
Combining Multiple Knowledge Representation
Technologies into Agent Programming

Languages

Mehdi Dastani1 and Koen V. Hindriks2 and Peter Novák3 and Nick A.M.
Tinnemeier1

1 Utrecht University, Utrecht, The Netherlands, {mehdi,nick}@cs.uu.nl
2 Delft University of Technology, Delft, The Netherlands, k.v.hindriks@tudelft.nl

3 Clausthal University of Technology, Clausthal-Zellerfeld, Germany,
peter.novak@tu-clausthal.de

Abstract. In most agent programming languages in practice a program-
mer is committed to the use of a single knowledge representation tech-
nology. In this paper we argue this is not necessarily so. It is shown
that rational agent programming languages allow for the combination
of various such technologies. Specific issues that have to be addressed
to realize such integration for rational agents that derive their choice of
action from their beliefs and goals are discussed. Two techniques to deal
with these issues which enable the integration of multiple knowledge
representation techniques are presented: a meaning-preserving transla-
tion approach that maps one representation to another, and an approach
based on so-called bridge rules which add additional inference power to
a system combining multiple knowledge representation technologies.

1 Introduction

Rational agent programming has been motivated on several grounds. One of
its motivations has been to provide for a high-level specification framework for
agent programs based on common sense concepts such as beliefs, goals, actions,
and plans. Such a programming framework comes with several benefits, among
others that, though the programming framework is abstract, it can be realized
computationally, and, that the programming framework is based on common
sense intuitive concepts which nevertheless have a well-defined semantics.

In our view, rational agent programming is abstract in one sense in that
it does not commit to a particular knowledge representation language. Though
it is common in several concrete programming languages for rational agents to
use Prolog like expressions to represent an agent’s mental states (cf. Jason[1],
2APL[4], and GOAL[6]), this is more a de facto standard and is not implied by
the concept of rational agent programming itself. Some agent frameworks such
as Jadex[16] and JACK[18] have taken a much more pragmatic road and use
object oriented technology to implement the beliefs and goals of an agent.

Even though in implemented agent programming systems there are ways to
add a limited support for external KR technologies, such as accessing a database



engine, this is achieved on the technological level and the solution is bound to
be proprietary w.r.t. the implemented application. Therefore as far as we know,
it can be said that all of the existing programming frameworks for rational
agents in principle commit to a particular kind of knowledge representation (in
the sense of Definition 1; see Section 2). In our view, this is not so much a
limitation implied by rational agent programming per se. Moreover, we believe
that rational agent programming has the integrative potential to facilitate and
support the design and construction of agents that use multiple and various
knowledge representation languages. In this sense, we are inspired by similar
ideas of using various knowledge representation languages that motivated the
knowledge interchange format project (KIF)[15].

As a motivating example to allow multiple knowledge representations for
building rational agents consider Ape (Airport Passenger E-assistant), a mobile
robot with the task of helping passengers by providing them with flight schedules
and getting them at the right gate on time. Ape needs to make decisions about,
for example, who to serve first, and when to call for the assistance of airport
personnel in case she cannot handle all requests in time. In practice, to support
such decision-making, it may be best to use various representation technologies.
For example, Ape could use Prolog to reason about various decision options,
and may have access to a Geographic Information System (GIS) containing the
topology of the airport and an Oracle database with the flight schedules.

The aim of this paper is to explore the use of multiple knowledge represen-
tations, not only between agents, but also within a single agent, both from a
pragmatic, practical perspective as well as a theoretical perspective. One of the
main motivations to do this stems from the fact that various knowledge repre-
sentations come with various strengths and weaknesses which would be inherited
by an agent program if such a program would be restricted to the use of only a
single knowledge representation language. This point has also been particularly
argued for by Marvin Minsky[13]. In this work, he argues that to organize in-
telligence multiple representations are required to do the job. We believe that
rational agent programming may provide part of a solution for integrating such
a multitude of representations in a clean and well-organized manner with appli-
cations in mind.

From a pragmatic point of view, we would also not like rational agent pro-
gramming languages to commit a programmer to learn a new and specific knowl-
edge representation language that comes with the agent programming language.
Learning to program rational agents should not necessarily mean also learning
a new and unfamiliar language for representing knowledge. The programmer
should have (at least some) freedom to choose his or her favorite language for
representing facts about the application domain. The motivation thus is practi-
cal, but at the same time it has been and still is quite hard to combine various
knowledge representations in a useful manner. In practice, moreover, it should
be possible to develop agent applications that incorporate legacy databases, such
as, for example, an Oracle flight schedule database. To facilitate such integra-
tion, the use of a particular agent language should not imply the need to redesign



the original database but instead an agent language ideally would support and
provide an Oracle interface.

In Section 2, we first define knowledge representation in a formally precise
way. In order to illustrate the use of multiple knowledge representations within a
single agent, we present and discuss in Section 3 the syntax and semantics of the
GOAL[6] agent programming language. In Section 4, we introduce a technique
to integrate different knowledge representations for the case that the beliefs and
goals of a single agent are represented by means of different knowledge represen-
tations. In Section 5, we discuss another technique for the case that the belief
base of a single agent is represented using different knowledge representations.
Finally, in Section 6, we discuss related work and conclude the paper.

2 KR Technology

Our interest in this paper is in basic representation and reasoning tools such as
logic, Bayesian networks, or others more than in upper ontologies or domain-
specific ontologies. In [5] such representation and reasoning tools are referred to
as knowledge technologies, a convention we will adopt here as well. A knowledge
representation is characterized by means of five roles. Here we are particularly
interested in two roles associated with knowledge technologies:

1. Knowledge technologies provide a fragmentary theory of intelligent reason-
ing, i.e. a knowledge technology defines a notion of inference that enables
drawing conclusions from other available information represented by means
of the same technology, and

2. Knowledge technologies provide a medium for pragmatically efficient compu-
tation, i.e. a knowledge technology provides tools and techniques to compute
with (or to use) the representations supported by the technology.

Other roles of knowledge representations discussed in [5] as being a set of onto-
logical commitments or as providing a medium of human expression are less im-
portant in this context. The choice of ontology presumably is application driven,
whereas the integration of various representation tools into agent programming
languages poses more general challenges.

For our purposes, it is useful to more formally define what a knowledge tech-
nology is. Our aim is to relate the semantics of agent programming languages
with a very generic concept of a knowledge technology. Informally, a knowl-
edge technology is defined here as a language with a well-defined semantics that
comes with an inference relation and procedures to update information stored in
a knowledge base. Though update procedures may not commonly be regarded as
part of a knowledge technology, in our view providing some support and concept
of updating a knowledge base to maintain a correspondence with the entities
being represented is essential. Moreover, in the context of agent programming
update operators are essential, which provides our main motivation to include
them in our definition.



Definition 1. (Knowledge Representation Technology)
A knowledge representation technology is defined as a tuple:

〈L, |=,⊕〉

where L is a representation language which can be used to express declarative
sentences, with a given set Lq ⊆ L of query expressions, |= : 2L×Lq → {>,⊥}
is an inference relation, and ⊕ : 2L × L→ 2L is an update operator.

Definition 1 is intentionally kept very abstract. Our concern here is with
the roles that a knowledge representation can fulfill in the context of agent
languages. The main roles in this context are that it can be used to represent
an agent’s mental states (e.g., beliefs and goals) and to query the agent’s mental
state, as well as that it allows for performing an update on stored representations
to maintain a correspondence of the agent’s mental state and its environment.
These operations can be conceptualized as providing a TELL and ASK interface
on a database of stored representations as discussed in [10]. We assume (though
it is in our quite general setting not strictly necessary to do so) that provided
consistency of a database Σ and a sentence φ the update operator ⊕ preserves
consistency, i.e. Σ⊕φ is consistent as well and the database remains unchanged if
the sentence to update with is inconsistent (Σ⊕⊥ = Σ). ⊥ denotes here falsity.
Information is expressed by means of sentences from the language that can be
true or false, but we also allow for semantics that incorporate more truth values
as is typical in multi-valued logic. A knowledge base, or, alternatively, simply a
database, is then defined as a set of sentences from the knowledge representation
language.

The use of the inference relation and update operations in defining an agent
language is clarified below where we show how the semantics of an agent language
can be defined in terms of these operators. In concrete agent languages the
update operator typically is not a single operator ⊕ but one or more operations
to add and remove stored representations from a database (though it may be a
single operator, as e.g. postconditions of actions can be interpreted in a STRIPS-
like fashion as add/delete lists). The definition provided suits, however, for the
purposes of this paper.

Some typical examples of knowledge representation technologies that fit the
definition are logical languages such as first-order logic and description logics
such as the Ontology Web Language (OWL), Frame languages [12], Prolog,
Answer Set Programming, Constraint Programming, relational databases, and
others, such as Bayesian Network also fit though the notion of an update in
Bayesian Networks is rather limited and it is not common to view a Bayesian
network as a database consisting of a set of sentences.

To illustrate the scope of our definition, we discuss the example of relational
databases - one of the most common technologies for storing information in
practice - in slightly more detail. In this case, the representational language
L can be identified with languages such as Datalog [3] or SQL. Datalog is a
declarative database query language whereas SQL is a declarative language for
both querying and updating relations stored in a database. SQL query formulas



provide the query language Lq whereas SQL update formula can be used to
specify the insertion or removal of relations from a database. Finally, the SQL
interpreter (the relational database engine) implements the inference relation |=
and update operator ⊕. The correspondence between Datalog or SQL and the
abstract KR language scheme of Definition 1 thus is rather straightforward.

3 Integrating Multiple KRTs into Rational Agents

The question of how to usefully integrate multiple knowledge representations into
a software application in general poses several complex issues [15]. One particu-
larly interesting question is how to facilitate the derivation of a conclusion from
knowledge stored in different representations in various databases controlled or
accessible by the agent. The combination of multiple knowledge technologies into
a rational agent programming language, however, raises some specific issues of
its own. To illustrate these, we first provide a very brief overview of the essential
ingredients of the agent programming language GOAL [6], which are introduced
here mainly for illustrative purposes. Only those parts of the GOAL language
related to the subject of this paper are introduced. The interested reader is re-
ferred to [6] for a more extensive presentation of the language. GOAL agents -
as agents programmed in related agent programming languages such as 2APL,
Jason, and Jadex - derive their choice of action from their beliefs and goals.
Beliefs and goals are represented by means of some knowledge technology (as
mentioned earlier, typically Prolog is used), and, for the purpose of this paper, it
will be particularly relevant to look into the relation between these two notions.

3.1 GOAL: Syntax and Semantics

The main defining features of a rational agent programming language are con-
structs for defining the agent’s mental state, including its beliefs and goals, its
action selection mechanism used by the agent to derive a choice of action from
its beliefs and goals, and a commitment strategy which determines when an agent
will revise its goals given its beliefs. An example of a commitment strategy is to
only drop a goal when the agent believes it has been achieved, a so-called blind
commitment strategy (cf. [17]). The semantic interdependence of an agent’s goals
and beliefs differentiate rational agent programming languages from other high-
level languages such as database languages. At the same time, however, this
interdependency raises some special issues for integrating multiple knowledge
representation languages into such a language. In order to clarify these issues
some of the key semantic rules of GOAL that formalize these interdependencies
are introduced.

In the following we use 〈Σ,Γ 〉 to denote an arbitrary mental state of a rational
agent where Σ is the belief base and Γ is the goal base of the agent. Although
it is usual to assume both the belief base as well as the goal base consist of
sentences from a single knowledge technology (e.g. Prolog), for the purposes of
this paper, we are interested in relaxing this assumption in two ways. First, the



belief base and goal base do not need to be based on one and the same knowledge
technology. Second, the belief base does not need to be monolithic and might
instead consist of various databases based on various knowledge technologies.
Similarly, a goal base might be based on multiple technologies, but we do not
discuss this possibility explicitly in this paper since it seems less useful to us.
However, the the same techniques we propose for handling belief base multiple
belief bases could be applied also in this situation.

The issues that are introduced by relaxing this assumption can be illustrated
after introducing some basic definitions.

First, we introduce a belief operator bel(φ) and goal operator goal(φ) and
associated semantics which express that an agent has a belief or goal φ in a
mental state M = 〈Σ,Γ 〉. These operators enable the expression of conditions
on mental states of an agent. Formally, a mental state condition is a boolean
combination of belief and goal conditions, i.e.

m ::= bel(φ) | goal(φ) | ¬m | m ∧m

The semantics of simple belief and goal conditions is defined next. In the
standard way these can be extended to handle boolean combinations.

Definition 2. (Semantics of Mental State Conditions)
Let M = 〈Σ,Γ 〉 be a mental state. Then the semantic clauses for bel and goal
are provided by:

– M |= bel(φ) iff Σ |= φ
– M |= goal(φ) iff ∃γ ∈ Γ s.t. γ |= φ and Σ 6|= φ.

According to this definition, an agent has a belief φ if φ is entailed by the
agent’s belief base and a goal φ if and only if φ is entailed “locally” from its goal
base (i.e. from one of the agent’s goals in its goal base) but does not follow from
its belief base. What is important in this context to note is that this semantic
clause requires us to both verify whether φ is entailed by the goal base as well
as the belief base.

Second, we introduce a transition rule which defines the operational (“ex-
ecution step”) semantics for GOAL agents. This transition rule defines when
the agent can perform an action. The execution of an action involves updating
the agent’s mental state and to formally define it we need a transition function
T (a, Σ). Presumably, this transition function can be defined in terms of the up-
date operators associated with the knowledge representation language used to
specify the belief base, e.g. we could define the function by T (a, Σ) = Σ ⊕ ψ
where ψ is the postcondition of action a.

Definition 3. (Action Execution Rule)
Let 〈Σ,Γ 〉 be a mental state, c be a conditional action of the form if ϕ then a
where ϕ is a mental state condition. Then the execution of the conditional action
c is defined by:

〈Σ,Γ 〉 |= ϕ

〈Σ,Γ 〉 −→ 〈Σ′, Γ ′〉
where: Σ′ = T (a, Σ), and Γ ′ = Γ \ {γ ∈ Γ | Σ′ |= γ}.



This rule defining the semantics of action execution also “implements” the
blind commitment strategy discussed above. In the absence of other facilities to
modify goals, an agent will drop a goal γ only if it is believed to be achieved
(i.e. Σ |= γ). This automatic update of the goal base requires that each goal in
the goal base is checked against the belief base to verify if it has been achieved
(though in practice more efficient implementations are possible).

The semantics introduced above enables us to introduce the issues raised by
introducing multiple knowledge technologies into a rational agent more precisely.
First, by allowing the belief base and the goal base to be based on different
knowledge technologies (but still assuming each uses a single technology) we
need a means to relate these technologies. The reason is that Definition 3 requires
an agent to verify whether its goals γ have been achieved by verifying whether
they are entailed by its belief base Σ. Definition 3 thus requires that a query
γ specified using one knowledge technology can be resolved using a database Σ
based on another knowledge technology.

Second, by allowing a belief base to consist of multiple databases (i.e. Σ =
D1 × . . .×Dn) using different knowledge technologies the question arises what
it means to query such a belief base. It may be useful to decompose an agent’s
belief base into several databases in practice, e.g. to integrate legacy databases,
but how does the agent derive a conclusion that requires combining information
from such a distributed set of databases?

Finally, the semantics of both Definition 2 and 3 pose certain requirements
for the knowledge representation technologies used for goal bases. The point is
that both definitions require that a goal base can be viewed as a set, either to
check whether an element of the goal base entails some formula, or to remove
achieved goals from the goal base (Df. 2). Though most logic-based knowledge
technologies do support such a view not all do so naturally. For example, it is
not clear how a Bayesian network could be viewed as a set, and, in practice,
even Prolog systems allow for multiple occurrences of facts. Although the latter
issue is easily circumvented, the use of Bayesian networks to represent goals in
a goal base is practically excluded. In the remainder, we will assume that goal
bases are always implemented with a KRT that allows for set-theoretic view of
its associated databases.

There are several options to deal with the issues discussed above. It is unlikely
that there is one and only one unique best solution for handling these issues. Our
strategy here therefore will be to discuss some of the more promising options.
We do not claim to discuss an exhaustive list of options. Our main interest is in
the specific issues that are raised when dealing with the problem of combining
different knowledge representations in the context of agent programming and
our objective is to provide some generic solutions to be able to usefully combine
knowledge representations into a rational agent.

A natural first suggestion is that if it would be possible to somehow translate
one knowledge representation into another one. In that case, below we show that
some of the issues specific to rational agents can be solved using translation
operators. In the next section some variations on this topic are explored.



A second suggestion explored in this paper is to use so-called bridge rules to
connect knowledge stored in various databases (or contexts) and derive a new
conclusion from those knowledge sources much in the spirit of multi-context logic
[9]. This technique is discussed in Section 5.

4 A Translation Approach to Combine KRT’s

In this section, we assume that the belief and goal bases of an individual agent are
represented using different knowledge representation technologies. This transla-
tion approach will be applied to define the semantics of the GOAL language to
fit multiple KRT’s. This approach is based on the assumption that the expres-
sions of one knowledge representation language can be translated to expressions
of the second language by means of a translation operator.

Definition 4. (translation operator) Let L1 and L2 be two knowledge represen-
tation languages. A translation operator τ from L1 to L2 is a function from L1

to L2. The translation operator can be defined on sets of formula as follows:
τ({φ1, . . . , φn}) = {τ(φ1), . . . , τ(φn)}.

A translation operator can be used to connect knowledge representation tech-
nologies with each other if their entailment relations and update operators im-
pose the same structures on the set of language expressions.

Definition 5. (KRT translation operator) Let K1 = 〈L1, |=1,⊕1〉 and K2 =
〈L2, |=2,⊕2〉 be two knowledge representation technologies and τK1→K2 : L1 →
L2 be a translation operator. We write τ instead of τK1→K2 if it is clear that
τ : L1 → L2.

τ is a KRT translation operator from K1 to K2 iff

– ∀Λ ⊆ L1,∀φ ∈ L1 : Λ |=1 φ → τ(Λ) |=2 τ(φ)
– ∀Λ ⊆ L1,∀φ ∈ L1 : τ(Λ⊕1 φ) = τ(Λ)⊕2 τ(φ)

In this paper, we will use a particular knowledge representation technol-
ogy which is based on a propositional language, its corresponding well-known
entailment relation and an update operator. Using this specific knowledge rep-
resentation technology, we can study some logical properties of other knowledge
representation technologies and investigate their behaviors when they are used
in agent programming languages.

Definition 6. (Logically founded KRT) Let Kp = 〈Lp, |=p,⊕p〉 be the proposi-
tional knowledge representation technology, where Lp is the language of propo-
sitional logic, |=p is its corresponding entailment relation, and ⊕p is an update
function that satisfies some reasonable belief update postulates, amongst which
the consistency preservation property.

Let K = 〈L, |=,⊕〉 be an arbitrary knowledge representation technology. K is
called logically founded if and only if there exists a KRT translation operator τ
from Kp to K. Moreover, we say Λ ⊆ L is τ -consistent only if τ(Λ) is consistent.



The choice of propositional language in the above definition is not strict. In
fact, we may use an expressive but computational subset of predicate logic or
KIF[15]. We use the propositional language to simplify the presentation of the
relevant part of our approach. In the rest of this section, we use the translation
operator and present two ways to adapt the semantics of the GOAL programming
language.

4.1 Intermediate KRT Translation Approach

One approach is to assume that an agent programming language comes with
a propositional knowledge representation technology without assuming how the
belief and goal bases are represented. The proposition knowledge representation
technology is used to express the query and update expressions. For example, in
the GOAL programming language, the propositional formulae are used to im-
plement the pre- and post-conditions of actions without making any assumption
on the belief and goal languages. We call such a programming language generic.

In particular, one and the same language for query expressions (e.g., a propo-
sitional language Lp) is assumed, whereas the representation languages used to
represent the belief and goal bases may differ from each other and from the
generic language Lp embedded in the agent language. The entailment relation
for the propositional language Lp is well-known. Moreover, various update op-
erators are studied for propositional language and some postulates are proposed
that should be valid for such operators. For example, if we consider only propo-
sitional atoms and their negations, then an update operator can be defined in
terms of addition and deletion of atoms.

Additionally we assume that the knowledge representation technologies used
for beliefs and goals are logically founded. This implies that there exists a KRT
translation operator that maps propositional expressions to the expressions of
the languages used in the knowledge representation technologies. In order to il-
lustrate this approach, we apply it to the GOAL programming language. The
semantic clauses of the GOAL programming language as defined above can be
modified to allow for the integration of multiple knowledge representation tech-
nologies.

Definition 7. (Semantics for Generic GOAL) Let Kb = 〈Lb, |=b,⊕b〉 and Kg =
〈Lg, |=g,⊕g〉 be logically founded KRT, based on KRT translation operator τb and
τg, respectively. Let also M = 〈Σ,Γ 〉 be a mental state with Σ ⊆ Lb, Γ ⊆ Lg,
φ ∈ Lp be a proposition, and c = if ϕ then a be a conditional action. Let ψ ∈ Lp

be a proposition representing the postcondition for action a. The semantics of
the generic GOAL language can be defined as follows:

– M |= bel(φ) iff Σ |=b τb(φ)
– M |= goal(φ) iff ∃γ ∈ Γ : γ |=g τb(φ) and Σ 6|=b τb(φ)
– Action execution:

〈Σ,Γ 〉 |= ϕ

〈Σ,Γ 〉 −→ 〈Σ′, Γ ′〉



where: Σ′ = Σ ⊕b τb(ψ)

Γ ′ = Γ \ {τg(ψ) ∈ Γ | Σ′ |=b τb(ψ)}

The semantics of the GOAL programming language as defined above has
some interesting properties. In particular, despite using different knowledge rep-
resentation technologies for belief and goal bases, it can be shown that when
executed the agent’s belief base remains consistent if the initial belief base of
the agent is consistent. Moreover, it can be shown that the agent will never have
goals that are already achieved.

Proposition 1. Let Kb = 〈Lb, |=b,⊕b〉 and Kg = 〈Lg, |=g,⊕g〉 be logically
founded KRT based on τb and τg, respectively. Let 〈Σ0 ⊆ Lb, Γ0 ⊆ Lg〉 be an
agent’s initial state, and 〈Σi, Γi〉 (for i > 0) be a state generated by executing
the agent according to the semantics as defined above. Then,

– if Σ0 is τb-consistent then Σi is τb-consistent for i > 0
– if Σi |=b τb(φ) then Γi 6|=g τg(φ) for φ ∈ Lp and i > 0.

An advantage of this approach is that agent programs, which are implemented
in the generic version of the GOAL programming language, are independent from
the employed knowledge representation technologies. Consequently, changing the
employed knowledge representation technologies requires only a modification of
the translation operators such that nothing needs to be changed in the agent
programs. Furthermore, an agent program can be designed before a final choice
for a specific knowledge representation technology is made. A disadvantage is
that we should specify the translation operator in terms of the set of belief
queries which can be a large set.

4.2 Direct KRT Translation Approach

In this subsection, we assume that the adapted agent programming language is
defined in terms of two distinct knowledge representation technologies, one to
implement the belief base and its corresponding query expressions and one to
implement the goal base and its corresponding query expressions. The idea is
thus to represent each mental attitude (goals and beliefs) and its corresponding
queries with one and the same knowledge representation technology. In this ap-
proach, the knowledge representation technologies form integral constituents of
the definition of the agent programming language. We illustrate this approach
by applying it to the GOAL programming language. As the query languages
depend on the knowledge representation technologies, we first redefine the syn-
tax of the GOAL programming language by allowing expressions of different
knowledge representation technologies to be used as query expressions.

Definition 8. (Syntax for Multiple KRTs) Let Lb and Lg be representation
languages for belief and goal expressions, respectively. Let Σ ⊆ Lb and Γ ⊆ Lg.
The GOAL programming language based on Multiple KRT’s can be defined as
follows:



– ’if ϕ then a’, where
• if bel(φ) occurs in ϕ, then φ ∈ Lb

• if goal(φ) occurs in ϕ, then φ ∈ Lg

• PostCondition(a) ∈ Lb

Here we assume a translation operator that translates Lg into Lb. Given such
translation operator, the semantics for the GOAL programming language can
be redefined as follows.

Definition 9. (Semantics for Multiple KRTs) Let τ : Lg → Lb, Kb = 〈Lb, |=b

,⊕b〉 and Kg = 〈Lg, |=g,⊕g〉. Let also M = 〈Σ,Γ 〉 be a mental state with Σ ⊆ Lb,
Γ ⊆ Lg, φb ∈ Lb, φg ∈ Lg, and c = if ϕ then a be a conditional action. Let ψ ∈
Lb be the postcondition for action a. The semantics of the GOAL programming
language based on Multiple KRT’s can be defined as follows:

– M |= bel(φb) iff Σ |=b φb

– M |= goal(φg) iff ∃γ ∈ Γ : γ |=g φg and Σ 6|=g τ(φg)
– Action execution:

〈Σ,Γ 〉 |= ϕ

〈Σ,Γ 〉 −→ 〈Σ′, Γ ′〉

where: Σ′ = Σ ⊕b ψ
Γ ′ = Γ \ {ψ ∈ Γ | Σ′ |=b τ(ψ)}

Like the previous approach, it is shown that the consistency of the belief base
can be preserved and its relation with the goal base can be maintained.

Proposition 2. Let Kb = 〈Lb, |=b,⊕b〉 be a KRT, Kg = 〈Lg, |=g,⊕g〉 be logically
founded based on τp and let τ be a KRT translation operator from Lg to Lb. Let
also 〈Σ0 ⊆ Lb, Γ0 ⊆ Lg〉 be an agent’s initial state, and 〈Σi, Γi〉 (for i > 0)
be a state generated by executing the agent according to the agent semantics as
defined above. Then,

– if Σ0 is τp-consistent then Σi is τp-consistent for i > 0.
– if Σi |=b τ(φ) then Γi 6|=g φ for φ ∈ Lg and i > 0.
– Kb = 〈Lb, |=b,⊕b〉 is logically founded.

An advantage of this approach is that only a translation has to be made for
the goals of the agents, which are known at design time. A disadvantage is that if
the employed knowledge representation technologies for the goal or belief bases
are changed, not only a new translation function has to be defined, but also the
code of the agent program should be updated.

5 Integrating Multiple KRTs into a belief base

Although in principle the techniques of translating sentences specified using dif-
ferent KRTs also can be applied to handle inferencing on a composed belief base



that consist of multiple belief bases (cf. previous section and e.g. [15]), we pro-
pose another technique to deal with such inferencing. One reason is that trans-
lation may work well only for certain application types that use relatively small
knowledge bases. Another reason is that we believe that the technique to handle
multiple KRTs should facilitate drawing conclusions that combine information
from several of the databases a belief base may be composed of. As a simple ex-
ample, consider the airport service robot again which this time needs to give lost
luggage back to a passenger. The robot will need to combine information from
several databases to derive the quickest way to do this. A Prolog-like query to
obtain this information might look like loc(luggage,L,passenger),loc(passenger

,P),route(L,P,R). A translation approach that has to deal with a query like this
would give rise to redundant processing and search for the right source of infor-
mation that can answer (part) of the query. It is a priori not clear from the query
itself to identify the right database to pose (part of) the query to. A technique is
needed that allows an agent programmer to “guide” the reasoning of an agent.

The approach suggested in this section proposes to connect various knowledge
bases by means of so-called bridge rules. Instead of translating languages, the
main idea of bridge rules is to add additional inference power on top of the
two or more knowledge technologies that are to be integrated into the agent
application. The mechanism to do so should also provide a means to connect
pieces of knowledge represented by different knowledge technologies. The relation
suggested by calling these rules bridge rules with multi-context logic is intentional
[9]. Multi-context logic provides a framework that can be used to achieve our
objective to integrate various knowledge technologies in the sense of Definition
1 (cf. also [8] for a similar proposal).

Bridge rules are particular kind of inference rules. They sanction an ad-
ditional inference to a conclusion represented using one knowledge technology
given available inferences and associated conclusions using other knowledge tech-
nologies. More formally, a bridge rule can be defined as a rule of the following
form:

ϕ1, . . . , ϕ2 ` ψ

where each ϕi and ψ are representations from a particular knowledge repre-
sentation language L. The intended semantics is that a bridge rule allows the
inference of ψ if all ϕi can be derived somehow given the inference relations |=Ki

associated with each ϕi. A bridge rule thus sanctions the inference of ψ given
these other inferences, and allows ψ to be used in other inferences to draw cer-
tain conclusions again. It does not require such inferences to be made, nor does
it require any updates on knowledge bases or the like; these rules only provide
additional inference power.

Continuing the example of the service robot, suppose information about pas-
sengers is stored “ad hoc” in the robots’ belief bases implemented in Prolog, lost
luggage information is stored in a SQL database, and routing information may
be requested from a GIS system implemented using OO database technology. In
that case, a bridge rule could be used to compute a route by directing queries



to these various information sources by a rule that such as the following:

loc(passenger, P ),
SELECT L FROM
LostLuggage WHERE Pgnr = passenger,

mapGIS.get route(L,P,R)
` route(R)

It will be clear that the syntax of the bridge rules provides clues how to resolve
a particular (part of a) query.

The idea thus is to allow a programmer to add specific bridge rules to an
agent program to facilitate inferences using multiple knowledge technologies.
The programmer is supposed to be able to design such rules given his knowledge
about the application and the use that the various knowledge technologies have
been put to. Bridge rules only add additional inference power and give rise to
a new inference relation |=∗. The inference relation |=∗ defines when a query
φ ∈ L from some knowledge representation language L is entailed by multiple
knowledge bases using various knowledge technologies which are possibly related
by a set of bridge rules B.

Definition 10. (Induced Inference Relation)
Let a set of knowledge bases KB1, . . . ,KBn with associated knowledge technolo-
gies Ki = 〈Li, |=i,⊕i〉 for i = 1, . . . , n be given. Furthermore, assume a set of
bridge rules B consisting of formulas of the form ϕ1, . . . , ϕm ` ψ with ϕi, ψ each
taken from one of the knowledge representation languages Li. Then the induced
inference relation |=∗ is defined by:

KB1, . . . ,KBn,B |=∗ φ iff ∃i : 1 ≤ i ≤ n ∧KB∗i |=i φ

where the KB∗i are defined by simultaneous induction as the smallest set such
that:

– KBi ⊆ KB∗i , and
– whenever ϕ1, . . . , ϕm ` ψ ∈ B with ψ ∈ Li and for all j = 1, . . . ,m there is

a k such that KB∗k |=k ϕj, then ψ ∈ KB∗i .

The semantics indicates that each knowledge base with an additional set of
bridge rules can be computed incrementally, and that bridge rules can be viewed
as a kind of completion operator. An implementation using backward chaining
would make this approach a practical option for integration into agent languages.

It should be clear that a translation approach and an approach using bridge
rules do not exclude each other. In fact, both can be used to address the issue
discussed in the previous section - to facilitate inference when a belief base and
goal base use different KRTs - as well as the issue discussed in this section -
handling inference in a composed belief base. Bridge rules thus can be viewed as
kind of a translation operators but provide a programmer with more flexibility
whereas the approach using translation operators is more generic.



6 Conclusion and related work

The paradigm of rational agents and multi-agent systems provides an integrative
view on a multitude of topics in AI. Agents can usefully exploit the entities to
strengths of various technologies, especially w.r.t. knowledge representation and
control. To our knowledge, the problem of integrating heterogeneous knowledge
bases in a single agent system arose in the agent-oriented programming commu-
nity only recently. Most state-of-the-art agent oriented programming frameworks
do prescribe employment of a single knowledge base in a fixed KR language. Most
of the time it is either a logical language (Prolog), or a programming language
in which the particular framework is developed (Java). Homogeneous KBs in
such systems do not pose a problem, as formulas of different KBs come from the
same language, hence the same entailment/update operators can be used with
them.

We are aware of only two efforts in the context of agent oriented program-
ming which aimed at mixing heterogeneous knowledge representations in a single
agent system. Project IMPACT [7] aimed at integration of heterogeneous legacy
knowledge bases accessible to an agent. IMPACT treats each underlying KB
as an opaque body of software code, modeled as a set of predefined functions
providing access to the underlying data objects capturing a part of the current
agent’s (mental) state. The agent logic program consists of a set of if-then-else
rules regarded as a logic program. However, as IMPACT did aim for integra-
tion of heterogeneous information sources in the first place, IMPACT agents, by
default, do not maintain any stronger semantic conditions on their knowledge
bases (such as e.g. blind commitment strategy). That implies no special need for
translation of formulas from different KBs. In terms of approaches introduced
in this paper, IMPACT can be seen as an instance of a system implementing
a mechanism similar to bridge-rules discussed in Section 5. Modular BDI archi-
tecture [14] is another recent attempt to approach combining heterogeneous KR
technologies in an BDI-inspired agent system. Even though the agent system dy-
namics and semantics differs from that of IMPACT, the approach to integration
of heterogeneous KBs in a single agent is very similar.

In this paper we explored several approaches to integrate various knowledge
representation technologies so that these can be exploited in a single agent system
in a consistent way. This is as an initial attempt to study the problem. We believe
that an implemented proof of concept for the presented integration approaches
is necessary. Moreover, in our future research we want to compare our approach
with the results regarding translating database schemes, such as [11].

We would like to emphasize that the use of propositional logic as an inter-
mediary knowledge representation technology was for simplicity reasons and in
order to focus on the problem of integration of knowledge representation tech-
nologies. We believe that for developing practical agent systems the propositional
knowledge representation technology can easily be extended with first-order ele-
ments (such as variables) or even with representation technologies as developed
in KIF[15].
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