling modularity and reusability of subpro-
grams. These enable experiments geared towards development of the novel approach to
design of extensible agent-oriented programming languages.

12.2 Extensible language constructs

It can be argued that Jazzyk should not be regarded as a proper agent-oriented pro-
gramming language. Indeed, it does not come with a set of first-class constructs for
programming systems in terms of agent’s mental attitudes. Instead, Jazzyk provides
a modular approach to development of reactive systems, while providing a lightweight
toolbox (macros) for extending it in a domain- or an application-specific manner.
To illustrate the versatility of the language, in Chapter 6 I gradually developed code

patterns, finally implementing an achievement and a maintenance goal. The effort rep-
resents the first step towards a more extensive library of programming language con-
structs. I follow the implicit view on intentional stance of promoted by Cohen and
Levesque (1990), rather than the one by Bratman (1999) and Rao and Georgeff (1991).
I.e., only agent’s beliefs and goals are treated as first class objects in the programming
framework, while the intentional stance of an agent is a property of an agent program
execution towards achieving a goal.
The mainstream approach to design both flavours of agent-oriented programming

frameworks, i.e., those theoretically founded as well as those engineering ones overlaying
Java (cf. Chapter 1), is to first identify and choose a set of agent-oriented features and
subsequently implement them in explicit language constructs. One of the negative con-
sequences of such an approach is rigidity of the resulting programming framework. In
order to extend such languages with new features, be it towards pragmatic engineering
(e.g. attempts to introduce modules into agent-oriented programming languages, (van
Riemsdĳk et al., 2006b; Dastani et al., 2008e; Madden and Logan, 2009; Hindriks, 2007))
or in order to extend the programming with mental attitudes itself (cf. e.g., (van Riems-
dĳk et al., 2008; Hindriks and van Riemsdĳk, 2009; Sardiña et al., 2006; Hindriks et al.,
2008)), the language designer must modify the language semantics and subsequently
the language interpreter. Jazzyk promotes semantic extensions as specific KR module
operators and language extensions as code templates or patterns.
As for the formal treatment of design patterns, implementing useful agent-oriented

concepts in agent programming languages, only little state-of-the-art work exists. On
the one hand, in the family of theoretically founded approaches, Bordini et al. (2007)
discuss using code templates for implementation of various goal handling strategies and
plan patterns in Jason. However, unlike the approach presented in Chapter 6, the
use of reusable code patterns is not promoted as a way to extend the programming
language itself. On the other hand, engineering approaches, such as JACK (Winikoff,
2005b) and Jadex by Pokahr et al. (2005), natively allow for exploiting modular Java

148

12.2 Extensible language constructs

style of programming and thus also allowing for various customizations by application
programmers. This provides a basis for potential use of various design patterns for
the underlying language. However, up to my knowledge, customization and extension of
these frameworks with formally characterized agent-oriented patterns was not considered
yet.
The proposed approach to agent-oriented programming language customization pro-

vides a basis for bridging the gap between the programming languages and methodologies
and agent modelling frameworks. One of the main results of the analytical stage of single
agent systems in methodologies such as Tropos (Giorgini et al., 2004) orMaSE (DeLoach,
2004), are agent’s goals, or tasks, associated with agent’s roles. Such methodologies are
not coupled to a particular agent architecture and the details of the agent design are left
to a particular platform. The presented notion of commitment oriented programming
paves the way to a hierarchical decomposition of agent system specification in terms of
various types of commitments, such as e.g., goals, subgoals, plans, tasks, behaviours,
etc. In turn, BSM code patterns allow system designers to develop custom sets of high
level language constructs fitting the notions of the considered agent-oriented software
engineering methodology. In order to explore the connection between the two worlds,
one of the avenues of future research would be gradual development of an extensive li-
brary of design patterns for handling aspects of various agent-oriented notions, such as
obligations, protocols, or roles, etc.
While I do my best to show the usefulness of the presented approach to designing ex-

tensible agent-oriented languages, the proposal still needs to be thoroughly explored and
validated in many various-scale experiments and case-studies, beyond those presented
in Chapter 7.

149

Chapter 12 Part II: Software engineering issues

150

Chapter 13

Part III: Evaluation, extensions and beyond

The final part of this dissertation discusses experimental work and evaluation of the
previously introduced theoretical and engineering results. It is mainly based on the
results published in (Hindriks and Novák, 2008; Novák and Köster, 2008; Köster et al.,
2009; Novák, 2009b). In the following, I discuss mainly related work, as well as some
future outlooks for further evaluation and directions of development of the technologies,
based on the framework of Behavioural State Machines.

13.1 Experimental work
The three case-studies, described in this paper, served me most importantly as a vehicle
to nurture and pragmatically drive the theoretical research towards a methodology for
using the BSM framework, and in turn the agent-oriented programming language Jazzyk.
As an important side effect, I also collected a body of experiences with programming
BDI-inspired virtual cognitive agents for computer games and simulated environments.
Since in the long run, the background motivation was the development of autonomous

robots, in both cases of Jazzbot and Urbibot, the virtual agents had to be running
autonomously and independently from the simulator of the environment. This choice
had a strong impact on the design of the agents w.r.t. the action execution model and the
model of perception. In both described applications, the agents are remotely connecting
to a simulated environment, in which they execute actions in an asynchronous manner.
I.e., they can only indirectly observe the effects (success/failure) of their actions through
later perceptions.
As far as the model of perception is concerned, unlike other game bots, Jazzbot is

a pure client side bot. The amount of information it can perceive is a strict subset of
the information provided to the game client used by human players. Hence, the Jazzbot
agent cannot take advantage of additional information, such as the global topology of the
environment or information about objects in distant parts of the environment, which are
accessible to the majority of other bots, available for first-person shooter games. In the
case of Urbibot, the simulator provides only perceptions accessible to the embodiments
of robot’s sensors. In particular, these are most importantly a camera, a directional
distance sensor and global positioning, hence the available information is, similarly to

151

Chapter 13 Part III: Evaluation, extensions and beyond

Jazzbot, only local, incomplete and noisy. To some extent, these constraints apply also to
the third case-study in development, the AgentContest team. However, in this case, the
focus is more on the multi-agent coordination, rather than on development of individual
single agent systems.
Because the implemented agents are running independently from the simulation en-

gine and execute their actions in an asynchronous manner, their efficiency is only loosely
coupled to the simulation platform speed. In our experiments, the speed of agent’s reac-
tions was reasonable w.r.t. task the bots were supposed to execute. However, especially
in the case of Jazzbot, due to deficiencies on the side of sensors, such as a missing camera
rendering the complete scene the bot can see, Jazzbot in its present incarnation cannot
match the reaction speed of advanced human players in a peer-to-peer match.
The BSM framework assumes that the mental state of an agent, including its environ-

ment, changes only between the single executions of the deliberation cycle. Therefore,
in order to implement agile agents, which act in their environments reasonably quickly
w.r.t. the speed of change of the environment, the query and update operators should
be computable procedure invocations and shouldn’t take too long.
Since, the agents store their internal state in application-domain-specific KR modules,

the control model of the BSM framework results in agents which can instantly change the
focus of their attention w.r.t. the observed changes of the state of the environment. The
goal-orientedness of agent’s purposeful behaviours emerges from the coupling between
behaviour triggers and agent’s attitudes modeled in its components. This turned out to
be of a particular advantage when a quick reaction to interruptions, such as an encounter
with an enemy agent or a patrol, was needed. On the other hand, because of the open
plug-in architecture of the BSM framework, we were able to quickly prototype and
experiment with various approaches to knowledge representation and reasoning, as well
as various models of interaction with the environment.
The presented research follows the spirit of Laird and van Lent’s argument (2001),

that approaches for programming intelligent agents should be tested in realistic and
sophisticated environments of modern computer games. The Jazzbot project thus walks
in footsteps of their SOAR QuakeBot (Laird, 2001).
Another relevant project, Gamebots by Adobbati et al. (2001), provides a general

purpose interface to a first-person shooter game Unreal Tournament produced by Epic
Games, Inc. (2004). Gamebots’ approach is however server side. Its virtual agents are
provided with much more information than a human player has, what was not in the
spirit of our aim to emulate mobile robots in virtual environments. We did not pick the
Gamebots framework for our project because it is specific to the commercially available
game Unreal Tournament and since 2002, the Gamebots project does not seem to be
actively maintained.
Recently, an interesting new interface to various games, such as Unreal Tournament

game engine, called Pogamut 3, was developed by Gemrot et al. (2009). It provides a
flexible and rather abstract interface to game simulations. Even though the interface it

152

13.2 Probabilistic approaches to agent-oriented development

opens to third party developers is again server-side, because of its flexibility, it might
be interesting to explore possibilities of using it in future experiments with Jazzbot-like
agent systems. An interesting avenue of possible future work would be using the rich 3D
game simulation engine for experimentation with serious games, i.e., specialist training
simulations. To this end, multi-agent scenarios would need to exploit the powers of an
open communication infrastructure, similar to that I describe later in Chapter 14. A
new specialized Pogamut plug-in for Jazzyk interpreter would have to be developed as
well.
Traditionally, agent-oriented programming languages, such as GOAL or 3APL, use

mainly Prolog for representing beliefs of cognitive agents. To enable easier comparison
and porting of applications from such languages, I plan to develop Jazzyk plug-ins, KR
modules, interfacing Prolog interpreter, (e.g., SWI Prolog engine (Wielemaker, 2003)),
as well as one for a LISP dialect Scheme (Sussman and Steele Jr., 1998).
Our work on the Jazzbot and Urbibot case-studies is novel in the sense that it seems

to be the first efficient application of non-monotonic reasoning framework of ASP in a
highly dynamic domain of simulated robotics or a first-person shooter computer game.
To my knowledge the first attempt by Padovani and Provetti (2004) uses Answer Set
programming for planning and action selection in the context of the Quake 3 Arena game
(id Software, Inc., 1999). However, authors note that their bot could not recalculate its
plans rapidly enough, since each stable model re-computation required up to 7 seconds in
a standard setup. Thus, in comparison to Jazzbot or Urbibot, their agent was capable to
react to events occurring in the environment only to a lesser extent. This was probably
due to the fact, that both the action selection, as well as planning was completely
written in ASP. Jazzbot and Urbibot use logic programming only for reasoning about
static aspects of the world and goals. The action selection is left to Jazzyk, a language
designed for that task.
Similarly, to my knowledge, the transparent integration of various KR technologies

such as the logic programming for representing agent’s beliefs and goals and the object-
oriented language for storing topological information, together with a generic reactive
control model of the agent program in Jazzyk is rather unique. In consequence, the
BSM framework shows a lot of potential for further experimentation towards exploiting
synergies of various AI technologies in cognitive agent systems. Especially the attractive
domain of virtual agents and autonomous non-player characters for computer games is
an interesting direction for future research. Yet, more experimentation is needed to
explore the limits and deficiencies of the proposed approach in such a domain.

13.2 Probabilistic approaches to agent-oriented development

The underlying semantic model of the Behavioural State Machines framework is a la-
belled transition system. In consequence, the underlying semantic model of the P-BSM

153

Chapter 13 Part III: Evaluation, extensions and beyond

framework is a discrete probabilistic labelled transition system, i.e., a structure similar
to a Markov chain (Markov, 1906). This similarity suggest a relationship of the P-BSM
underlying semantic structure to various types of Markov models (cf. e.g., (Meyn and
Tweedie, 1993)). However, here I do not further explore this relationship. As of now, the
P-BSM framework should be seen as a pragmatic minor, yet quite a powerful, extension
of the practically tested BSM framework.
In the field of agent-oriented programming languages, recently Hindriks et al. (2008)

introduced an extension of the GOAL language, where a quantitative numeric value is
associated with execution of an action leading from a mental state m to another mental
state m′. I.e., a triple of a precondition φ (partially describing m), an action a and a
post-condition ψ (describingm′) is labelled with a utility value U(φ, a, ψ). Subsequently,
in each deliberation cycle, the interpreter selects the action with the highest expected
future utility w.r.t. agent’s goals.
The approach of Hindriks et al. focuses on estimating aggregate utility values of

bounded future evolutions of the agent system. I.e., it evaluates possible future courses
of evolution, plans, the agent can consider, and subsequently chooses an action advancing
the system evolution along the best path. The P-BSM, on the other hand, is concerned
only with selection of the next action, resulting from the bottom-up propagation of
probabilistic choices through the nested structure, a decision tree, of the agent program.
While the approach of Hindriks et al. can be seen as a step towards look-ahead like re-
active planning, P-BSM remains a purely reactive approach to programming cognitive
agents. Informally, except for the nested structuring of agent programs, the proba-
bilistic choice of the P-BSM framework could be emulated by the approach of Hindriks
et al. with the look-ahead planning bound of the length one. Even though the underlying
philosophy of the two approaches differs, they both share the view that

while underspecification of agent programs is in general inevitable, in situ-
ations when a suboptimal performance is tolerable, providing the agent pro-
gram interpreter with a heuristics for steering its choices can lead to rapid
development of more efficient and robust agent systems.

Note that the core idea behind the P-BSM extension, i.e., specification of the probability
of choosing a branch of a non-deterministic computation by a label, is straightforwardly
applicable to other agent programming languages, especially those rule-based.
One possible avenue for a future work on using the probabilistic extension of the

original BSM framework and its further development is the domain of behaviour learning.
I.e., instead of hard-encoding the execution frequencies high level behaviours composed
of basic capabilities, these can be learned by a mass evaluation in simulated scenarios
and adjusted by a hill climbing type of algorithm1. In this context, because of its
flexible hierarchical structure, the P-BSM framework allows even for recombinations of

1The idea stems from a discussion with Lin Padgham at AAMAS 2009 conference in Budapest, Hungary.

154

13.3 Comparison with related frameworks

the lower level behaviours in the course of learning, which could lead to a kind of genetic
programming approach to building cognitive agent systems.

13.3 Comparison with related frameworks
The task to compare various agent-oriented software engineering approaches and their
associated tools and technologies is of great importance for the field theorists. Program-
ming frameworks, platforms and languages are, however, engineering tools in the first
place. Thus, a sound study of relations of such languages necessarily involves not only
comparison of their expressive powers, but also evaluation of their respective forms and
quality of their implementations. It not of much value to modern programmers to know
that programming in a low level language such as e.g., assembly language, is the most
expressive form of writing code for a CPU, when the engineering processes connected
with usage of that language leads to prolonged software development, difficult mainte-
nance and low portability of the code, to name just few desirable properties imposed
on a programming language. A programming language has also to come with high level
constructs supporting abstractions appropriate for the programming paradigm, as well
as the application domain the language should support. It is easy to see that such a
rigorous and objective comparison of different languages becomes inherently biased by
subjective points of view of the evaluators. Moreover, the quality of implementation of
the tools associated with the approach influences the results of the comparison as well.

13.3.1 Theoretically founded agent programming languages
Even though perhaps problematic, studies of relationships between programming lan-
guages purely geared towards their respective expressivity still make a lot of sense. They
help us to gain a deeper insight into the question about which problems actually lie in
the core of the task to build intelligent agents of various types. Examples of such stud-
ies are the bi-simulation results shown by Hindriks (2001) for the couples 3APL and
AgentSpeak(L) and 3APL and ConGolog (Giacomo et al., 2000).
While on one side, Chapter 7 presents a practical approach to evaluate abilities and

merit of the introduced programming framework, in Chapter 10 I also made an attempt
to theoretically study the relationship with a state-of-the-art agent-oriented program-
ming language GOAL. The result shows that the BSM framework, and in turn also
Jazzyk, has at least the expressive power of GOAL. In Theorem 10.10, I show that there
is an efficient translation for every GOAL agent into a BSM agent program. This result
is actually not very surprising, because the BSM framework is a rather generic program-
ming system. Yet, the difficulties, which arose in the course of proving the result, are
symptomatic and indicate the differences, or perhaps even limitations, of the abilities
of the BSM framework w.r.t. the family of logic-based agent-oriented programming lan-
guages, such as e.g., Jason or 3APL. Note, the Cbcs(PA) component of the translation

155

Chapter 13 Part III: Evaluation, extensions and beyond

(cf. Subsection 10.2.2). In order to clean the goal base from the goals which became
satisfied by taking an action, a belief base update, from the C(Π) component, it is nec-
essary to enumerate all the goals which the agent could possibly hold at any timepoint
of its lifecycle.
Most of the state-of-the-art agent programming languages involve similar mechanisms,

either associated with their goal bases, or the base of intentions. In the case this set
of goals is infinite, it wouldn’t be easy, if possible at all, to express the goal handling
mechanism by means provided by the BSM framework. This is mainly due to the
fact that firstly, the BSM framework’s architecture allows only for execution of a finite
number of atomic updates per deliberation cycle, and secondly, each atomic update is
yielded by a concrete primitive update formula in the program. Thus it is not easily
possible to express statements implying unbounded, or even infinite internal atomic
updates or checks. In practice however, agent programs written with such languages
are finite and often the semantic rules requiring that the elements of agent’s knowledge
bases should be dropped immediately upon certain change are not of critical importance
to application developers. Often, it is not critically required that whenever a goal is
satisfied it must be immediately dropped, but rather it should be dropped sometime
in the near future, similarly to goal handling defined by the ACHIEVE design pattern
in Definition 6.10. Thus, the aforementioned limitation of the BSM framework can be
relatively easily overcame by using techniques such as those presented in the compilation
of GOAL programs into Jazzyk, or by designing appropriate code patterns.

13.3.2 Common semantic basis for agent programming languages

The implementation strategy used to identify specific semantic features of the GOAL
language and to emulate these explicitly in Jazzyk also raises the question, whether
features of other agent programming languages can be compiled to Jazzyk in a similar
way. Although I do not extensively argue for this, I believe that a similar approach
can also be applied to other rule-based agent programming languages. In particular,
the following translation methodology could be applied to compile agent programs into
BSM s:

1. compile the underlying knowledge base(s) into equivalent BSM KR module(s),

2. compile the (action, planning, etc.) rules of the agent program into BSM mental
state transformers using the operators of the KR module(s), and finally

3. implement any specific semantic features of the language by an appropriate com-
pound BSM mst and “append” it to the one constructed in the previous step.

Since the BSM framework also features a much simpler conceptual scheme than higher
level agent languages, it provides a promising basis for an intermediate language into

156

13.4 Broader context

which agent programs can be compiled and interpreted. In that sense, the BSM frame-
work can be seen as a meta-language, which enables tailoring of the architecture and the
agent deliberation cycle to emulate even variations of other languages. Thus the BSM
framework can be seen as a minimalistic tool for rapid prototyping of new agent-oriented
features in programming languages based on the reactive planning paradigm. Thus, one
of the possible avenues for a future work could be further research towards compilation
of other languages into Jazzyk and implementation of respective efficient translators.
If the approach would prove successful, Jazzyk could be seen as a kind of a low level
assembly language for agent-oriented programming.
Relevant in this context, Winikoff (2005a) introduces a very simple meta-interpreter

for a variant of the AgentSpeak language. The meta-interpreter makes the AgentSpeak
deliberation cycle explicit, so that whenever a new feature extending the original lan-
guage is proposed, its implementation can be rapidly prototyped and tested using the
meta-interpreter. The technique used for showing correctness of the meta-interpreter
very much resembles the one introduced in Chapter 10 for showing the relationship
between GOAL and Jazzyk.
To tackle the problem of establishing a common semantic basis for various BDI-style

agent-oriented programming languages, an interesting alternative framework was re-
cently presented by Dennis et al. (2007). To my knowledge, this is the only proposal
to date in this direction. The resulting solution, is based on the idea of constructing
a specialized rule-based language, incorporating each and every semantic feature of a
variety of available high-level agent languages. Thus, their approach does not provide
a similar minimalistic implementation strategy, as the one promoted and illustrated in
Chapter 10. The solution instance presented in this dissertation is based on the idea
to provide a concise set of simple high-level concepts, a common core. Furthermore,
by making the agent’s deliberation cycle explicit in the language, this in turn enables
compilation of a variety of agent programs into the core instruction set. This strategy
is explicitly aimed at reducing a set of high-level agent programming constructs to a
simpler, more basic set of concepts.

13.4 Broader context

To touch on the broader context the work presented in this thesis fits into, below, I
provide a brief and rather shallow overview of related work, which also seems to be
relevant to the framework of Behavioural State Machines. I do not give any deeper
insights into the suspected relationships. Such studies provide another set of possible
directions for future research towards establishing the expressivity and limits of the BSM
framework.
Except for the vertical modularity (cf. Section 11.1), the core feature of the BSM

framework is the hierarchical structuring of agent programs. In a way, Jazzyk’s top-

157

Chapter 13 Part III: Evaluation, extensions and beyond

down process of searching for an applicable primitive update, yielded by the program
(cf. Chapter 5), resembles application of decision trees (e.g., (Russell and Norvig, 2002,
Chapter 18)). A decision tree reaches its decision by performing a sequence of tests,
structured in a hierarchical manner. Internal nodes correspond to tests and leaves of
the tree yield primitive actions, in this case BSM updates. Decision tress can be seen as
vehicles for learning processes and can be constructed as a result of a learning process.
This resemblance again reinforces the speculation on feasibility of behaviour learning, I
previously discussed mentioned above in Section 13.2.
It also seems that there is a resemblance of the BSM framework to the idea be-

hind universal plans, by Schoppers (1987). A universal plan is a compact hierarchical,
decision-tree style structure, representing every possible course of action an agent can
take. Similarly to the BSM framework, actions of an agent are chosen by a iterated
top-down decision process, which traverses the universal plan. Its nodes correspond
to sensory conditions and leaves to atomic actions. Is is noteworthy to mention that
later it was found that universal plans amount to policies similar to those employed in
Markov Decision Processes (Markov, 1906) (also e.g., (Meyn and Tweedie, 1993)). Gins-
berg (1989) argues that the universal plan synthesis is way too complex.2 In the BSM
framework, I focus, however, on a human centered approach to writing agent programs.
Moreover, the domains I consider in the case-studies, described in Chapter 7, are also
reasonably small. To establish a deeper insight into the relationship between universal
planning and the ideas behind the BSM framework remains a future research task.
Together with Dix (2007)3 I show that for a variant of a nested hierarchical structure

of interactions rules, not including the sequence operator, BSM -style agent programs
can be unfolded into a set of plain condition-action rules of the form

φ −→ �ψ

φ is a possibly compound BSM query and �ψ is a single primitive update mst. A set
of such rules defines a policy over the mental state space.
Supporting the intuition of a close relationship between universal plans and the BSM

framework. This observation also correlates with the fact that the core of inspiration
for the BSM framework were reactive planning approaches, such as AgentSpeak(L) by
Rao (1996) or the original Procedural Reasoning System (PRS) by Georgeff and Lansky
(1987).

2For a more thorough discussion on the controversy around universal plans, consult the bibliographical
and historical notes in (Russell and Norvig, 2002, Chapter 12).

3The paper is not discussed deeply in this thesis. I perceive the main results therein as a kind of a
dead-end avenue towards the final form of the BSM framework.

158

13.5 Application domains

13.5 Application domains
To conclude the discussion of the dissertation results, I finally elaborate on application
domains, in which I see a potential for exploiting the strengths of the BSM framework
and the Jazzyk language. Yet, the real capabilities of the BSM framework in these, is
to be established by further case-studies and experiments.
Chapter 7 already sketched some application domains in which we tried to evaluate

the BSM framework’s capabilities. One of the prominent problems in computer gaming
industry and digital entertainment is creation of smart non-player characters. I.e., virtual
characters, avatars and entities, which behave in a a non-trivial, intelligent manner.
Nowadays, this task is approached by programming the reactive behaviours in the form
of standard finite state machines (FSM). Encoding behaviours as FSMs is however rather
limited, as the number of states the agent can be in must be fixed and the transitions
must be hard-encoded in the design time. Because of these limitations, the resulting
agents are rather predictable and in turn not believable enough.
The BSM framework offers an interesting alternative. The number of states, a BSM

agent can be in, is possibly infinite and determined solely by the product of states its
knowledge bases can be in. Queries can be seen as specifications of state space partitions.
Moreover, the transition specifications are not definite as the state resulting from a
transition is determined by the knowledge base semantics itself upon an update by an
update formula. Finally, agent program and subprograms are structured in hierarchical
and reusable manner what speeds up the development process and allows for rapid
prototyping.
As the gaming industry is moving towards games with large number of characters,

one of the challenges in the digital entertainment domain is scalability. It is yet to be
evaluated how efficient execution of agents using Jazzyk interpreter actually is.
The small footprint of the Jazzyk interpreter and its relative versatility make it suitable

for applications in non-critical embedded domains, where rich sensing and sophisticated
action selection is necessary. In this context, an interesting application domain is en-
tertainment mobile robotics. The Urbibot study (cf. Chapter 7) was already a step in
this direction. In fact, Jazzyk interpreter was developed with portability to embedded
platforms in mind. The module JzUrbi (cf. Chapter 8) provides an interface to a highly
portable low-level language for robot’s hardware control. Similarly, applications of the
framework in the domain of ambient intelligent, such as e.g., intelligent building control,
seems to be a promissing potential application domain.

159

Chapter 13 Part III: Evaluation, extensions and beyond

160

Chapter 14

Towards open multi-agent systems

14.1 Epilogue

It was a long day for Bronja. Finally she arrived back home. She opens the
door of her penthouse apartment, opens curtains to enjoy the beautiful view
over the evening city for half a minute. She kicks her shoes off, immerses
into a big, soft leather armchair and switches on the TV. The BBNN news
network shows footages from some rescue operation. Bronja does not want to
see those things. Not tonight. She’s tired. Then she sees it! The Bratislava
airport terminal building covered in smoke!
Twenty minutes after noon, an earthquake struck the area between the cities

of Bratislava, Vienna and Budapest. The hardest hit took Bratislava’s city
airport. The new stylish airport terminal building partly collapsed and is still
burning. Airport’s underground kerosene tanks were also partly damaged and
the situation threatens to escalate. Noon is a busy time at Bratislava airport
and many travellers and airport personel members are buried or trapped alive
in parts of the collapsed building.
In the following minutes and hours, the police, army and firefighter briga-

des are busy. The relief operation runs full speed. A team of army reconnais-
sance mobile robots was deployed at the site. These are however not primarily
designed for rescue operations and lack functionality, such as the ability to
remove heavy debris. Vienna firefighters quickly come to help and provide
two of their ÖHH-78 models, autonomous heavy-duty tracked robots featur-
ing a forklift device. The police also deployed a small fleet of Skylar UAVs,
autonomous mini-helicopter drones, to support the operation and provide the
overall picture of the disaster site.
The group of robots quickly coordinates, forms two teams and already after

two hours of autonomous operation they are able to help to extract a group of
elderly tourists from the terminal building. They were trapped in a staircase.
The earthquake struck as they were moving from the gate to the bus, supposed
to take them to the aircraft to Bucharest.
Bronja watches the news with trembling in her legs. In the morning, it

161

Chapter 14 Towards open multi-agent systems

could be her! She made it to the departure gate at the airport right before the
BBWings staff wanted to close it. Fortunately, thanks to the airport robotic
assistant Ape, they knew she comes and were waiting for her. Hadn’t she
make it, it could be her whom the robot rescuers would have to save.

14.2 Outlook
This dissertation presented theoretical, as well as technological results stemming from
the proposal of the framework of Behavioural State Machines in Chapter 2. The BSM
framework is my proposed solution to the problem of programming single agent systems.
In its focus stands the problem of programming embodied reactive deliberating agents.
I.e., such which base their decisions on reasoning about their internal model of the world
and at the same time are able to quickly react to changes of the context, but not forget
about the goals they were pursuing before the interruption.
A natural next step for the future research would be the one towards development

of multi-agent systems exploiting such technologies. Here, a completely new realm of
issues opens, most prominently those of inter-agent communication and coordination.
Visions, such as that of multi-robot teams, promoted in the introductory example of

this chapter, require integrative technologies for development of, possibly large, open
multi-agent systems (MAS). I.e., those, comprising heterogeneous cooperative agents.
In such scenarios, a number of agents interacts to fulfill complex tasks without human
intervention or seamlessly support human everyday activities. The agents can be em-
bedded in consumer electronic devices, small robots, or desktop computers, etc. Thus,
possible application areas for such a technology are numerous, from multi-robotics, to
ubiquitous computing, or ambient intelligence, to name just a few.
One of the main aspects of open systems is inter-agent coordination, i.e., communi-

cation. One of the background motifs behind the liberal attitude taken by the BSM
framework is the recognition that different application domains require different knowl-
edge representation technologies. In a similar liberal fashion, it is relatively straightfor-
ward to also recognize that

different multi-agent applications, require different different communication
and coordination technologies.

By the few constraints the BSM framework imposes on the internal architecture of agent
systems, it promotes development of heterogeneous agents exploiting different underlying
technologies. In order to enable such agents to cooperate, there arises a need for a
communication platform supporting development of heterogeneous and open multi-agent
systems. Moreover, to enable communication in such MASs comprising heterogeneous
and independent agents, the middleware platform should impose as few requirements on
the architecture and implementation of the individual agents as possible.

162

14.3 Lightweight open communication platform

To conclude this dissertation, as well as to pave the way towards application of open
frameworks, such as BSM, I conclude the discussion in this final part of the dissertation
by a proposal for a lightweight communication platform for open multi-agent systems.
It aims at supporting development of open heterogeneous multi-agent systems, such
as multi-robot systems or applications of ambient intelligence, discussed above. I also
argue, why the state-of-the-art FIPA compliant agent platforms are not directly suitable
for this task and suggest a set of features of a suitable communication platform.

14.3 Lightweight open communication platform

14.3.1 State of the art

The state-of-the-art MAS platforms1 either follow widely accepted standards for in-
teroperability of agents, such as FIPA (FIPA, 2000–2009c) or OMG MASIF (Object
Management Group, 2000), or use a proprietary, rather non interoperable approach.
JADE platform (Bellifemine et al., 2005; Telecom Italia Lab and The JADE Board,
2009) is an epitome of a FIPA compliant agent platform, the currently prevailing MAS
interoperability standard. While the group of the proprietary platforms is rather large
and their main focal points vary, the noteworthy ones with a broad range of application
domains include the already discussed OAA by SRI International (2007), Cougaar by
Helsinger et al. (2004) and RETSINA by Sycara et al. (2003).
While providing a high degree of interoperability w.r.t. inter-agent communication as

well as platform distribution, the FIPA complying platforms are not suitable for devel-
opment of open heterogeneous multi-agent systems. A fully FIPA compliant platform
implementing the mandatory AMS service requires agents to physically reside on the
platform and it overtakes management of the full agent lifecycle of agents running in
it ((FIPA, 2000–2009b), par. 4.2.2). Therefore, regardless of their specific features, all
the state-of-the-art FIPA compliant agent platforms commit to a single agent program-
ming language, which is almost exclusively Java. The standard does not specify any
external API for connection of agents, not physically residing on the platform. In turn,
these platforms rather promote MASs, which are homogeneous w.r.t. the implementation
programming language used.
The benefits of using FIPA-compliant platforms is however the strong support for

inter-agent communication. Agents in these platforms communicate using FIPA Agent
Communication Language (FIPA ACL), which became a de facto standard for agent
communication languages. Thus, use of FIPA ACL enables access to a plethora of
specialized domain specific agent services and gateways implemented for the FIPA in-
teroperable platforms, such as JADE.

1Although a plethora of MAS platforms was developed, most of them are not maintained any more. I
focus here only on those freely available, still maintained platforms.

163

Chapter 14 Towards open multi-agent systems

On the other hand, except for Cougaar, most of the proprietary platforms like e.g.,
OAA or RETSINA (specifically RETSINA Communicator (Shehory and Sycara, 2000))
are not so tightly bound to a specific agent programming language. The downside is
however that they do not provide a sufficient interoperability support, similar to that of
the platforms following a standard. So even though it is relatively easy for agents running
outside the platform to connect and register with it, they can only communicate with
agents and services residing on the same platform. Often such platforms natively support
KQML/KIF agent communication languages. In turn, multi-agent systems developed
with such platforms are rather closed w.r.t. the outside world.

14.3.2 The platform
Availability of energy-efficient and affordable small form factor computers opens possibil-
ities for application of the multi-agent metaphor to application domains like ubiquitous
computing, ambient intelligence or multi-robot systems. A specialized middleware is nec-
essary to support development of a wide range of embodied open heterogeneous MASs,
such as networks of agents controlling household appliances and devices for smart homes
or teams of robots.
In particular, it is important on one side to ensure a wide interoperability of multi-agent

systems using such a middleware solution, while at the same time provide decoupling of
agents from the platform, as well as from a specific agent programming language. In
the following, I propose and argue for a set of features, such an agent communication
platform should support.

Agents should be platform independent entities taking care of their own execution and
lifecycle.

Interoperability issues the platform has to address and APIs it should provide are
twofold:

inter-agent: Agents should be able to communicate in a standard communica-
tion language, such as FIPA ACL, supporting a variety of message transport
protocols, applicable according to a particular application domain.

inter-platform: Agents associated with the platform should not only be able to
communicate with agents registered with the same platform, but also with
agents and services on other standard (FIPA) compliant platforms as well.

Platform services should stem from a widely accepted standard, such as FIPA, so that
the platform provides the necessary services to the agents, but at the same time
does not constrain their autonomy. The essential services should therefore include

directory service with which agents can register their coordinates, properties and
capabilities and which should provide a look-up facility, and

164

14.3 Lightweight open communication platform

message transport service enabling the inter-agent communication on the same,
or on other standard-complying platforms or gateways. It should also provide
a translation between various message transport protocols.

Technical implementation has to support agent vs. platform decoupling. I.e., it should
result in a lightweight and modular middleware solution supporting

portability and scalability: The middleware should enable deployment on various
hardware and software platforms, with a focus on a wide range of computers
from small form factor computers, such as e.g., Gumstix Gumstix Inc. (2009),
to server solutions,

lightweight APIs: The interfaces, the platform provides, should be agent program-
ming language agnostic, i.e., the platform designers should impose as few re-
strictions on associated agent implementation technology as possible (e.g.,
provide a plain TCP socket interface), and

robustness: In a heterogeneous open multi-agent systems a platform cannot rely
on correctness of behaviours agents associated with it perform. Hence it has
to be able to deal even with malicious behaviours in a robust manner.

14.3.3 Summary and related work
The proposal for the lightweight communication platform is based on a position paper,
I published as a technical report (Novák, 2008b). The proposed communication infras-
tructure for open heterogeneous multi-agent systems stems from the FIPA Abstract Ar-
chitecture (FIPA, 2000–2009a). However, unlike the FIPA platform, not imposing strong
constraints on agents it manages. The most prominent issues it relaxes are the strong
coupling with a specific agent programming language and the management of agents
execution and lifecycle by the platform. In the case of FIPA, the nowadays prevailing
standard, these constraints are a result of the FIPA Abstract Architecture reification,
in the form of the Agent Management Specification (FIPA, 2000–2009b), in particular
Agent Management Services (Subsection 4.2 therein) and Agent Platform (Section 5
therein) specifications.
Except for the use of a standard ACL, perhaps the closest relative of the proposed

agent communication platform is the CoABS Grid (Kahn and Cicalese, 2002; Global
InfoTek, Inc., 2009) infrastructure, which, however, is not in freely available under open
source licensing terms.
The proposed experimental lightweight communication platform is a result of consider-

ations and experiences made in preparatory and development phases of the AgentContest
team project (cf. Chapter 7). Because we did not make any steps towards implementing
the platform in the course of my work towards this dissertation, as a replacement in the
AgentContest team project we used the above mentioned SRI ’s Open Agent Architecture
instead.

165

Chapter 14 Towards open multi-agent systems

166

Chapter 15

Conclusion

How to build cognitive agents by integration of
various existing AI technologies?

How to encode action selection mechanism in a
concise and elaboration tolerant manner?

And once we have a framework tackling the previous
two issues, how should programmers use it?

The recurring theme of this thesis is that
of marrying deliberation and reactivity
in embodied cognitive agent systems. If
something is to be taken from this disser-
tation, than perhaps the motto of the sec-
ond part of this thesis, which distills its
main contribution and the essence of the
research leading to it:

Let reactivity rule over deliberation!

Behavioural State Machines is a framework for programming reactive programs. Rules
of such agent programs take the form query −→ update, where each formula, be it a
query or an update, takes the form of a complex operation on an agent’s knowledge
base. This way, it is possible to express functionality of an agent system in terms of
reactive rules and at the same time facilitate its complex deliberation. As a consequence
of this setting, it becomes relatively easy to exploit synergies of heterogeneous knowledge
representation approaches and technologies embedded within agent’s knowledge bases.
A programming framework or a language is an engineering tool in the first place.

Therefore, I invested a lot of effort to make the programming language also practical and
accessible to system developers, its users. I tackled this challenge along two orthogonal
vectors: 1) the language versatility and 2) the methodology of the framework.
To provide programmers with constructs facilitating code modularity, reuse and elabo-

ration tolerance, the language provides hierarchical structuring and integrates a powerful
macro preprocessor. In order to demonstrate extensibility of the framework and thus
provide clues on how to use it in an efficient and sophisticated manner, I introduce the
notion of design patterns implementing agent’s commitments towards its mental atti-
tudes. As a result, I arrive to a novel way of programming agent systems relying on such
patterns, commitment oriented programming.
The field of programming agent and multi-agent systems lies on the edge between

theoretical research and engineering. While for the theoretical part it’s possible to lay
down proofs or rigorous refutations of results, the possibilities for evaluating statements

167

Chapter 15 Conclusion

about practical usefulness of a technology are rather limited. To stand up to the motto
of the thesis preface, I do my best to demonstrate that the proposed technologies also
work in reality. I.e., there is a way to apply them successfully. It would certainly be de-
sirable to make a stronger, rather universally quantified, statement about the presented
contributions. However, only evaluation on a large number of applications, experiments
and case-studies, at best drawn from real world problems, can provide evidence about
the real usefullness of the proposal for a broader range of uses and users. I feel that I
did my best to make my case.

15.1 Acknowledgements

As I mention in the Preface to the dissertation text, a great deal of the presented results
stem from joint works with my colleagues and collaborators.
Koen Hindriks contributed to the elegant form the yields calculus in Chapter 2 takes.

His influence can be also seen throughout Chapter 10, which is a result of our joint work
during my stay in Delft and his later visit in Clausthal. We presented that work at
MATES 2008. I am grateful to Koen for never missing an opportunity to challenge me
with constructive critique and stimulating discussions on all sorts of topics of research,
life and fun.
Wojtek Jamroga helped me to clarify my views on the formal background of the

BSM framework. After all, the elegant notation for the BSM operational semantics was
invented by Wojtek for our joint paper presented at AAMAS 2009. Chapters 4 and 6
present main results of that joint work. After all, technically, the DCTL* logic, the
crucial enabler of the semantic characterizations for the code patterns, was developed by
Wojtek, after his critique of my first, erroneous, attempt presented in Dagstuhl seminar
in 2008.
My supervisor Jürgen Dix co-authored the original paper on the modular BDI archi-

tecture, published at AAMAS 2006, and helped me to polish my ideas there. Chapter 3
heavily relies on that joint work. Jürgen also helped me to polish my later paper for
ProMAS 2007 workshop and we published together with Mehdi Dastani and later Tris-
tan Behrens all the reports on the Multi-Agent Programming Contest, presented in
CLIMA IV, CLIMA VII, ProMAS 2007 and ProMAS 2008 and the KI Journal in 2009.
I must acknowledge the great help by diploma students of the Computational Intelli-

gence Group at Clausthal University of Technology. Bernd Fuhrmann, Michael Köster,
David Mainzer, Slawomir Dereń and Weiyu Yi did under my supervision almost all the
implementation work towards the three case-studies presented in Chapters 7 and 8.
Bernd implemented Jazyk,1 the first prototype of the interpreter. Even though I later

completely rewrote it, Bernd’s work allowed me to explore and clarify various technical
1“Jazyk” with capital J means “The Language” in Slovak. The double “zz” in Jazzyk reflects the second
major re-implementation of the original interpreter.

168

15.1 Acknowledgements

issues. That enabled later rapid development of the the current Jazzyk interpreter in-
carnation. Furthermore, the JzUrbi and JzRuby plug-ins, as well as the Urbibot agent
based on them were developed as a part of Bernd’s student projects and his diploma
thesis.
Michael Köster developed the JzASP module, which together with the JzNexuiz writ-

ten by David Mainzer and JzRuby by Bernd Fuhrmann enabled the Jazzbot demo appli-
cation. While I made the overall design, the actual implementation of Jazzbot, presented
in our joint paper for the CogRob 2008 workshop, was also developed by Michael.
To enable the step towards multi-agent systems in AgentContest team Slawomir imple-

mented the JzOAAComm connector module and Weiyu wrote the JzMASSim module.
At the time of writing this dissertation, the development of AgentContest team by Slawek
is about to be finished and will be published as a part of his diploma thesis.
The joint work by Bernd, Michael, David and me, on the Jazzbot and Urbibot case-

studies, resulted in a joint paper, we presented at AGS 2009 workshop.
Finally, I am grateful to Ion Gaztañaga, the main developer of the Boost.Interprocess

library, for his support and help with the pre-release of his library. Jazzyk interpreter
couldn’t technically work the way it does without his portable package.

169

Chapter 15 Conclusion

170

Appendices

Appendix A

Implementation of Jazzyk interpreter

A.1 Architecture

Technically, Jazzyk interpreter is implemented in C++ as a standalone command line
tool. The KR modules are shared dynamically loaded libraries, installed as standalone
packages on a host operating system. When a KR module is loaded, the Jazzyk in-
terpreter forks a separate process to host it. The communication between the Jazzyk
interpreter and a set of the KR module subprocesses is facilitated by an OS specific
shared memory subsystem. This allows loading multiple instances of the same KR mod-
ule implemented in a portable way. Figure A.1 depicts the technical architecture of the
Jazzyk interpreter.

Figure A.1: Jazzyk interpreter scheme

Jazzyk interpreter was written with portability in mind. It should be relatively easy
to compile, install or port to most POSIX compliant operating systems. As of the
time of writing this thesis, Jazzyk interpreter was developed and well tested on Linux
operating system. It was reported to run also on Mac OS X, yet no support is provided
for this system. The interpreter was also successfully experimentally ported to Microsoft
Windows XPTMoperating system with Cygwin support, however currently no support
is provided for this port either. The Jazzyk interpreter was published under the open-
source GNU GPL v2 license and is hosted at http://jazzyk.sourceforge.net/.

173

http://jazzyk.sourceforge.net/

Appendix A Implementation of Jazzyk interpreter

A.2 Installation
These are basic instructions on how to install and start to use Jazzyk interpreter. For
advanced issues and deeper insights consult the project documentation.
The preferred and currently the only way to install Jazzyk interpreter is to download

the source code and compile and install it manually by yourself. To download the Jazzyk
sources get the “jazzyk-[version].tar.gz” or “jazzyk-[version].tar.bz2” package from the file
repository on the project website. To be able to develop or run Jazzyk agent programs,
you need to install also Jazzyk KR modules.
Jazzyk is built using standard GNU Autotools chain. It is developed in C++ and

compiled with GNU GCC G++ compiler. To compile Jazzyk you must have the stan-
dard GNU development tool chain installed together with some additional libraries, in
particular

• GNU Libtool 2,

• GNU GCC G++ compiler,

• GNU Bison,

• GNU Flex,

• GNU M4, and

• C++ Standard Template Library.

Preferably, use the latest versions of the tools. Even though Jazzyk first developed with
GNU gcc 4.2.x C++ compiler series, as of version 1.20 it was adapted to compile well
with GNU gcc 4.3 series. It should still compile well with older gcc versions, but we are
not going to actively support those any more.
The compilation and installation process follows the standard Autotools command

chain:
$./configure
$ make
$ make install

The installation command should be invoked with administrator privileges on your sys-
tem. For advanced options consult the file INSTALL distributed within the installation
package, or execute the configure command, with −−help option. To be able to execute
Jazzyk programs, however, install also KR modules, Jazzyk plug-in packages. These can
be also downloaded from the project website.

174

A.3 Jazzyk interpreter manual page

A.3 Jazzyk interpreter manual page

Jazzyk
interpreter of the Jazzyk programming language

(In varietate concordia!)

Synopsis

jazzyk [options] [file]

Description

Jazzyk is an experimental, special-purpose programming language for development of
knowledge intensive (intelligent) agent systems. Jazzyk agents consist of

• a number of knowledge bases, each realized by a separate

• specialized knowledge representation module (plug-in), and an agent program in a
form of a set of possibly nested rules of the basic form: when Query then Update.

Jazzyk was designed to exploit the power of heterogeneous knowledge representation
(KR) technologies in a single agent system. Each such KR technology is encapsulated in
a separate Jazzyk KR module providing a simple generic interface consisting of a set of
query and update operations. Semantics of Jazzyk based on Behavioural State Machines,
an adaptation of computational model of Gurevich’s Abstract State Machines.
Theory of Behavioural State Machines, and in turn also Jazzyk, draws a strict dis-

tinction between agent’s knowledge representational and behavioural aspects. While an
agent’s deliberation abilities reside in its KR modules, its behaviour are encoded as a
Behavioural State Machine.

Options

General options:

–help display the help message and exit

–version output version information and exit

–license display the GNU GPL license information and exit

175

Appendix A Implementation of Jazzyk interpreter

Compiler options:

-0 [–stdin] after reading in program files, read also standard input. This option is
useful to execute for example automatically generated programs, or programs pre-
processed by a specialized filters.

-I [–include path] macro preprocessor include path(s); Provided include paths will be
passed to the internal macro preprocessor invocation via -I option. By default, the
macro preprocessor searches only in the current path (path in which the interpreter
was invoked (see pwd(1))). The source code can include also files from other then
the current directory, but it has to use relative paths to find the included file
correctly. Otherwise all the paths where include files reside, should be passed to
the interpreter using -I options.

–no-mp bypass the macro preprocessor; Internal macro preprocessor will not be invoked
on the input file(s) and the content will be passed directly to the compiler. This
option can be useful in the case the input source code either does not use any
higher level macro overlay definitions, or it is already preprocessed by the macro
preprocessor.

Interpreter options:

-L [–libraries path] add an absolute system path to the location of external plug-ins;
Plug-ins are standard shared dynamically loadable libraries and by default the
interpreter searches in the standard system paths where libraries are present. Use
this option in the case you have KR plug-ins installed in a non-standard location
(w.r.t. your OS), or the interpreter has difficulties to find the requested plug-ins.

-o [–ordered] pick the first applicable rule to apply from a set transformer; By default,
when the interpreter executes a set mental state transformer {<transformer> ;
<transformer}, it first randomly shuffles the transformer set and then searches
for an applicable rule from the beginning. This way a random applicable rule is
chosen from the original set transformer. Using this option disables the random
shuffling step and lets the interpreter to choose the first applicable rule of the set
transformer w.r.t. the ordering as defined in the source code.

-n [–cycles num] perform only num interpreter cycles and quit; 0 (default) means
endless interpreter cycle loop.

-q [–no-check-query] switch off checking sanity of resulting query variable substitu-
tions. Modules are allowed to not substitute all the provided free variables.

Debug options:

-e [–only-macros] print the output of macro preprocessor run only; do not compile,
or interpret; Using this option amounts to the same effect as if GNU M4 (m4(1))

176

A.3 Jazzyk interpreter manual page

were executed with the default options described later in this manual and the
corresponding input file (or standard input stream).

-E [–compile] run preprocessor and compile only, i.e., do not interpret. This option
is useful for verifying whether the program is interpretable. This means that it is
well-formed according to the syntax rules of the Jazzyk language and additional
semantical constraints hold: each module referenced either in update, query, or
notification expression/statement is also declared in the program (Note: it can be
declared also after the first use!)

-p [–print] pretty print the program tree structure after compilation stage; This is a
convenience feature to check that the compiler understood the structure of the
program correctly. Currently it prints only a rough structure of the program.
In the future it should print the executable formatted source code of the input
program.

Diagnostics

When failing, the interpreter provides informative error messages in the standard com-
piler format with the location in the source file and an error message. The error output
can be parsed and processed by IDEs and text editors like vim(1), emacs(1) and others.
Messages are written to the standard error output.
During the internal invocation of the GNU M4 (m4) macro preprocessor, the inter-

preter forwards whatever error messages of m4 as well.

GNU M4 invocation

GNU M4 macro preprocessor is internally invoked with the following default arguments:

m4 -s -E -I $(PACKAGELIBDIR) ...

Where $(PACKAGELIBDIR) stands for the default installation directory where inter-
nally used shared macros are placed. When the default installation prefix is used, this
should be /usr/lib/jazzyk. For more details, see the installation instructions of the
jazzyk package and help message of its configure script.
For more details on the m4 options semantics see m4(1).

Bugs

As of time of writing this manual, no issues and bugs are known to me. For more details
see the Changelog file. In the case you will spot any bugs, or problems, or you have some
enhancement/feature request, do not hesitate and contact the author, or maintainer.

177

Appendix A Implementation of Jazzyk interpreter

Author
The Jazzyk interpreter was written by Peter Novak peter.novak@tu-clausthal.de as
a result of his research work towards PhD. degree in Computational Intelligence Group
of Clausthal University of Technology, Clausthal, Germany
(http://cig.in.tu-clausthal.de).
Peter Novák <peter.novak@tu-clausthal.de>, http://peter.aronde.net/

See also
GNU M4 m4(1).

Copying permissions
Jazzyk - Modular BDI Agent Architecture programming language interpreter Copyright
c©2006-2009 Peter Novák <peter.novak@tu-clausthal.de>
Jazzyk is free software; you can redistribute it and/or modify it under the terms of

the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with this

program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

178

peter.novak@tu-clausthal.de

Appendix B

Jazzyk SDK

To facilitate and support development of new KR modules, Jazzyk plug-ins, I developed
Jazzyk Software Development Kit. Jazzyk SDK is distributed as a separate package
jazzyk-sdk-[version].tar.gz. To use it, the host system must have the core Jazzyk inter-
peter installation. In particular, it needs the two header files jazzyk_common.hpp and
jazzyk.hpp, which are installed by default to /usr/local/include/jazzyk/ directory. For a
KR module developer, only the latter header file is important. The file contains an ab-
stract class AbstractKRModule which provides the template as well as an implementation
of a stock KR module. Building a custom KR module is as simple as inheriting this
class and implementing the required methods.
In the file module.cpp (listed later in this appendix), the package contains a sam-

ple implementation of a dummy KR module querying and “updating” standard input
and output. Additionally, all the boilerplate GNU Autotools configuration, build and
deployment files are included as well.

179

Appendix B Jazzyk SDK

Sample KR module implementation (module.cpp)

/∗
∗∗
∗ Jazzyk − Modular BDI Agent Architecture programming language interpreter
∗ Copyright (C) 2006, 2007 Peter Novak <pno at aronde.net>
∗
∗ Jazzyk is free software; you can redistribute it and/or modify it under the
∗ terms of the GNU General Public License as published by the Free Software
∗ Foundation; either version 2 of the License, or (at your option) any later
∗ version.
∗
∗ This program is distributed in the hope that it will be useful, but WITHOUT
∗ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
∗ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
∗ more details.
∗
∗ You should have received a copy of the GNU General Public License along with
∗ this program; if not, write to the Free Software Foundation, Inc., 59 Temple
∗ Place, Suite 330, Boston, MA 02111−1307 USA
∗∗
∗/

/∗
∗ $Id: module.cpp 1760 2009−07−02 22:11:58Z pno $
∗ $Author: pno $
∗ $Description: Template file for a Jazzyk KR module development (SDK).$
∗
∗ $Revision: 1760 $
∗
∗/

/∗!
∗ This is a template example file for development of a custom knowledge
∗ representation module for the Jazzyk interpreter.
∗
∗ The full documentation on how to create new KR modules can be found in the
∗ official Jazzyk documenation to the jazzyk.hpp file.
∗
∗ For more documentation, please check the README file of the Jazzyk SDK.
∗
∗/

/∗
∗ If you get a compile error here because of missing jazzyk.hpp header, either
∗ 1) your compiler is misconfigured and does not find the correct header where
∗ it expects (by default /usr/local/include/), or 2) you did not install the
∗ package Jazzyk (Jazzyk interpreter) correctly.
∗/
#include <jazzyk/jazzyk.hpp>

//! Knowledge representation module implementation class
/∗!
∗ In order to create a new module, simply create a subclass of
∗ jazzyk::AbstractKRModule, implement required virtuals, implement yor
∗ specialized query/update interface and finally register this interface using
∗ macros of the JZMODULE_MANIFEST family.

180

∗
∗ NOTE:
∗ Methods’ definitions are implemented in the body class for brevity
∗ only. Normally, you should put them into a separate .cpp implementation
∗ file, of course.
∗/

#include <iostream>

class CMyModule :
public jazzyk::AbstractKRModule

{
public:

//! KR module initialization callback
/∗!
∗ The routine is invoked right after the module is loaded before the
∗ Jazzyk program interpretation itself.
∗
∗ The argument is a KR module specific code to be executed on the
∗ initialize notification specified in the Jazzyk program.
∗/
virtual jazzyk::EKRModuleError initialize(const std::string& szCode)
{

/∗ Put your initialization code here. ∗/

std::cout << "\"" << szCode << "\"" << std::endl;

return jazzyk::OK;
}

//! KR module finalization callback
/∗!
∗ The routine is invoked right before the module is about to be
∗ unloaded.
∗
∗ The argument is a KR module specific code to be executed on the
∗ finalize notification specified in the Jazzyk program.
∗
∗ Note:
∗ In the case of a non normal interpreter exit, the interpreter
∗ does it’s best to call finalize on all its modules, however it
∗ might happen that it won’t be called.
∗/
virtual jazzyk::EKRModuleError finalize(const std::string& szCode)
{

/∗ Put your finalization code here. ∗/

std::cout << "\"" << szCode << "\"" << std::endl;

return jazzyk::OK;
}

//! KR module cycle callback
/∗!
∗ The routine is invoked after each completed interpreter deliberation
∗ cycle.
∗

181

Appendix B Jazzyk SDK

∗ The argument is a KR module specific code to be executed on the
∗ cycle notification specified in the Jazzyk program.
∗/
virtual jazzyk::EKRModuleError cycle(const std::string& szCode)
{

/∗ Put your cycle notification code here. ∗/

std::cout << "\"" << szCode << "\"" << std::endl;

return jazzyk::OK;
}

//! Custom KR module query operation
/∗!
∗ When the module is queried, a code block (query formula) [first
∗ argument] is passed to it together with the current substitutions of
∗ the relevant variables [second argument]. The query routine is
∗ supposed to return a query formula execution result [fifth argument]
∗ and a new variable substitution for the query−formula−relevant free
∗ variables [fourth argument].
∗
∗ Remark:
∗ This method is normally invoked very often. Therefore
∗ optimization of its time complexity is important for a general
∗ KR module quality.
∗/
virtual jazzyk::EKRModuleError queryImplementation(

const std::string& szQueryCode,
const jazzyk::TKRVarSubstitution& inSubst,
jazzyk::TKRVarSubstitution& outSubst,
bool& bResult)

{
/∗
∗ Implementation of the query interface goes here and
∗ to methods with the same signature.
∗/

std::cout << "\"" << szQueryCode << "\"" << std::endl;

// Example of variable substitution handling
if (!outSubst.empty())
{

std::cout
<< "substituting variable "
<< outSubst.begin()−>first << std::endl;

outSubst[outSubst.begin()−>first] = "A value";
}

// IMPORTANT: fill in the query result
bResult = true;

return jazzyk::OK;
}

//! Custom KR module update operation
/∗!
∗ When finally the Jazzyk interpreter performs an update operation on
∗ a KR module, this routine is invoked. The module gets a code block

182

∗ to be executed (update formula) [first argument], together with a
∗ relevant variable substitution [second argument].
∗/
virtual jazzyk::EKRModuleError updateImplementation(

const std::string& szUpdateCode,
const jazzyk::TKRVarSubstitution& mapSubstitution)

{
/∗
∗ Implementation of the update interface goes here and
∗ to methods with the same signature.
∗/

std::cout << "\"" << szUpdateCode << "\"" << std::endl;

if (!mapSubstitution.empty())
{

std::cout
<< "Variable: " << mapSubstitution.begin()−>first
<< " Value: " << mapSubstitution.begin()−>second
<< std::endl;

}

return jazzyk::OK;
}

};

//! KR module query/update interface manifest
/∗!
∗ KR module must publish its query/update interface and so bind the custom
∗ query/update routine implementations to the query/update operations used in
∗ Jazzyk programs. To do so, macros of the JZMODULE_MANIFEST∗ family are used.
∗
∗ The manifest block starts with the JZMODULE_MANIFEST_BEGIN macro with an
∗ argument of the KR module implementation class. It has to be finished by the
∗ JZMODULE_MANIFEST_END macro. Between the pair, query and update operations
∗ are registered using REGISTER_QUERY and REGISTER_UPDATE registration macros.
∗ The format of their arguments is the same: the first is the operation
∗ identifier to be used in the Jazzyk programs, while the second is its
∗ binding to a custom KR module query/update routine. In a basic case, a
∗ module should have at least one query and one update operation.
∗
∗ NOTE:
∗ Only one manifest can be defined in the KR module! Therefore be careful
∗ about its placement (header files are a bad candidate − the main .cpp
∗ file is a good one).
∗/
JZMODULE_MANIFEST_BEGIN(CMyModule)

REGISTER_QUERY("query", queryImplementation)
REGISTER_UPDATE("update", updateImplementation)

JZMODULE_MANIFEST_END

183

Appendix B Jazzyk SDK

184

Bibliography
Adobbati, R.; Marshall, A.N.; Scholer, A.; Tejada, S.; Kaminka, G.A.; Schaffer, S. and
Sollitto, C. Gamebots: A 3D Virtual World Test-Bed For Multi-Agent Research. In
Proceedings of the Second International Workshop on Infrastructure for Agents, MAS,
and Scalable MAS. 2001.

AlienTrap Community. AlienTrap Software. http://www.alientrap.org/, 2009.

Arnold, Ken; Gosling, James and Holmes, David. The Java Programming Language,
Third Edition. Addison-Wesley, 2000. ISBN 0-201-70433-1.

Astefanoaei, L.; Mol, C. P.; Sindlar, M. P. and Tinnemeier, N. A. M. Going for gold with
2APL. In Proceedings of Fifth international Workshop on Programming Multi-Agent
Systems, ProMAS’07, volume 4908 of LNAI. Springer Verlag, 2008.

Baral, Chitta. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge, 2003.

Behrens, Tristan M.; Dix, Jürgen; Dastani, Mehdi; Köster, Michael and Novák, Pe-
ter. Technical Foundations of the Agent Contest 2008. Technical Report IfI-08-05,
Clausthal University of Technology, 2008. URL http://www.in.tu-clausthal.de/
fileadmin/homes/techreports/ifi0805behrens.pdf.

Behrens, Tristan M.; Dix, Jürgen; Dastani, Mehdi; Köster, Michael and Novák, Peter.
MASSim: Technical Infrastructure for AgentContest Competition Series. http://
www.multiagentcontest.org/, 2009a.

Behrens, Tristan Marc; Dix, Jürgen; Dastani, Mehdi; Köster, Michael and Novák, Peter.
Multi-Agent Programming Contest. http://www.multiagentcontest.org/, 2009b.

Bellifemine, Fabio; Bergenti, Federico; Caire, Giovanni and Poggi, Agostino. JADE -
A Java agent development framework, chapter 5, pp. 125–147. Volume 15 of Bordini
et al. (2005a), 2005.

Bergenti, Federico; Gleizes, Marie-Pierre and Zambonelli, Franco (eds.). Methodologies
and Software Engineering for Agent Systems: The Agent-Oriented Software Engi-
neering Handbook, volume 11 of Multiagent Systems, Artificial Societies, and Simu-
lated Organizations. Kluwer Academic Publishers, 2004. ISBN 1-4020-8057-3. doi:
10.1007/1-4020-8058-1_17.

185

http://www.alientrap.org/
http://www.in.tu-clausthal.de/fileadmin/homes/techreports/ifi0805behrens.pdf
http://www.in.tu-clausthal.de/fileadmin/homes/techreports/ifi0805behrens.pdf
http://www.multiagentcontest.org/
http://www.multiagentcontest.org/
http://www.multiagentcontest.org/

Bibliography

de Boer, Frank S.; Hindriks, Koen V.; van der Hoek, Wiebe and Meyer, John-Jules Ch.
A verification framework for agent programming with declarative goals. J. Applied
Logic, volume 5(2):pp. 277–302, 2007.

Bordini, Rafael H.; Braubach, Lars; Dastani, Mehdi; Seghrouchni, Amal El Fallah;
Gomez-Sanz, Jorge J.; Leite, João; O’Hare, Gregory; Pokahr, Alexander and Ricci,
Alessandro. A survey of programming languages and platforms for multi-agent systems.
Informatica, volume 30:pp. 33–44, 2006. ISSN 03505596.

Bordini, Rafael H.; Dastani, Mehdi; Dix, Jürgen and Fallah-Seghrouchni, Amal El (eds.).
Multi-Agent Programming: Languages, Tools and Applications. Springer, Berlin, 2009.
ISBN 978-0-387-89298-6. URL http://www.springer.com/computer/artificial/
book/978-0-387-89298-6.

Bordini, Rafael H.; Dastani, Mehdi; Dix, Jürgen and Seghrouchni, Amal El Fallah.
Multi-Agent Programming Languages, Platforms and Applications, volume 15 of Mul-
tiagent Systems, Artificial Societies, and Simulated Organizations. Kluwer Academic
Publishers, 2005a. ISBN 0-387-24568-5.

Bordini, Rafael H.; Fisher, Michael; Pardavila, Carmen and Wooldridge, Michael. Model
checking AgentSpeak. In AAMAS, pp. 409–416. ACM, 2003. ISBN 1-58113-683-8.

Bordini, Rafael H.; Hübner, Jomi F. and Vieira, Renata. Jason and the Golden Fleece
of Agent-Oriented Programming, chapter 1, pp. 3–37. Volume 15 of Bordini et al.
(2005a), 2005b.

Bordini, Rafael H.; Hübner, Jomi Fred and Wooldridge, Michael. Programming Multi-
agent Systems in AgentSpeak Using Jason. Wiley Series in Agent Technology. Wiley-
Blackwell, 2007. ISBN 978-0-470-02900-8.

Börger, Egon and Stärk, Robert F. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

Bratman, Michael E. Intention, Plans, and Practical Reason. Cambridge University
Press, 1999. ISBN 1575861925.

Cheyer, Adam and Martin, David L. The Open Agent Architecture. Journal of Au-
tonomous Agents and Multi-Agent Systems, volume 4(1/2):pp. 143–148, 2001.

Cohen, Philip R. and Levesque, Hector J. Intention is choice with commitment. Artif.
Intell., volume 42(2-3):pp. 213–261, 1990.

Cyberbotics Inc. Webots 6 mobile robotics simulation software. http://www.
cyberbotics.com/products/webots/, 2009.

186

http://www.springer.com/computer/artificial/book/978-0-387-89298-6
http://www.springer.com/computer/artificial/book/978-0-387-89298-6
http://www.cyberbotics.com/products/webots/
http://www.cyberbotics.com/products/webots/

Bibliography

Dastani, Mehdi. 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, volume 16(3):pp. 214–248, 2008.

Dastani, Mehdi; Dix, Jürgen and Novák, Peter. The first contest on multi-agent systems
based on computational logic. In Francesca Toni and Paolo Torroni (eds.), CLIMA
VI, volume 3900 of Lecture Notes in Computer Science, pp. 373–384. Springer, 2005a.
ISBN 3-540-33996-5.

Dastani, Mehdi; Dix, Jürgen and Novák, Peter. The second contest on multi-agent
systems based on computational logic. In Katsumi Inoue; Ken Satoh and Francesca
Toni (eds.), CLIMA VII, volume 4371 of Lecture Notes on Computer Science, pp.
266–283. Springer, 2006. ISBN 978-3-540-69618-6.

Dastani, Mehdi; Dix, Jürgen and Novák, Peter. Agent Contest Competition - 3rd edition.
In Proceedings of Fifth international Workshop on Programming Multi-Agent Systems,
ProMAS’07, volume 4908 of LNAI, pp. 221–240. Springer Verlag, 2008a.

Dastani, Mehdi; Dix, Jürgen and Novák, Peter. Agent Contest Competition - 4th edition.
In Proceedings of Sixth international Workshop on Programming Multi-Agent Systems,
ProMAS’08, volume 5442 of LNAI. Springer Verlag, 2008b.

Dastani, Mehdi; Fallah-Seghrouchni, Amal El; Ricci, Alessandro and Winikoff, Michael
(eds.). Programming Multi-Agent Systems, 5th International Workshop, ProMAS
2007, Honolulu, HI, USA, May 15, 2007, Revised and Invited Papers, volume 4908 of
Lecture Notes in Computer Science. Springer, 2008c. ISBN 978-3-540-79042-6.

Dastani, Mehdi; Hindriks, Koen V.; Novák, Peter and Tinnemeier, Nick A. M. Combin-
ing multiple knowledge representation technologies into agent programming languages.
In Matteo Baldoni; Tran Cao Son; M. Birna van Riemsdĳk and Michael Winikoff
(eds.), DALT, volume 5397 of Lecture Notes in Computer Science, pp. 60–74. Springer,
2008d. ISBN 978-3-540-93919-1.

Dastani, Mehdi; Mol, Christian P. and Steunebrink, Bas R. Modularity in agent pro-
gramming languages. In The Duy Bui; Tuong Vinh Ho and Quang-Thuy Ha (eds.),
PRIMA, volume 5357 of Lecture Notes in Computer Science, pp. 139–152. Springer,
2008e. ISBN 978-3-540-89673-9.

Dastani, Mehdi; van Riemsdĳk, Birna; Hulstĳn, Joris; Dignum, Frank and Meyer, John-
Jules Ch. Enacting and deacting roles in agent programming. In James Odell; Paolo
Giorgini and Jörg P. Müller (eds.), AOSE, volume 3382 of Lecture Notes in Computer
Science, pp. 189–204. Springer, 2004. ISBN 3-540-24286-4.

Dastani, Mehdi; van Riemsdĳk, M. Birna and Meyer, John-Jules. Programming Multi-
Agent Systems in 3APL, chapter 2, pp. 39–68. Volume 15 of Bordini et al. (2005a),
2005b.

187

Bibliography

Davis, Randall; Shrobe, Howard E. and Szolovits, Peter. What is a knowledge represen-
tation? AI, volume 14(1):pp. 17–33, 1993.

DeLoach, Scott A. The MaSE Methodology, chapter 6, pp. 107–125. Volume 11 of
Bergenti et al. (2004), 2004. doi:10.1007/1-4020-8058-1_17.

Dennett, Daniel C. The Intentional Stance (Bradford Books). The MIT Press, Cam-
bridge, MA, 1987. ISBN 0262540533.

Dennis, Louise A. and Farwer, Berndt. Gwendolen: A BDI Language for Verifiable
Agents. In Benedikt Löwe (ed.), Logic and the Simulation of Interaction and Reason-
ing. AISB, Aberdeen, 2008. AISB’08 Workshop.

Dennis, Louise A.; Farwer, Berndt; Bordini, Rafael H.; Fisher, Michael and Wooldridge,
Michael. A Common Semantic Basis for BDI Languages. In Dastani et al. (2008c),
pp. 124–139.

Dereń, Slawomir. Inter-Agent-Kommunikation: Modul für Jazzyk. Master’s thesis, De-
partment of Informatics, Clausthal University of Technology, forthcoming, 2009.

Emerson, E. Allen. Temporal and modal logic. In Jan van Leeuwen (ed.), Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp.
995–1072. Elsevier and MIT Press, 1990. ISBN 0-444-88074-7, 0-262-22039-3.

EPFL. e-puck: EPFL education robot. http://www.e-puck.org/, 2006.

Epic Games, Inc. Unreal Tournament. http://www.unrealtournament3.com/, 2004.

FIPA. FIPA Abstract Architecture Specification. available from http://www.fipa.org/,
2000–2009a. #SC00001.

FIPA. FIPA Agent Management Specification. available from http://www.fipa.org/,
2000–2009b. #SC00023.

FIPA. Foundation for Intelligent Physical Agents, FIPA specification. 2000–2009c.
Available from http://www.fipa.org/.

Fisher, Michael. Concurrent MetateM - a language for modelling reactive systems. In
Arndt Bode; Mike Reeve and Gottfried Wolf (eds.), PARLE, volume 694 of Lecture
Notes in Computer Science, pp. 185–196. Springer, 1993. ISBN 3-540-56891-3.

Fisher, Michael. A survey of Concurrent MetateM - the language and its applications.
In Dov M. Gabbay and Hans Jürgen Ohlbach (eds.), ICTL, volume 827 of Lecture
Notes in Computer Science, pp. 480–505. Springer, 1994. ISBN 3-540-58241-X.

188

http://www.e-puck.org/
http://www.unrealtournament3.com/
http://www.fipa.org/
http://www.fipa.org/
http://www.fipa.org/

Bibliography

Fisher, Michael and Hepple, Anthony. Executing Logical Agent Specifications, chapter 1,
pp. 3–27. In Bordini et al. (2009), 2009. URL http://www.springer.com/computer/
artificial/book/978-0-387-89298-6.

Flanagan, David and Matsumoto, Yukihiro. The Ruby Programming Language. O’Reilly
Media, Inc., 2008. ISBN 978-0596516178.

Fuhrmann, Bernd. Implementierung eines URBI- und Rubymoduls für Jazzyk zur En-
twicklung von Robotern. Master’s thesis, Department of Informatics, Clausthal Uni-
versity of Technology, forthcoming, 2009.

GCC team. GCC, the GNU Compiler Collection. http://gcc.gnu.org/, 2009.

Gelfond, Michael and Lifschitz, Vladimir. The Stable Model Semantics for Logic Pro-
gramming. In ICLP/SLP, pp. 1070–1080. 1988.

Gemrot, Jakub; Kadlec, Rudolf; Bída, Michal; Bukert, Ondřej; Píbil, Radek; Havlíček,
Jan; Zemčák, Lukáš; Šimlovič, Juraj; Vansa, Radim; Štolba, Michal and Brom, Cyril.
Pogamut 3 can assist developers in building AI for their videogame agents. In Pro-
ceedings of Agents for Games and Simulations, AGS 2009, AAMAS 2009 collocated
workshop, pp. 144–148. 2009.

Georgeff, Michael P. and Lansky, Amy L. Reactive reasoning and planning. In AAAI,
pp. 677–682. 1987.

Giacomo, Giuseppe De; Lespérance, Yves and Levesque, Hector J. ConGolog, a con-
current programming language based on the situation calculus. Artif. Intell., volume
121(1-2):pp. 109–169, 2000.

Ginsberg, Matthew L. Universal planning: An (almost) universally bad idea. AI Maga-
zine, volume 10(4):pp. 40–44, 1989.

Giorgini, Paolo; Kolp, Manuel; Mylopoulos, John and Pistore, Marco. The Tropos
Methodology, chapter 5, pp. 88–106. Volume 11 of Bergenti et al. (2004), 2004. doi:
10.1007/1-4020-8058-1_17.

Global InfoTek, Inc. CoABS Grid. http://coabs.globalinfotek.com/, 2009.

Gostai. Gostai - robotics for everyone. http://www.gostai.com/, 2009a.

Gostai. URBI Doc for Webots. http://www.gostai.com/doc/en/webots/, 2009b.

Gostai. Urbi tutorials & documentation for robotics. http://www.gostai.com/doc.php,
2009c.

189

http://www.springer.com/computer/artificial/book/978-0-387-89298-6
http://www.springer.com/computer/artificial/book/978-0-387-89298-6
http://gcc.gnu.org/
http://coabs.globalinfotek.com/
http://www.gostai.com/
http://www.gostai.com/doc/en/webots/
http://www.gostai.com/doc.php

Bibliography

Gumstix Inc. Gumstix: Computer-on-module. http://www.gumstix.com/store/
catalog/motherboards.php, 2009.

Gurevich, Yuri. Evolving algebras. In IFIP Congress (1), pp. 423–427. 1994.

Hale, Forest "LordHavoc". DarkPlaces Quake Modification. http://icculus.org/
twilight/darkplaces/, 2009.

Harel, David; Kozen, Dexter and Tiuryn, Jerzy. Dynamic logic. In Handbook of Philo-
sophical Logic, pp. 497–604. MIT Press, 1984.

Helsinger, Aaron; Thome, Michael and Wright, Todd. Cougaar: a scalable, distributed
multi-agent architecture. In SMC (2), pp. 1910–1917. IEEE, 2004. ISBN 0-7803-8566-
7.

Henriksen, Jesper G. and Thiagarajan, P. S. Dynamic linear time temporal logic. Ann.
Pure Appl. Logic, volume 96(1-3):pp. 187–207, 1999.

Hindriks, Koen V. Agent Programming Languages: Programming with Mental Models.
Ph.D. thesis, Utrecht University, 2001.

Hindriks, Koen V. Modules as policy-based intentions: Modular agent programming in
goal. In Dastani et al. (2008c), pp. 156–171.

Hindriks, Koen V. Programming Rational Agents in GOAL, chapter 4, pp. 119–157. In
Bordini et al. (2009), 2009. URL http://www.springer.com/computer/artificial/
book/978-0-387-89298-6.

Hindriks, Koen V.; de Boer, Frank S.; van der Hoek, Wiebe and Meyer, John-Jules Ch.
Agent Programming in 3APL. Autonomous Agents and Multi-Agent Systems, vol-
ume 2(4):pp. 357–401, 1999.

Hindriks, Koen V.; Jonker, Catholĳn M. and Pasman, Wouter. Exploring heuristic ac-
tion selection in agent programming. In Koen Hindriks; Alexander Pokahr and Sebas-
tian Sardina (eds.), Proceedings of the Sixth International Workshop on Programming
Multi-Agent Systems, ProMAS’08, Estoril, Portugal, volume 5442 of LNAI. 2008.

Hindriks, Koen V. and Novák, Peter. Compiling GOAL agent programs into Jazzyk
Behavioural State Machines. In Ralph Bergmann; Gabriela Lindemann; Stefan Kirn
and Michal Pěchouček (eds.), MATES, volume 5244 of Lecture Notes in Computer
Science, pp. 86–98. Springer, 2008. ISBN 978-3-540-87804-9.

Hindriks, Koen V. and van Riemsdĳk, M. Birna. A Computational Semantics for Com-
municating Rational Agents Based on Mental Models. In Proceedings of The Seventh
International Workshop on Programming Multi-Agent Systems ProMAS 2009, AA-
MAS 2009 collocated workshop. 2009.

190

http://www.gumstix.com/store/catalog/motherboards.php
http://www.gumstix.com/store/catalog/motherboards.php
http://icculus.org/twilight/darkplaces/
http://icculus.org/twilight/darkplaces/
http://www.springer.com/computer/artificial/book/978-0-387-89298-6
http://www.springer.com/computer/artificial/book/978-0-387-89298-6

Bibliography

Hübner, Jomi F. and Bordini, Rafael H. Developing a team of gold miners using Jason.
In Proceedings of Fifth international Workshop on Programming Multi-Agent Systems,
ProMAS’07, volume 4908 of LNAI. Springer Verlag, 2008.

Hübner, Jomi F.; Bordini, Rafael H. and Picard, Gauthier. Using Jason to develop a
team of cowboys: a preliminary design for Agent Contest 2008. In Proceedings of Sixth
International Workshop on Programming Multi-Agent Systems, ProMAS 2008. 2008.

Hübner, Jomi Fred; Bordini, Rafael H. and Wooldridge, Michael. Plan patterns for
declarative goals in AgentSpeak. In Nakashima et al. (2006), pp. 1291–1293.

Hübner, Jomi Fred; Bordini, Rafael H. and Wooldridge, Michael. Programming declar-
ative goals using plan patterns. In Matteo Baldoni and Ulle Endriss (eds.), DALT,
volume 4327 of Lecture Notes in Computer Science, pp. 123–140. Springer, 2006b.
ISBN 3-540-68959-1.

id Software, Inc. Quake III Arena. http://www.idsoftware.com/games/quake/
quake3-arena/, 1999.

Jones, Randolph M. and Wray III, Robert E. Comparative analysis of frameworks for
knowledge-intensive intelligent agents. AI Magazine, volume 27(2):pp. 45–56, 2006.

Jones, Simon Peyton. How to write a great research paper. http:
//research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/
writing-a-paper-slides.pdf, 2005.

Josefsson, Simon. RFC 4648: The Base16, Base32, and Base64 Data Encodings. http:
//tools.ietf.org/html/rfc4648/, 2006.

Kahn, Martha L. and Cicalese, Cynthia Della Torre. The CoABS Grid. In Walt
Truszkowski; Christopher Rouff and Michael G. Hinchey (eds.), WRAC, volume 2564
of Lecture Notes in Computer Science, pp. 125–134. Springer, 2002. ISBN 3-540-
40725-1.

Köster, Michael. Implementierung eines autonomen Agenten in einer simulierten 3D-
Umgebung - Wissensrepräsentation. Master’s thesis, Department of Informatics,
Clausthal University of Technology, 2008.

Köster, Michael; Novák, Peter; Mainzer, David and Fuhrmann, Bernd. Two case studies
for Jazzyk BSM. In Proceedings of Agents for Games and Simulations, AGS 2009,
AAMAS 2009 co-located workshop, pp. 31–45. 2009.

Kripke, Saul. Semantical Considerations on Modal Logic. Acta Phil. Fennica, vol-
ume 16:pp. 83–94, 1963.

191

http://www.idsoftware.com/games/quake/quake3-arena/
http://www.idsoftware.com/games/quake/quake3-arena/
http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf
http://tools.ietf.org/html/rfc4648/
http://tools.ietf.org/html/rfc4648/

Bibliography

Laird, John E. It knows what you’re going to do: adding anticipation to a Quakebot. In
Proceedings of the fifth international conference on Autonomous agents, pp. 385–392.
ACM New York, NY, USA, 2001.

Laird, John E. and van Lent, Michael. Human-level AI’s killer application: Interactive
computer games. AI Magazine, volume 22(2):pp. 15–26, 2001.

Leite, João Alexandre. Evolving Knowledge Bases, volume 81 of Frontiers of Artificial
Intelligence and Applications. IOS Press, 2003. ISBN 1-58603-278-X.

Levesque, Hector J.; Pirri, Fiora and Reiter, Raymond. Foundations for the situation
calculus. Electron. Trans. Artif. Intell., volume 2:pp. 159–178, 1998.

Levesque, Hector J.; Reiter, Raymond; Lespérance, Yves; Lin, Fangzhen and Scherl,
Richard B. Golog: A logic programming language for dynamic domains. J. Log.
Program., volume 31(1-3):pp. 59–83, 1997.

M4 team. GNU M4, version 1.4.13. http://www.gnu.org/software/m4/, 2009.

Madden, Neil and Logan, Brian. Modularity and compositionality in Jason. In Proceed-
ings of The Seventh International Workshop on Programming Multi-Agent Systems
ProMAS 2009, AAMAS 2009 collocated workshop. 2009.

Mainzer, David. Implementierung eines autonomen Agenten in einer simulierten 3D-
Umgebung - Interaktion mit der Umwelt. Master’s thesis, Department of Informatics,
Clausthal University of Technology, 2008.

Manna, Zohar and Pnueli, Amir. The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1992. ISBN 0-387-97664-7.

Markov, Andrey Andreyevich. Extension of the law of large numbers to dependent quan-
tities (in Russian). Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom Uni-
versitete, volume 2(15):pp. 135–156, 1906.

Matsumoto, Yukihiro. Ruby Programming Language. http://www.ruby-lang.org/,
2009.

Meyer, Bertrand. Introduction to the Theory of Programming Languages. Prentice-Hall,
1990. ISBN 0-13-498510-9.

Meyn, S. P. and Tweedie, R. L. Markov Chains and Stochastic Stability. Springer-Verlag,
London, 1993. URL http://probability.ca/MT/.

Michel, Olivier. Webots: Symbiosis between virtual and real mobile robots. In Virtual
Worlds, volume 1434 of Lecture Notes in Computer Science, pp. 254–263. Springer

192

http://www.gnu.org/software/m4/
http://www.ruby-lang.org/
http://probability.ca/MT/

Bibliography

Berlin / Heidelberg, 1998. ISBN 978-3-540-64780-5. ISSN 0302-9743 (Print) 1611-
3349 (Online). doi:10.1007/3-540-68686-X_24. URL http://www.springerlink.
com/content/x66rj837q1021189.

Michel, Olivier. WebotsTM: Professional Mobile Robot Simulation. International Journal
of Advanced Robotic Systems, volume 1(1), 2008. ISSN 1729-8806.

Mondada, F.; Bonani, M.; Raemy, X.; Pugh, J.; Cianci, C.; Klaptocz, A.; Magnenat,
S.; Zufferey, J.-C.; Floreano, D. and Martinoli, A. The e-puck, a Robot Designed for
Education in Engineering. In Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions, pp. 59–65. 2009.

Nakashima, Hideyuki; Wellman, Michael P.; Weiss, Gerhard and Stone, Peter (eds.).
5th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2006), Hakodate, Japan, May 8-12, 2006. ACM, 2006. ISBN 1-59593-303-4.

Nexuiz Team. Nexuiz computer game, version 2.3. http://www.alientrap.org/
nexuiz/, 2007.

Novák, Peter. Behavioural State Machines: programming modular agents. In AAAI
2008 Spring Symposium: Architectures for Intelligent Theory-Based Agents, AITA’08.
2008a.

Novák, Peter. Communication platform for open heterogeneous MASs. Technical Re-
port IfI-08-13, Clausthal University of Technology, 2008b. URL http://www.in.
tu-clausthal.de/fileadmin/homes/techreports/ifi0813novak.pdf.

Novák, Peter. Jazzyk: A programming language for hybrid agents with heterogeneous
knowledge representations. In Proceedings of the Sixth International Workshop on
Programming Multi-Agent Systems, ProMAS’08, volume 5442 of LNAI, pp. 72–87.
2008c.

Novák, Peter. Jazzyk, the project website. http://jazzyk.sourceforge.net/, 2009a.

Novák, Peter. Probabilistic Behavioural State Machines. In Proceedings of The Sev-
enth International Workshop on Programming Multi-Agent Systems ProMAS 2009,
AAMAS 2009 co-located workshop, pp. 103–115. 2009b.

Novák, Peter and Dix, Jürgen. Modular BDI architecture. In Nakashima et al. (2006),
pp. 1009–1015.

Novák, Peter and Dix, Jürgen. Adding structure to agent programming languages. In
Mehdi Dastani; Amal El Fallah-Seghrouchni; Alessandro Ricci and Michael Winikoff
(eds.), Proceedings of Fifth international Workshop on Programming Multi-Agent Sys-
tems, ProMAS’07, volume 4908 of LNAI, pp. 140–155. Springer Verlag, 2007.

193

http://www.springerlink.com/content/x66rj837q1021189
http://www.springerlink.com/content/x66rj837q1021189
http://www.alientrap.org/nexuiz/
http://www.alientrap.org/nexuiz/
http://www.in.tu-clausthal.de/fileadmin/homes/techreports/ifi0813novak.pdf
http://www.in.tu-clausthal.de/fileadmin/homes/techreports/ifi0813novak.pdf
http://jazzyk.sourceforge.net/

Bibliography

Novák, Peter and Jamroga, Wojciech. Code patterns for agent-oriented programming.
In Proceedings of The Eighth International Conference on Autonomous Agents and
Multi-Agent Systems, AAMAS 2009. 2009.

Novák, Peter and Köster, Michael. Designing goal-oriented reactive behaviours. In Pro-
ceedings of the 6th International Cognitive Robotics Workshop, CogRob 2008, ECCAI
co-located workshop, July 21-22 in Patras, Greece, pp. 24–31. 2008.

Object Management Group. Mobile Agent Facility Specification, version 1.0. 2000. Avail-
able from http://www.omg.org/technology/documents/formal/mobile_agent_
facility.htm.

Padovani, Luca and Provetti, Alessandro. Qsmodels: ASP planning in interactive gaming
environment. In José Júlio Alferes and João Alexandre Leite (eds.), JELIA, volume
3229 of Lecture Notes in Computer Science, pp. 689–692. Springer, 2004. ISBN 3-540-
23242-7.

Plotkin, Gordon D. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

Pnueli, Amir. The temporal logic of programs. In Proceedings of FOCS, pp. 46–57. 1977.

Pokahr, Alexander; Braubach, Lars and Lamersdorf, Winfried. Jadex: A BDI Reasoning
Engine, chapter 6, pp. 149–174. Volume 15 of Bordini et al. (2005a), 2005.

Rabin, S. AI Game Programming Wisdom 2. Charles River Media, 2004.

Rao, Anand S. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In Walter Van de Velde and John W. Perram (eds.), MAAMAW, volume 1038
of Lecture Notes in Computer Science, pp. 42–55. Springer, 1996. ISBN 3-540-60852-4.

Rao, Anand S. and Georgeff, Michael P. Modeling Rational Agents within a BDI-
Architecture. In KR, pp. 473–484. 1991.

Rao, Anand S. and Georgeff, Michael P. An Abstract Architecture for Rational Agents.
In KR, pp. 439–449. 1992.

van Riemsdĳk, Birna. Cognitive Agent Programming: A Semantic Approach. Ph.D.
thesis, Utrecht University, 2006.

van Riemsdĳk, M. Birna; de Boer, Frank S. and Meyer, John-Jules Ch. Dynamic logic
for plan revision in intelligent agents. In João Alexandre Leite and Paolo Torroni
(eds.), CLIMA V, volume 3487 of Lecture Notes in Computer Science, pp. 16–32.
Springer, 2004. ISBN 3-540-28060-X.

194

http://www.omg.org/technology/documents/formal/mobile_agent_facility.htm
http://www.omg.org/technology/documents/formal/mobile_agent_facility.htm

Bibliography

van Riemsdĳk, M. Birna; de Boer, Frank S. and Meyer, John-Jules Ch. Dynamic logic
for plan revision in agent programming. J. Log. Comput., volume 16(3):pp. 375–402,
2006a.

van Riemsdĳk, M. Birna; Dastani, Mehdi; Meyer, John-Jules Ch. and de Boer, Frank S.
Goal-oriented modularity in agent programming. In Nakashima et al. (2006), pp.
1271–1278.

van Riemsdĳk, M. Birna; Dastani, Mehdi and Winikoff, Michael. Goals in agent systems:
a unifying framework. In Lin Padgham; David C. Parkes; Jörg Müller and Simon
Parsons (eds.), AAMAS (2), pp. 713–720. IFAAMAS, 2008. ISBN 978-0-9817381-1-6.

Rosner, Roni and Pnueli, Amir. A choppy logic. In LICS, pp. 306–313. IEEE Computer
Society, 1986.

Russell, Stuart J. and Norvig, Peter. Artificial Intelligence: A Modern Approach (2nd
Edition). Prentice Hall, 2002. ISBN 0137903952.

Sardiña, Sebastian; de Silva, Lavindra and Padgham, Lin. Hierarchical planning in BDI
agent programming languages: a formal approach. In Nakashima et al. (2006), pp.
1001–1008.

Schoppers, Marcel. Universal plans for reactive robots in unpredictable environments. In
ĲCAI, pp. 1039–1046. 1987.

Shapiro, Ehud and Sterling, Leon. The Art of Prolog: Advanced Programming Tech-
niques. The MIT Press, 1994. ISBN 0262691639.

Shehory, Onn and Sycara, Katia P. The RETSINA Communicator. In Agents, pp.
199–200. 2000.

Shoham, Yoav. Agent-oriented programming. Artif. Intell., volume 60(1):pp. 51–92,
1993.

SRI International. The Open Agent ArchitectureTM, version 2.3.2. http://www.ai.
sri.com/oaa/, 2007.

Subrahmanian, V. S.; Bonatti, Piero A.; Dix, Jürgen; Eiter, Thomas; Kraus, Sarit;
Ozcan, Fatma and Ross, Robert. Heterogenous Active Agents. MIT Press, 2000.
ISBN 0-262-19436-8.

Sun Microsystems Inc. JavaTM Platform, Standard Edition 6. http://java.sun.com/,
2006.

Sussman, Gerald J. and Steele Jr., Guy L. Scheme: An interpreter for extended lambda
calculus. Higher-Order and Symbolic Computation, volume 11(4):pp. 405–439, 1998.

195

http://www.ai.sri.com/oaa/
http://www.ai.sri.com/oaa/
http://java.sun.com/

Sycara, Katia P.; Paolucci, Massimo; Velsen, Martin Van and Giampapa, Joseph A.
The RETSINA MAS infrastructure. Autonomous Agents and Multi-Agent Systems,
volume 7(1-2):pp. 29–48, 2003.

Syrjänen, T. Implementation of local grounding for logic programs with stable model
semantics. Technical Report B18, Digital Systems Laboratory, Helsinki University of
Technology, 1998.

Syrjänen, Tommi and Niemelä, Ilkka. The Smodels System. In Thomas Eiter; Wolfgang
Faber and Miroslaw Truszczynski (eds.), LPNMR, volume 2173 of Lecture Notes in
Computer Science, pp. 434–438. Springer, 2001. ISBN 3-540-42593-4.

Telecom Italia Lab and The JADE Board. Java Agent DEvelopment Framework. http:
//jade.tilab.com/, 2009.

W3C. Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/REC-xml/,
2008a.

W3C. Extensible Markup Language (XML) 1.0, Section 6, Notation. http://www.w3.
org/TR/REC-xml/#sec-notation, 2008b.

Wielemaker, Jan. An overview of the SWI-Prolog programming environment. In Fred
Mesnard and Alexander Serebenik (eds.), Proceedings of the 13th International Work-
shop on Logic Programming Environments, pp. 1–16. Katholieke Universiteit Leuven,
Heverlee, Belgium, 2003. CW 371.

Winikoff, Michael. An AgentSpeak Meta-interpreter and Its Applications. In Rafael H.
Bordini; Mehdi Dastani; Jürgen Dix and Amal El Fallah-Seghrouchni (eds.), PRO-
MAS, volume 3862 of Lecture Notes in Computer Science, pp. 123–138. Springer,
2005a. ISBN 3-540-32616-2.

Winikoff, Michael. JACKTM Intelligent Agents: An Industrial Strength Platform, chap-
ter 7, pp. 175–193. Volume 15 of Bordini et al. (2005a), 2005b.

Wooldridge, Michael. Reasoning about rational agents. MIT Press, London, 2000.

Yi, Weiyu. JzMASSim: Jazzyk plug-in for communication with the MASSim server.
http://jazzyk.sourceforge.net/projects/modules/jzMASSim.html, 2009.

http://jade.tilab.com/
http://jade.tilab.com/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/#sec-notation
http://www.w3.org/TR/REC-xml/#sec-notation
http://jazzyk.sourceforge.net/projects/modules/jzMASSim.html

Abstract

One of the original long-term aims of Artificial Intelligence is to build intelligent entities,
i.e., such which are able to function and act in a manner similar to human beings. Intel-
ligent agents are autonomous entities, which are also assumed to be proactive, reactive,
as well as socially able. To enable development of such systems, in this thesis, I am
focusing on methods supporting design and implementation of cognitive agents, a spe-
cific subtype of agent systems which internally construct a model of their environment,
themselves or their peers and use it as a basis for decisions about their future actions.
Since different application domains require different knowledge representation ap-

proaches, one of the outstanding problems of the field is the integration of heterogeneous
knowledge representation approaches into a single agent system. I propose a framework
of Behavioural State Machines (BSM), drawing a strict distinction between the rep-
resentational and behavioural layer of an agent system. While keeping the former as
abstract and open as possible, its focus lies on enabling flexible specification of agent’s
behaviours and the overall agent reasoning model, i.e., specification of its lifecycle. Thus,
the BSM framework features a plug-in architecture and enables transparent integration
of heterogeneous knowledge representation technologies into a single agent system.
Provided a suitable programming framework, the next problem is the pragmatics of

its use. Formal specification and semantic characterization of subprograms is essential
means for getting a grip on composition of complex programs from lower-level modules.
I introduce Dynamic Computation Tree Logic DCTL*, a novel hybrid logic marrying
branching time temporal logic CTL* with features inspired by Dynamic Logic. It allows
semantic characterization of BSM subprograms and in turn enables construction of a
sequel of formally specified design patterns implementing useful agent-oriented concepts,
such as achievement and maintenance goals. The thesis culminates in a proposal of
commitment-oriented programming, an abstract methodology for programming cognitive
agents generalizing the approach taken by construction of the design patterns.
To demonstrate the feasibility and usefulness of the proposed approach to agent-

oriented programming I describe three case-studies implemented in Jazzyk, a concrete
implemented programming language for the BSM framework. Finally, to show the ro-
bustness of the BSM framework, I describe its straightforward probabilistic extension
and present a formal study of its relationship to an agent-oriented programming lan-
guage GOAL. I show that BSM can be seen as an intermediary language into which
programs of other agent programming languages can be compiled.

197

Zusammenfassung

Eines der Langzeitziele der Künstlichen Intelligenz (KI) ist es, intelligente Entitäten,
also solche, die ähnlich wie Menschen funktionieren und handeln, zu konstruieren. Intel-
ligente Agenten sind autonome Entitäten, die zusätzlich proaktiv und reaktiv sind, sowie
soziale Fähigkeiten besitzen. Der Fokus dieser Dissertation liegt auf Methoden, die die
Entwicklung von kognitiven Agenten unterstützen; Agenten einer speziellen Unterklasse,
die intern ein Modell über ihre Umgebung, sich selbst und anderen Agenten konstruieren
und es als Basis für ihre Entscheidungen über ihre zukünftigen Aktionen benutzen.
Da verschiedene Anwendungsdomänen unterschiedliche Wissensrepräsentationstech-

niken (KR) benötigen, ist eines der ausstehenden Probleme der KI die Integration
von heterogenen KR-Techniken in ein Agentensystem. Ich stelle das Framework der
Behavioural State Machines (BSM) vor, welches eine strikte Trennung zwischen der
Repräsentations- und der Verhaltensschicht eines Agenten vorsieht. Während die KR-
Schicht abstrakt gehalten ist, liegt der Fokus des Frameworks auf der flexiblen Spezi-
fikation des Agentenverhaltens und seinem globalen Deliberationsmodell, d.h., die Spez-
ifikation seines Lebenszyklus. Das BSM Framework weist eine Plug-in-Architektur auf
und ermöglicht somit die Integration von heterogenen KR-Techniken in einem Agenten.
Neben dem Programmierframework ist auch die Frage dessen richtiger Nützung ent-

scheidend. Die formale Spezifikation und die semantische Charakterisierung von Unter-
programmen eröffnet die Einsicht in die Komposition con komplexen Programmen aus
einfacheren Modulen. Ich stelle eine neue hybride Logik, die Dynamic Computation Tree
Logic DCTL* vor, welche eine Erweiterung der Branching Time Temporal Logic CTL*
um Eigenschaften von Dynamic Logic ist. Sie erlaubt die semantische Charakterisierung
von BSM Unterprogrammen und ermöglicht die Konstruktion einer Sequenz formal spez-
ifizierter Entwurfsmuster, die nützliche Agenten-orienterte Konzepte, wie zum Beispiel
achievement goal und maintenance goal implementieren. Diese Arbeit mündet in dem
Vorschlag des Commitment-orientiertem Programmierens, eine abstrakte Methodik für
die Programmierung von kognitiven Agenten, die auf den Entwurfsmustern basiert.
Um die Machbarkeit und Nützlichkeit des vorgeschlagenen Ansatzes zu zeigen, be-

schreibe ich drei Fallstudien, die in der Programmiersprache Jazzyk, eine konkrete In-
stanz des BSM Frameworks, implementiert sind. Um die Robustheit des Frameworks zu
demonstrieren, beschreibe ich schließlich eine probabilistische Erweiterung und präsen-
tiere eine Studie über die Beziehung von BSM zu der Programmiersprache GOAL. Sie
zeigt, dass BSM als eine Zwischencode-Sprache gesehen werden kann, in die Programme
anderer Agenten-orientierten Programmiersprachen übersetzt werden können.

199

Résumé

Personal trivia
Date and place of birth: March 23th, 1979, Ružomberok, Slovak Republic
Citizenship/Nationality: Slovak Republic/Slovak

Education
2004–2009 Ph.D. candidate

Department of Informatics, Clausthal-Zellerfeld, Clausthal University
of Technology, Germany

1997–2002 computer science/Mgr. (MSc. equiv.)
major: artificial intelligence
minor: distributed and parallel computing
Faculty of Mathematics, Physics and Informatics, Comenius Univer-
sity in Bratislava, Slovakia

Professional experience
2004–2009 research assistant

Department of Informatics, Clausthal University of Technology, Ger-
many

2004–2009 external collaborator
Department of Applied Informatics, Faculty of Mathematics, Physics
and Informatics, Comenius University in Bratislava, Slovakia

2004 freelance software engineer
self employed, Nitra, Slovakia/Lausanne, Switzerland

1999-2003 team leader/programmer/analyst
Whitestein Technologies s.r.o., Bratislava, Slovakia

1998–1999 programmer/analyst
Microstep s.r.o., Bratislava, Slovakia

1996–1997 programmer/analyst
DIO s.r.o., Nitra, Slovakia

201

	Contents
	Preface
	Introduction
	Prelude
	Motivation
	Agent-oriented programming: state of the art
	Thesis outline and contributions

	Theoretical foundations
	Behavioural State Machines
	Syntax
	Semantics
	Abstract interpreter
	Summary

	Modular BDI architecture
	Belief Desire Intention
	BDI instantiation in BSM
	Ape the Airport E-Assistant
	Summary

	Logic for Behavioural State Machines
	Linear Time Temporal Logic LTL
	Dynamic Computation Tree Logic DCTL*
	Temporal annotations and verification of BSMs
	Verifying Ape
	Summary

	Software engineering issues
	Jazzyk
	Language
	Interpreter
	Ape in Jazzyk
	Summary

	BSM design patterns: commitment-oriented programming
	Ape example revisited: naïve methodology
	Jazzyk BSM code patterns
	Commitment-oriented programming
	Summary

	Evaluation, extensions and beyond
	Case studies
	Jazzbot
	Urbibot
	AgentContest team
	Summary

	Implemented Jazzyk modules
	Answer Set Programming KR module
	Ruby KR module
	Nexuiz KR module
	URBI plug-in
	MASSim client plug-in
	OAA connector KR module
	Summary

	Probabilistic Behavioural State Machines
	Probabilistic Behavioural State Machines
	Jazzyk(P)
	Adjustable deliberation
	Summary

	Embedding GOAL in Behavioural State Machines
	GOAL
	Compiling a GOAL agent into a BSM
	Summary

	Conclusion
	Part I: Theoretical foundations
	Vertical modularity
	Horizontal modularity
	Agent reasoning model
	Logic for programming agents

	Part II: Software engineering issues
	The programming language
	Extensible language constructs

	Part III: Evaluation, extensions and beyond
	Experimental work
	Probabilistic approaches to agent-oriented development
	Comparison with related frameworks
	Broader context
	Application domains

	Towards open multi-agent systems
	Epilogue
	Outlook
	Lightweight open communication platform

	Conclusion
	Acknowledgements

	Appendices
	Implementation of Jazzyk interpreter
	Architecture
	Installation
	Jazzyk interpreter manual page

	Jazzyk SDK
	Bibliography

