
Adding structure to agent programming languages

Peter Novák and Jürgen Dix

Department of Informatics, Clausthal University of Technology, Germany
{novak,dix}@in.tu-clausthal.de

Abstract. There is a huge gap between agent programming languages used for
industrial applications and those developed in academia. While the former are
mostly extensions of mainstream programming languages (e.g. Java), the latter
are often very specialized languages, based on reactive rules. These specialized
languages enjoy clear semantics and come with a number of knowledge repre-
sentation features, but lack important aspects such as code re-use, modularity,
encapsulation etc.
We present a method to extend the syntax of existing specialized agent oriented
programming languages to allow more efficient hierarchical structuring of agent
programs. We illustrate our method through a simple language based on reac-
tive rules. We then gradually extend the core language by several higher level
syntactic constructs, thus improving the support for source code modularity and
readability.

1 Introduction

While providing a clear and robust theoretical semantics and easy integration of power-
ful knowledge representation and reasoning techniques, an ideal specialized program-
ming language for agents with mental states must also take into account engineering
aspects of software development as equally important issues. We believe that an easily
readable syntax of a programming language, allowing conceptual encapsulation on the
source code level, and support for a program modularization, are crucial issues in de-
sign of programming languages for cognitive agents. Such abstraction has to be both
(1) a practical means for modular structuring of an agent program source code, as well
as (2) a methodological tool guiding translation from an analytical model to a real
source code implemented in a rule based programming language.

In this paper, we demonstrate how the syntax of specialized agent oriented pro-
gramming languages, based on reactive rules, can be carefully designed to approach the
requirements of modern programmers. We understand this work as a work in progress
towards development of high level abstract concepts for development of agents with
mental states, rather than a proposal for an ultimate solution of this problem.

Our approach follows the tiered approach to programming language design [8] and
focuses on introducing purely syntactical constructs, rather than making the semantics
of the language more complicated. As a basis for further enrichment, we first propose
a simple abstract programming language based on reactive rules (Section 2) together
with an interpreter for it. The main focus of this paper is on gradually extending the
core language by several higher level syntactic constructs (Section 3), thus improving
the support for source code modularity and readability.



One of the main results in this paper is the introduction of a mental state transformer
(mst), an extension based on the functional view on an agent program. We propose a
compiler transforming a program using the extended syntax into the core language.
Discussion on related and future work (sections 4 and 5) conclude the paper.

2 Core programming language

The architecture of specialized programming languages for agents with mental states
can be naturally decomposed in two parts. Firstly, the language has to provide means
for modeling the internal structure of an agent’s mental state. Secondly, it has to feature
control structures for encoding transitions between these states. We are convinced, that
these aspects of an agent oriented programming language should be studied separately.
In this work, we focus on dynamic aspects of an agent programming language.

The starting point for the design of the core language is the approach applied in
the Modular BDI architecture [11] and IMPACT [13], where authors abstract from the
internal structure of agent’s mental state. The structure of a mental state reduces to a
black box providing only a query and update interface, while the programming language
itself facilitates the control over mental state transitions.

An agent program in the core language consists of a set of reactive rules. Given a
query, when a reactive rule evaluates to true in the current mental state, then an update
operation is performed on this state. The semantics of a query and update operation is
provided by abstract operators, specific to the internal structure of agent’s mental states.
We also abstract from the interface to agent’s environment. It can be handled by queries
(sensor interface) and updates (effector interface) integrated in the implementation of
the mental state as well (see Modular BDI architecture presented in [11]).

The semantics of an agent system is then provided in terms of a transition system
over a set of mental states. We give both operational and denotational views on the
semantics of the core language. The operational semantics shows the execution of a
single primitive construct of the language, while the denotational viewpoint provides
a functional view on the semantics of an agent program. This view will later turn out
to be crucial for modularizing the language. We conclude by detailing the interpreting
algorithm and proposing a concrete syntax for the core programming language.

2.1 Abstract syntax

We abstract from the internal structure of mental states by defining them as a theories
in a given language L. This abstraction keeps the concept of a mental state modular and
allows to examine and update it by means of abstract query and update operations.

Definition 1. (language, formula, query, update) LetL be a language of mental states.
Then a mental state σ is a theory in this language and a formula ϕ ∈ σ is called a
mental state formula. Query and update languages LQ and LU are defined as follows:

– if ϕ ∈ L, then Q(ϕ) ∈ LQ and U(ϕ) ∈ LU ,
– if φ1, φ2 ∈ LQ then φ1 ∧ φ2 ∈ LQ, φ1 ∨ φ2 ∈ LQ and ¬φ1 ∈ LQ,
– > ∈ LQ, ⊥ ∈ LQ, nop ∈ LU



While update formulas are quite simple (a single update operation at a time) query for-
mulas can be more complex. They can involve conjunctions, disjunctions and negations.
Primitive constructs of the language are composed of query and update formulas.

Definition 2. (transition rule, agent program) Let LQ and LU be query and update
languages and φ ∈ LQ, ψ ∈ LU be formulas. We say that a rule of the form φ −→ ψ
is a transition rule. An agent program is a set of rules

P = {φ −→ ψ| φ ∈ LQ and ψ ∈ LU}

composed of query and update formulas from the corresponding query and update lan-
guages LQ and LU . We also say that P is an agent program in L.

2.2 Semantics

Given an agent program, we show first how transition rules are interpreted as single
transitions. Then, we also provide denotational semantics for a program to show a func-
tional view of its meaning. The semantics of transition rules is defined in terms of
abstract query and update operators. This makes the semantics of the core language
modular and independent on the internal structure of agent’s mental states.

Definition 3. (abstract query/update operators) Let L be a language of mental states
and σ ⊆ L be a mental state (theory) in that language. Let also ϕ ∈ L be a formula.
An operator QueryL is a mapping

QueryL : L × 2L → {true, false}; 〈ϕ, σ〉 7→ QueryL(ϕ, σ)

The corresponding update operator UpdateL is a mapping

UpdateL : L × 2L → 2L; 〈ϕ, σ〉 7→ UpdateL(ϕ, σ)

We assume QueryL(>, σ) = true , QueryL(⊥, σ) = false , UpdateL(nop, σ) = σ.

In the case of a query, the result is the truth value of ϕ w.r.t. σ. The result of an update
operator application is a new mental state σ′ ⊆ L, which reflects an update ϕ on σ.

For practical purposes, query and update operators QueryL and UpdateL should
be computable procedures evaluating formula ϕ ∈ L against a theory σ ⊆ L.

The semantics of transition rules is defined in terms of query and update operator
evaluations. We relate formulas of the form Q(ϕ) and U(ϕ) to applications of corre-
sponding abstract operators QueryL and UpdateL to the actual mental state.

Definition 4. (semantics of queries and updates) Let L be a mental state language
and LQ and LU be query and update languages over L. Let also σ be a mental state.
Application of a query operator QueryL is denoted by |= and⊕ denotes an application
of an update operator UpdateL on a mental state. The semantics of a ground query
formula φ ∈ LQ is defined as follows

– if φ = Q(ϕ) and ϕ ∈ L, then σ |= φ iff QueryL(ϕ, σ) = true, otherwise σ 6|= φ
(i.e. QueryL(ϕ, σ) = false),



– if φ = ¬φ′ and φ′ ∈ LQ, then σ |= φ iff σ 6|= φ′,
– if φ = φ1 ∧ φ2 and φ1, φ2 ∈ LQ, then σ |= φ iff σ |= φ1 and σ |= φ2,
– if φ = φ1 ∨ φ2 and φ1, φ2 ∈ LQ, then σ |= φ iff σ |= φ1 or σ |= φ2

and for an update formula ψ ∈ LU :

– if ψ = U(ϕ) and ϕ ∈ L, then σ ⊕ ψ = σ′ iff
UpdateL(ϕ, σ) = σ′.

Note, that we do not define a more powerful notion of negation in query formulas (e.g.
default negation): This would require a deeper insight in the structure of mental state.
The interpreter of the language only needs to know whether a query is satisfied or not,
regardless of the kind of specialized reasoning hidden behind the internal semantics of
the query operator.

Definition 5. (agent system transition) An agent system moves from σ to σ′:

σ |= φ, σ ⊕ ψ = σ′

σ −→ σ′
,

when φ −→ ψ is an applicable transition rule (i.e. σ |= φ).

Finally, we specify a semantics of an agent program in terms of possible evolutions of
within the transition system.

Definition 6. (agent system: operational view) A computation run Comp(σ0) of an
agent system over a language of mental states L, described by an agent program P , is
a possibly infinite sequence σ0, . . . , σn, . . . of mental states over L (∀i : σi ⊆ L), so
that ∀i ≥ 0 : σi −→ σi+1 is an agent system transition induced by some rule ri ∈ P .

The agent system is then characterized by the set of all possible computation runs
induced by the program P .

The operational semantics offers a procedural view on the agent program as a specifi-
cation of a problem subspace in terms of allowed computation runs. It gives a rather
localized perspective on the meaning of a single transition rule w.r.t. to a given agent
system evolution. But we can also see a single rule φ −→ ψ as a prescription of a
transition between classes of mental states. The query part φ divides the space of men-
tal states in two classes, according to the truth value of formula φ. When the system
happens to be in one of the states in which φ evaluates to true, the update formula ψ
specifies a direction in which it should move in the next step. The rule then prescribes
a transition from the class of states in which φ holds to the set of states resulting from
application of update formula ψ to it. This view inspires the alternative semantics of an
agent system: A set of transition rules is a partial function over mental states.

Definition 7. (agent system: denotational view) Let L be a language of mental states
and P an agent program in L. The program P is characterized by a partial function

FP : 2L × LU −→ 2L; 〈σ, ψ〉 7−→ σ′

where σ, σ′ ⊆ L are mental states and ψ ∈ LU is an update formula. FP(σ, ψ) = σ′

iff ∃(φ −→ ψ) ∈ P , such that σ −→ σ′ is a transition induced by this rule. We say that
P is characterized by FP . We also say that the set of states ΣFP over which the partial
function FP is defined is the application domain of FP .



The functionFP is a partial function defined only for those mental states in which some
rule r ∈ P can be applied. I.e. those, in which a query formula of some rule from the
program P is satisfied. It completely characterizes the agent system described by P .

The operational semantics provides a view on an agent program as an explicit char-
acterization of a problem subspace in terms of possible agent system evolutions. Com-
plementary to that, the denotational semantics suggest a specification of the same prob-
lem space in terms of a specification of all the considered sets of mental states and all
the allowed transitions between them. We stress here, that in essence both provided se-
mantics allow formalization of a same system. They just reflect two different views on
its specification. While the first shows how an existing agent program is interpreted, the
second offers more methodological insight on how to analyze, create and organize such
programs.

2.3 Concrete syntax and interpreter

To complete our core programming system definition we provide a concrete syntax and
an interpreter algorithm for it. Our syntax proposal of the core language is straight-
forward. The EBNF of the core programming language is as follows (white space and
string definitions are omitted):

<program> := <rules>
<rules> := <rule> | <rule> <rules>
<rule> := "when" <queries> "then" <update> ";"
<queries> := <query> | "not" <queries> |

"(" <queries> "and" <queries> ")" |
"(" <queries> "or" <queries> ")"

<query> := "true" | "false" | "query" "[{" <qformula> "}]"
<update> := "nop" | "update" "[{" <uformula> "}]"

<qformula> and <uformula> are well formed formulas from LQ and LU re-
spectively. Query and update non-terminals are defined using quite complex bracket
delimiters. This is because the syntax of <string> non-terminal can be arbitrarily
complex and might involve various kinds of character combinations possibly including
characters like {, or }1.

We finally propose an extremely simple and straightforward interpreting algorithm
following the generic scheme applied in other languages like e.g. 3APL. Algorithm 1
lists the detail pseudocode of the core language interpreter.

Given a current mental state, the interpreter first selects all the rules applicable in
that state, then non-deterministically chooses one of them and applies its update formula
to the actual mental state. The result of this update operation is a new mental state which
becomes the current one in the subsequent interpreter iteration. In the case no rule is
currently applicable, the interpreter loops and waits until the mental state changes by
means of external events. The details of the interpreter algorithm can be found in [10].

1 In practice, probably additional handling of special character classes would be necessary.



Algorithm 1 run(σ0,P)
σ = σ0

loop
ρ = {(φ −→ ψ) ∈ P|σ |= φ}
if ρ 6= ∅ then

non-deterministically choose (φ −→ ψ) ∈ ρ
σ = σ ⊕ ψ

end if
end loop

We assume here, that the selection function which chooses the rule to be applied
from the set of all applicable rules conforms to a fairness condition (inspired by a
similar weak-fairness condition in GOAL [5]):

Condition 1 (fairness condition) It is not the case that for a given computation run
Comp(σ0) a rule r ∈ P is always applicable from some point in time on and never
selected for the execution.

An interpreter as described above is inherently non-deterministic. It is desirable to
allow a programmer to secure a higher degree of determinism in the rule selection, when
needed. To this end, we introduce in Subsection 3.1 a simple syntactic extension of the
core language facilitating a finer grained control of the rule selection mechanism.

Note also, that our core language is intentionally oversimplified. For the sake of
clarity, we did not introduce variables in transition rules and we also define only atomic
updates without chaining of update formulas. Although these trivial extensions semanti-
cally enhance the language and in practice would be crucial for a practical use, they are
not important within the scope of this paper. For introducing such language features we
refer to [11], where we introduced them to a language similar to the one discussed here.
We also discuss the problems following from introducing variables to the language in
Section 5.

Example 1. (stock exchange agent) Consider an agent managing its user’s stock port-
folio. Given a mental state implementation in a Prolog-like language, a simplified pro-
gram for buying the title MSFT might look like the following:
when [{ wants(MSFT) }] and [{ price(MSFT)<avg(MSFT,12h) }]
then [{ act(issue_order(buy(MSFT,10))) }] ;

when [{ price(MSFT)<max(MSFT,180d) }] and [{ price(MSFT)<avg(MSFT,7d) }]
then [{ introduce_goal(wants(MSFT)) }] ;

The agent buys the stock MSFT when it knows it wants it and its price falls under
the last 12 hours average. Similarly, when the price of the stock is low, according to the
agent’s analysis, it introduces a desire to buy the stock.

3 Extensions

The core programming language as it is defined in the previous section is still quite
rigid. It is hardly imaginable for a programmer to easily manipulate an unstructured



and possibly huge set of reactive rules. Therefore, in this section we propose several
extensions of the core language enhancing the flexibility in structuring the source code
of an agent program.

To introduce various programming language extensions we follow the tiered ap-
proach to design a programming language [8]. This leads to a layered language pro-
cessing structure: a core language interpreter and a compiler with integrated macro
preprocessor. The compiler translates programs written in an extended language, using
high level language features, into an equivalent program in the core language.

The tiered structure helps to maintain the simplicity and clarity of the programming
language semantics and at the same time allows further extending of the language. The
integration of a powerful macro language preprocessor allows a limited support for
custom-made language extensions.

Firstly, we introduce the abstraction of mental state transformer (mst) inspired by
the denotational view on an agent program. Then the “when-then-else” construct, ex-
tending the mental state transformer syntax, is defined. It facilitates structuring applica-
ble and not applicable rules. For both of these extensions we provide a detailed transla-
tional semantics into the core programming language, which should serve as a basis for
the language compiler implementation.

Secondly, we propose several extensions based on a macro expansion mechanism.
The most important one is the construction of a named mental state transformer, which
utilizes the previously introduced plain mental state transformer extension. Named
mental state transformers provide a powerful means for agent program decomposition
and modularization. To define the precise meaning of this construct, we also provide a
translation to denotational semantics of standard mst’s.

Finally, we mention several other, rather trivial, extensions based on macro expan-
sion, which show the way how to further enrich and simplify the programming language
syntax. More detailed description can be found in the extended version [10].

3.1 Core language extensions

Mental state transformers (mst) Denotational semantics of agent programs provides
a functional view on sets of transition rules: Any set of rules can be considered an agent
program of its own. Using this idea, we define a structural decomposition of an agent
program in subunits and provide means for composing them into compound structures.
According to Definition 7, a set of transition rules is a partial function, transforming a
class of mental states to another class of mental states by means of performing updates
on them. We call such a set of rules a mental state transformer (mst)2.

Obviously, by unification of two mst’s we obtain a new mst, which is defined over
a larger class of mental states than the two original ones. Similarly, by specialization of
all the query formulas of a set of transition rules, we again obtain a new mst defined
on a subclass of mental states of the original one. Hence the agent program source
code can be hierarchically structured in terms of compound structures, mst’s, which are
combined by means of generalization and specialization.

2 The name mental state transformer is inspired by a feature of the language GOAL [5]: how-
ever, the semantics is different.



Following the tiered specification approach, we first provide a modified syntax of
agent program and subsequently define a translational semantics into the core language
syntax, introduced in Subsection 2.3. For clarity, we also provide a constructive deno-
tational semantics (using EBNF).

<program> := <transformer>
<transformer> := <update> ";" |

"{" <transformer>* "}" |
"when" <queries> "then" <transformer> ";"

We get the extended programming language syntax by replacing the original def-
inition of <program> and adding the definition of <transformer> to the syntax
definition from Subsection 2.3. Obviously, the new syntax subsumes the old one. Defi-
nitions of <rules> and <rule> are obsolete and replaced by <transformer>.

Abstraction of mental state transformer provides a means for hierarchical nesting of
transition rules of the core language. A primitive mst specifies a single update operation
ψ. It is a shortcut for the fully expanded transition rule > −→ ψ, however it helps
translating the original syntax of transition rules to that of mst’s.

Definition 8. (mst: translational semantics) Let τ be a mental state transformer. Then
τ is said to be an agent program with mental state transformers and the corresponding
core language program P is constructed as follows3:

1. iff r ∈ τ is <update> , then “when true then r” ∈ P ,
2. iff r ∈ τ is a plain transition rule of the form “when Q then U”, where Q and
U are <queries> and <update>, then also r ∈ τ ′,

3. iff r ∈ τ is “when Q then τ ′” where Q is <queries> and τ ′ is a plain set of
transition rules, then for each rule r ∈ τ ′ of the form “when Q′ then U ′” a rule
“when Q and Q′ then U ′”∈ P . Q and U are <queries> and <update>
respectively.

For multiply nested mst’s, the transformation, specified by Item 3 should be performed
bottom-up from the innermost nesting, which contains either a simple update, or a set
of plain transition rules. A corresponding denotational semantics for mst’s shows how
the original notion of agent program is reconditioned.

Definition 9. (mst: denotational semantics) Let L be a language of mental states. A
mental state transformer τ is then characterized by a partial function over mental states
F as follows

1. primitive mst τ = {φ −→ ψ} is characterized by F(σ, ψ) = UpdateL(ψ, σ),
where ψ ∈ LU , φ ∈ LQ and the rule φ −→ ψ is applicable in σ ⊆ L. The
application domain of F is ΣF = {σ|σ |= φ}.

2. if mst τ ′ is characterized by F ′ and φ ∈ LQ is a query formula, then mst τ =
{φ −→ τ ′} is characterized by partial function F(σ, ψ) = F ′(σ, ψ) with corre-
sponding application domain ΣF = {σ|σ ∈ ΣF ′ ∧ σ |= φ}.

3 For better readability, we omit the syntactic sugar w.r.t. the language EBNF.



3. if mst’s τ ′and τ ′′ are characterized by F ′ and F ′′ correspondingly, then mst τ =

τ ′ ∪ τ ′′ is characterized by F(σ, ψ) =

{
F ′(σ, ψ) if σ ∈ ΣF ′

F ′′(σ, ψ) if σ ∈ ΣF ′′
with the corre-

sponding application domain ΣF = ΣF ′ ∪ΣF ′′ .

A simple rule is a primitive mst (Item 1). Primitive elements can be combined to com-
pound mst’s by means of generalization (Item 3) and specialisation (Item 2). Note, that
according to Definition 8, Item 1, a simple update formula ψ serves as a shortcut for a
trivial rule > −→ ψ: a plain update formula is the most primitive mst.

An agent program is also a mst. The concept of mental state transformer provides
a functional view on an agent program as composed of conceptually encapsulated sub-
units, which are again composed of lower level subunits (mst’s) of the same type.

When-then-else When in a given mental state several transition rules are applicable,
the interpreter is supposed to non-deterministically choose one of them. A developer
might need to restrict and narrow the choice of the interpreter’s selection function. In
the core language, this can be done by writing complex queries, so that the number of
applicable rules in a certain mental state is minimized and in turn, the number of states
in which a rule is applicable is minimized as well.

The abstraction of the mental state transformer introduced nested rules, allowing a
developer to restrict the scope of applicability of the inner rule by the query of the outer
one (“when-then” construct). As we already said above, according to its validity, a
query divides a set of mental states to two classes. By a trivial extension of the “when-
then” construct to handle also the “-else” branch, the programmer gets a means to
specify mental state transformers for both of them. This helps to narrow the interpreter’s
choice using a compact syntax.

<transformer> := "when" <queries>
"then" <transformer>
"else" <transformer>

Definition 10. (mst: translational semantics cont.)

4. iff r ∈ τ is “when Q then τ ′ else τ ′′ ”, where Q is <queries> and τ ′, τ ′′

are plain sets of transition rules, then for each rule r ∈ τ ′ of the form “when Q′

then U ′” a rule “when Q and Q′ then U ′”∈ P . Similarly for each rule
r ∈ τ ′′ a rule “when ¬Q and Q′ then U ′”∈ P . Q′, U ′ are <queries>
and <update> respectively.

By introducing sequences of nested rules of the form “when Q1 then τ1 else
when Q2 then . . . else when Qn then τn;” a programmer gradually restricts
the choice of the interpreter using a compact syntax without annoying repetitions. An
interesting consequence of using “when-then-else” construct is that the program can be
read in a sequential way, although it is not sequential in nature.

Example 2. (stock exchange cont.) We modify the agent program from Example 1 to
drop the goal to buy stock when there is a market turmoil going on. Otherwise it should
behave as in Example 1.



when [{ news(’overtake’)>2 }] and [{ avg(DOW,5h)<0.70∗avg(DOW,2d) }]
then [{ drop_goal(wants(MSFT)) }]
else { %% Example 1 code %% } ;

Market turmoil is defined as a state, when at least two news about a company over-
take arise and market index average in the last five hours falls more than 30% under the
last two days average. Note, that in the core language, the equivalent program would
require three separate transition rules.

3.2 Macro extensions

As we already indicated at the beginning of this section, we propose integrating a macro
language into the compiler. In the following, we introduce several extensions exploiting
a macro expansion. In practice we have in mind employing a robust macro preprocessor
like e.g. GNU M44.

Named mental state transformers The concept of a plain mst introduced modularity
into an agent program, however it does not allow an easy re-use of already defined
mst’s in different contexts of the agent program. The extension to a named mental state
transformer provides a means to re-use previously defined mst’s in different contexts of
an agent program. A label (handle) of a named mst serves as a placeholder for it. It is
expanded into a full-fledged code by a macro preprocessor.

Again, following the tiered approach, we first provide a syntactical specification
followed by a detailed translation of named mst into the denotational semantics of plain
mst. The syntax of the programming language is extended by the following EBNF:

<program> := <trans_def>* <transformer>
<trans_def> := "define" <identifier> <transformer>
<transformer> := <identifier>

<program> is again redefined, and the rest of the definition extends the previous
ones. <identifier> should be a unique label, distinct from the already introduced
keywords like query, update etc. A straightforward denotational semantics of the
extended definition of agent program in terms of simple mst’s follows.

Definition 11. (named mst: denotational semantics) A modified mst construct is de-
fined by adding the following to Definition 9: Let τ be a mst and label is a unique
identifier (<identifier>), then (label , τ) is a named mst definition.

5. If (label , τ ′) is a named mst definition and τ ′ is characterized by a partial function
F ′, then mst τ = {(label)} is characterized by F(σ, ψ) = F ′(σ, ψ) with the
application domain ΣF = ΣF ′ .

Note, that because the Definition 11 is an extension of the Definition 9 also mst of the
form φ −→ (label) is a well formed mst defined as a specialisation of mst (label) by
the query formula φ.

4 http://www.gnu.org/software/m4/



Now we provide a translation of the extended mst construct to the plain mst as
defined in Definition 9.

Definition 12. (expanded mst) Let L be a language of mental states, Γ be a set of
named mst definitions in L and τ be a mst. We define Exp(τ), the expansion operator:

Exp(τ) =


τ if τ = {φ −→ ψ}, where φ ∈ LQ, ψ ∈ LU

{φ −→ Exp(τ ′)} if τ = {φ −→ τ ′}, τ ′ is not primitive and φ ∈ LQ⋃
τ ′∈τ Exp(τ ′) if τ is a union of several mst’s

Exp(τ ′) if τ = (label) and (label , τ ′) ∈ Γ

Now the expansion fixed point is as usual: Exp0 (τ) = τ , and Expi+1(τ) =
Exp(Expi(τ)). The expanded mst τe, corresponding to τ , is a fixed point of the Exp
operator. I.e. such a mst τe, for which ∃i ≥ 0, so that τe = Expi(τ) = Expi+1(τ).

The semantics of an agent program P = (Γ, τ) with a set of named mst definitions
Γ is that of the expanded mst τe corresponding to τ w.r.t. Γ .

The expansion operator Exp simply replaces all the labels by their corresponding con-
tent according to their definitions. For an agent program to expand correctly, each label,
used as a placeholder for a mst, has to be previously defined in the agent program P as
well. Recursive schemata of mst “calls” do not correctly expand into a simple program
without labels, because the fixed point w.r.t. Exp operator, does not exist for them. Re-
cursive applications of named mst’s in the agent program, if allowed, would also lead
to infinite query evaluation5.

Note also, that due to uniqueness of labels of named mst’s, there is at most one fixed
point of Exp operator for any program P = (Γ, τ). Obviously not all agent programs
with syntax extended to named mst’s have a semantics accroding to Exp expansion
operator. This might happen when the program uses recursive application of a named
mst, or when it uses a previously undefined mst w.r.t. given Γ .

Named queries, code templates and more To conclude our tour through gradual ex-
tensions of the core programming language, we finally sketch several simple extensions,
which further enrich the language and stand as an inspiration for implementation of the
language compiler.

As we already mentioned several times above, queries in transition rules can be seen
as mental state classifiers. It might be practical to re-use these classifiers in different
contexts and specialize them in different parts of an agent program. For that, we can
again use the macro expansion facility of the language compiler. A named query can be
viewed as an abbreviation for a complex query formula:

<query_def> := "defineq" <identifier> "{" <queries> "}"
<query> := <identifier>

5 Except for external events, which we abstract from, a mental state cannot be changed unless an
update is performed. In turn, this cannot happen either, because the interpreter cannot properly
perform a query on it.



This definition again extends the definition of the core language syntax introduced
in Subsection 2.3. We assume unique query abbreviation identifiers. A formal definition
of named query expansion is similar to that of named mst: our comments w.r.t. recursive
application and the existence of fixed points of the expansion operator apply as well.

Many more trivial extensions based on macro expansion can be introduced. We
only briefly list some of those, which we believe contribute to improving the coding
experience using a reactive rule based programming language, such as the one defined
here. Named updates, or definition of re-usable modules, consisting of several named
mst’s, with features resembling name spaces, will further enhance modularization of
an agent program. Parametrized macro definitions and their further extensions to syn-
tactical constructs resembling lambda-calculus of Lisp will lead to implementation of
re-usable code templates, similar to those of C++.

We conclude this section with an example sketching a part of an agent program
using some of the features above.

Example 3. (stock exchange cont.) Parametrized mst definitions allow us to reformu-
late and modify the code from Example 2 to implement specific strategy w.r.t. certain
stock title. Different variants of strategies for different stocks can be used in different
situations. Use of a named query definition further improves the code readability as
well.

define careful_strategy(TITLE) {
when [{ wants(TITLE) }] then [{ drop_goal(wants(TITLE)) }] ;

}
define opportunistic_strategy(TITLE) {

%% Adapted code from Example 1 %%
}
defineq market_turmoil {

[{ news(’overtake’)>2 }] and [{ avg(DOW,5h)<0.70∗avg(DOW,2d) }]
}
. . .
when market_turmoil then {

careful_strategy(APPL);
careful_strategy(MSFT);

} else {
opportunistic_strategy(APPL);
opportunistic_strategy(MSFT);

}

The last rule clearly summarizes the meaning of the whole program in a very com-
pact and easily readable statement.

4 Discussion and related work

Reactive planning is an important paradigm that led to implementations using reac-
tive rules in languages like AgentSpeak(L) [12,2], 3APL [6,4], GOAL [5], or the one
introduced here.



Interpreters of these languages in every step select a rule and then execute it w.r.t.
semantics of the particular language. In general, in each cycle the interpreter consid-
ers a set of rules independently of the previously selected and executed rules (doing
some bookkeeping within the internal structure of agent’s mental state). The resulting
agent system is then able to flexibly react to events and exceptional situations without
reconsidering its previous actions.

However, designers of an agent oriented programming language face a very difficult
problem: Such a reactive architecture of an agent program clashes with the traditional
sequential and imperative view on the program code.

We argue, that the functional view on an agent program

1. can be appropriately represented by an abstraction called mental state transformer,
2. has a potential to become a basis for a powerful abstraction useful for conceptual

decomposition of an agent program into functionally encapsulated subunits (higher
level units "call" lower level ones, which allows structuring the agent program into
several conceptually separated layers), and

3. is particularly appropriate in the context of programming languages for agents with
mental states.

Instead of considering an agent program as a specification of all the paths along which
the agent system is allowed to evolve within its transition system, this abstraction shifts
the programming style to consider different contexts in which the agent might be in.
Each such context forms a subspace of the agent’s transition system and it might again
consist of a number of smaller subspaces, in each of which the agent performs a differ-
ent behaviour, i.e. different mental state update.

The concept of mental state transformer favours this subspace-nesting view on the
specification of an agent system by nesting queries of transition rules, finally result-
ing in a mental state update. In the previous sections, we tried to demonstrate how this
view can be used to conceptually decompose an agent program into functionally en-
capsulated subunits. We stress, that this work should be perceived more as a basis for
further development of strong abstractions for agent oriented programming, rather then
an ultimate solution of this problem.

Most probably, 3APL [6,4] is the rule based language which received the most at-
tention w.r.t. agent program modularity. Recent works by Dastani et. al. [3] and by van
Riemsdijk et. al. [14] introduce a semantically oriented modularity to 3APL. In [3] the
authors formalize a notion of role, grouping together beliefs, goals, plans and reasoning
rules of a BDI agent. A role can be enacted, or deacted at run-time. The whole process
is handled by 3APL’s deliberation cycle.

In [14], the authors introduce a concept of goal oriented modularity for 3APL. It
is based on decomposition of a set of practical reasoning rules of a BDI agent into
modules, according to goals they help to achieve. A module can be called within a rule
to achieve a subgoal in the context of a plan. When the subgoal is achieved, the control
returns back to the context from which the module was called. This resembles a stack of
routine calls in procedural languages. Implementation of both of these 3APL extensions
requires modification of 3APL’s semantics and the language interpreter.



Both role and goal oriented approaches to modularize an agent program are based
on particularities of the internal structure of agent’s mental state, namely BDI architec-
ture. As our approach introduces a functional modularity, supported by purely syntactic
extensions of the language, they can be seen as orthogonal to ours and, we believe, can
be combined. A combination of modularization of practical reasoning rules, based on
the abstraction of mst’s, within the role, or a goal oriented module, can lead to a finer
grained structuring of agent programs.

In [7] plan patterns for programming declarative goals in AgentSpeak(L) ([2]) are
introduced. While their approach is similar to ours in that it exploits a macro preproces-
sor as well, in [7] the authors describe use of this mechanism only for implementation
of code templates, similar to those we discuss in Subsection 3.2, for handling various
types of goals. In this paper, we propose a functional view of an agent program, em-
bodied in the concept of mental state transformer, which has an ambition to become a
basis for further development of code templates implementing also agent’s behaviours,
or roles.

Finally, according to our personal communication with Koen V. Hindriks, there’s an
ongoing work on policy based modularization of GOAL [5].

IMPACT [13] and Modular BDI architecture [11] introduce a vertical modularity to
agent programming. The programming language in which a developer encodes how an
agent system should move from one mental state to another using updates, is in these
approaches independent of the internal structure of agent’s mental states. A program-
mer is free to choose a knowledge representation technique to employ and develop the
agent’s mental state representation in it. She can also agentize 3rd party legacy code
like e.g. mainstream database systems. These two approaches inspired the design of our
core programming language. It allowed us to study modularization of an agent program
independently of intricacies of the architecture of an agent’s mental state.

This paper is an attempt to engineer a practical syntax for the Modular BDI archi-
tecture introduced previously in [11]. A more thorough discussion on applicability of
our approach to other agent oriented programming frameworks is given in [10].

5 Conclusion and future work

The contribution of this paper is an attempt to give an answer to the following question:

Given an (unstructured) agent language based mainly on reactive rules, how
can the syntax be extended so that important features allowing code re-use,
modularization and the like are available?

To this end we introduced a novel abstraction: the mental state transformer.
We did not yet touch the important issue of variables in our language. Using vari-

ables broadens our approach significantly and enhances its applicability. The problem
with allowing variables in the rules, is that the implementation of the notion of named
mst using macros is not sufficient any more. In such an extended language the name
scope of variables has to be considered, i.e. variables used in named mst, should be
local to that mst. A customized macro preprocessor, which handles local variables has
to be used in such a case. We are currently developing such preprocessor.



While we discussed in this paper only the theoretical basis, we are currently working
on an implementation of an interpreter-compiler stack for the programming language
similar to the one proposed here. We hope to refine some of the extensions of the lan-
guage using macro expansion and to experiment with the resulting language, in order to
put the abstraction of mst’s to a test. As the structural decomposition, introduced in this
paper, leads to a new programming style, it is necessary to prove the usefulness of the
presented language in practice by developing a non-trivial agent system application.

Finally we would like to thank several anonymous referees for their careful reading.
Their comments helped to improve this paper a lot.

References

1. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni. Multi-Agent
Programming Languages, Platforms and Applications, volume 15 of Multiagent Systems,
Artificial Societies, and Simulated Organizations. Kluwer Academic Publishers, 2005.

2. Rafael H. Bordini, Jomi F. Hübner, and Renata Vieira. Jason and the Golden Fleece of
Agent-Oriented Programming, chapter 1, pages 3–37. Volume 15 of Multiagent Systems,
Artificial Societies, and Simulated Organizations [1], 2005.

3. Mehdi Dastani, Birna van Riemsdijk, Joris Hulstijn, Frank Dignum, and John-Jules Ch.
Meyer. Enacting and deacting roles in agent programming. In James Odell, Paolo Giorgini,
and Jörg P. Müller, editors, AOSE, volume 3382 of Lecture Notes in Computer Science, pages
189–204. Springer, 2004.

4. Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Meyer. Programming Multi-Agent
Systems in 3APL, chapter 2, pages 39–68. Volume 15 of Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations [1], 2005.

5. Frank S. de Boer, Koen V. Hindriks, Wiebe van der Hoek, and John-Jules Ch. Meyer. Agent
programming with declarative goals. CoRR, cs.AI/0207008, 2002.

6. Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer. Agent
Programming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

7. Jomi Fred Hübner, Rafael H. Bordini, and Michael Wooldridge. Programming declarative
goals using plan patterns. In Matteo Baldoni and Ulle Endriss, editors, DALT, volume 4327
of Lecture Notes in Computer Science, pages 123–140. Springer, 2006.

8. Bertrand Meyer. Introduction to the Theory of Programming Languages. Prentice-Hall,
1990.

9. Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone, editors. 5th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006),
Hakodate, Japan, May 8-12, 2006. ACM, 2006.

10. Peter Novák and Jürgen Dix. Adding structure to agent programming languages. Technical
Report IfI-06-12, Clausthal University of Technology, 2006.

11. Peter Novák and Jürgen Dix. Modular BDI architecture. In Nakashima et al. [9], pages
1009–1015.

12. Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.
In Walter Van de Velde and John W. Perram, editors, MAAMAW, volume 1038 of Lecture
Notes in Computer Science, pages 42–55. Springer, 1996.

13. V. S. Subrahmanian, Piero A. Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus, Fatma Ozcan,
and Robert Ross. Heterogenous Active Agents. MIT Press, 2000.

14. M. Birna van Riemsdijk, Mehdi Dastani, John-Jules Ch. Meyer, and Frank S. de Boer. Goal-
oriented modularity in agent programming. In Nakashima et al. [9], pages 1271–1278.


