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1 Multi-robotics in urban warfare

Since late 90’s of the last century, rapid advances in technology, mechanical engi-
neering, miniaturization, telecommunications and informatics enabled development
and routine deployment of sophisticated robots in many real world domains. Besides
many applications in assembly industry, e.g., in car, or electronics assembly lines,
defense organizations, together with space exploration and mining industries belong
to the most demanding and optimistic users of robotic technology [23]. Especially in
the military domain we nowadays witness a routine deployment of robotic assets in
the field. Some of the popular examples of such robots include unmanned aerial ve-
hicles/systems (UAV/UAS), be it conventional fixed-wing aircrafts (CTOL - a con-
ventional take-off and landing vehicle), various rotorcrafts, such as single, or multi-
rotor helicopters (VTOL - a vertical take-off and landing vehicle), autonomous un-
derwater vehicles (AUV), unmanned cars (UGV - a unmanned ground vehicle), or
unattended ground sensors (UGS), such as various acoustic, seismic and chemical
sensors, or cameras. Various size and equipment classes of such robots are used in
tactical, law enforcement or rescue operations for tasks, such as security surveil-
lance of urban areas, firefighting, or providing situational awareness, mapping and
exploration of areas stricken by natural disasters, or tasks in dangerous work en-
vironments, such as stabilization of damaged nuclear reactors after an earthquake.
The robots are usually performing either manipulation tasks, or provide situational
awareness to human task forces by information collection, such as continuous video
streaming, acquiring static imagery or analysis of chemical, or nuclear hazards [17].

Even though we recently witnessed rapid advances in control of robots in scenar-
ios such as e.g., autonomous cars [24], or service robotics [32, 6], the state of the
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art in high-level control of robotic assets still relies mainly on teleoperation. Some
of the high-profile examples of such deployed systems used by military and law
enforcement are the surveillance drones providing imagery and video streams from
operation theaters [30], or robots dealing with relief operations in damaged nuclear
power plants [15].

While teleoperation is a very effective method of robot control in many scenarios,
it does not scale well with the increasing number of deployed assets. One of the
most important problems arising in situations where a larger number of cooperating
robots is needed to successfully accomplish a joint mission are the limits of the
employed resources. A single operator is capable to directly control only a relatively
small number of robots. Thus with increasing number of deployed assets, direct
control of robots by humans becomes too costly in terms of human resources. In
result, scaling the number of robots requires larger numbers of human controllers,
what finally raises also financial and logistical costs of such operations.

One of the natural solutions to the problem of high-level control of multi-robot
teams is a significant increase of the level of autonomy of the individual robots,
as well as the multi-robot team itself. I.e., instead of resting on a human operator,
the tedious lower-level decision making and control (e.g., movement in a terrain, or
camera pointing, simple task planning, etc.) should be shifted on board to the robot
itself and the human operator should only take care of tasking the multi-robot team
and oversee the mission execution. The working hypothesis underlying the solution
is that

a single operator is capable to task and oversee even a relatively large multi-agent teams
comprising of highly autonomous robots which require human intervention only rarely, es-
pecially when facing crucial choices in execution of the joint team mission.

Agent Technology Center (ATG) at the Department of Cybernetics of the Czech
Technical University in Prague is one of the leading research groups in innovative
industrial and research applications of multi-agent systems. Besides other research
topics, one of the major realms of its activities is research and proof-of-concept
prototyping in the field of mid and large scale simulations of multi-robot systems.
In this area, ATG focuses primarily on teams of autonomous aircrafts and ground
vehicles. In this chapter we present a cluster of completed projects Tactical Agent-
Fly and Tactical AgentScout, as well as outline the core objectives of an on-going
follow-up project AgentFly-In-Air. All these projects aimed at investigation of co-
operation and coordination issues in multi-robot teams either carrying out tactical
missions in urban warfare scenarios, or providing information collection support to
human troops on the ground in such environments. The particular objectives and
foci of interest of the projects were organically evolving over time spanning the
years 2008–2011. However, the specifications of the individual workpackages and
their respective delivered demonstrators provide a set of high-level design require-
ments on an underlying technological infrastructure.

The main contribution of this chapter is an account of architectural and tech-
nological issues related to development of the multi-agent platform and simulation
subsystems for the project cluster. The underlying storyline revolves around the ar-
chitectural shifts during the project development caused by gradual extensions of
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the technology, as well as incorporation of often conflicting application require-
ments over time. In essence, these can be characterized as a move from a general-
purpose MAS platform imposing a specific MAS philosophy towards a more lib-
eral component-based architecture in terms of a toolkit for rapid construction of
application-specific fragmentary MAS platforms and applications.

In this respect, firstly, Section 2 provides an overview of the research objec-
tives of the twin projects. Subsequently Section 3 discusses the initial analysis of
the approach to design of the underlying multi-agent technological infrastructure.
Section 4 gives a more detailed account of the completed projects, the approaches
we took to tackle them, as well as the evolution of the underlying technological
infrastructure and the involved toolkits. Critical analysis of the technological infras-
tructure evolution provided in Section 5 highlights the main lessons we learned in
the course of the work on the twin projects. Finally, Section 6 concludes the chapter
by an outlook to the open issues and challenges for the broader MAS community
involved in development and testing of various decentralized algorithms ultimately
targeted for multi-robot systems embedded in real hardware.

Sections 3, 4 and 5, the three core sections of the presented chapter are all struc-
tured in a similar manner and subsequently discuss the main aspects of the imple-
mented system. Namely the issues of simulation and environment modeling, fol-
lowed by tackling the problems involved in experimental evaluation of the research
algorithms under investigation, together with configuration of simulation scenarios.
Subsequently, we discuss topics in mechanisms for agent deliberation and behavior
implementation and conclude by treatment of the issues in simulation visualiza-
tion and user interfaces. The recurrent structure provides scaffolding for the main
storyline of the chapter, the evolution of various aspects of the technological plat-
form underlying the Tactical AgentFly and Tactical AgentScout project cluster
over time.

2 The project cluster: Tactical AgentFly, Tactical AgentScout

In the course of the years 2008–2011, Agent Technology Center was (and still is)
involved in a continuous interaction with CERDEC, ONR and AFOSR, the research
and development departments of U.S. Army, Navy and Air Force. Over time, these
interactions resulted in formulation of several research problems stemming from the
real needs of military units carrying out tactical missions on the ground and their
usage of advanced robotic and sensory technologies, such as various aerial drones,
especially the class of man-portable small unmanned fixed-wing aircrafts, various
rotorcrafts and unmanned ground vehicles. In particular, some of the most promi-
nent problem topics included area exploration, surveillance, tracking of mobile tar-
gets, patrolling and teamwork coordination in structured heterogeneous multi-agent
teams. The work towards investigating these research issues produced a number of
technological challenges, which had to be solved and implemented using an under-
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Fig. 1 Visual impression of Tactical AgentFly simulated environment

lying technological infrastructure providing the basis for development of prototypes
demonstrating the proposed research approaches.

From technological perspective, the common character of the here described
projects is that the deliverables take the form of executable demonstrators showcas-
ing behaviors of algorithms for coordination of teams of robotic aircrafts, ground ve-
hicles and human troops in synthetic simulated scenarios of tactical urban warfare.
Besides the capability to empirically and reproducibly evaluate the performance of
the developed algorithms, the simulations must come with rich visualization com-
ponents. One one hand, rich visualizations plausibly demonstrate that the behavior
of the robots complies with their realistic limitations, such as sizes, weights, speeds,
physical motion dynamics, and physical properties of the environment. On the other,
they also help to facilitate dissemination of the results beyond the particular spon-
soring partner organization to non-expert audiences. In a consequence, the form
of the projects’ deliverables frames the more detailed technological requirements
stemming from the research objectives of the projects. In this section we provide
an overview of the research issues of the individual phases of the projects Tactical
AgentFly and Tactical AgentScout.

2.1 Tactical AgentFly

The objective of the TACTICAL AGENTFLY project was to develop basic agent-
based techniques for controlling a group of autonomous UAVs performing informa-
tion collection in support of tactical missions. The emphasis was on accurate mod-
eling of selected key aspects occurring in real-world information collection tasks, in
particular physical constraints on UAV trajectories, limited sensor range and sensor
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occlusions occurring in spatially-complex environments. The ultimate goal was to
provide a high-level interface through which the operator can control a fleet of UAVs
and assign high-level tasks to the multi-robot team. The task allocation to individ-
uals UAVs itself, as well as planning of their optimum trajectories was performed
automatically by the multi-agent team. The specific objectives of the project were
the following:

Formal framework: we had to design a framework for formal specification of the
information collection problem, serving as a common reference point for the rest
of the project. In particular, we were asked to investigate the concept of an in-
formation collection task, including task constraints and task objective functions,
which formed a basis for evaluation of the developed algorithms.

Persistent area surveillance: we investigated mechanisms for control of operation
of teams of UAVs providing and maintaining an up-to-date operational picture
of a designated target area. A key feature of the developed surveillance algo-
rithms is their respect for UAV’s motion constraints and the ability to provide
full area coverage even in environments affected by sensor occlusions, such as
narrow streets between tall buildings. The results of this research track have been
published in [28].

Target tracking: we were exploring the mechanisms to control the operation of
an UAV providing continuous tracking of one or multiple mobile ground targets,
respecting the UAV’s motion constraints.

Information collection testbed: an important objective was to develop an extensi-
ble software platform for implementing, simulating and evaluating various UAV
control mechanisms explored in the project. It had to contain a detailed model
of the urban environment, a model of the UAV’s on-board camera and a behav-
ioral simulation of several types of ground entities. A simulation of a multi-stage
search-and-capture mission was to be prospectively implemented as well in order
to enable evaluation of information collection mechanisms on a real-world-like
scenario. The testbed had to provide intuitive real-world-like 3D visual output
allowing the presentation of the project results outside the strictly technical com-
munity.

Command and control (C2) user interface: we had to develop an integrated C2
system for mixed-task information collection. Such a system was to provide an
additional level of automation on top of the autonomous surveillance and track-
ing control mechanisms. It should have consisted of two parts. Firstly, a C2 panel
through which the operator can specify information collection tasks and inspect
their results, and secondly, an allocation algorithm which optimally allocates a
mix of concurrent information collection tasks between a group of UAVs.

After the project’s first phase was completed, we were awarded a follow-up project,
during which we moved from the basic coordination algorithms for teams of fixed-
wing UAVs towards more advanced techniques applied in heterogeneous teams. The
main research objectives were the following:

Modeling Vertical Take-off and Landing (VTOL) Assets: we had to extend the
existing platform and enable integration of various types of VTOL UAV assets
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(helicopters, quadrotors, etc.). The second major research objective of the project
was to propose and develop suitable algorithms for trajectory planning of VTOL
assets and integrate them with the VTOL model. The resulting algorithms have
been presented in [10, 11].

M×N tracking: we focused on investigation of algorithms for tracking larger num-
bers of mobile targets by relatively small teams of aerial assets. One of the aims
was to investigate the methods of maximizing persistence of tracking of the ob-
jects and identifying how many assets are needed in different types of tracking
scenarios. Concretely, this research led to investigation of techniques for intelli-
gent target tracking task hand-over between multiple UAVs. The results of this
research track are discussed in [31].

Coordination for mixed information collection activities: in this workpackage, we
aimed at studying mutual interactions between simultaneously performed hetero-
geneous information collection tasks. For this we had to i) extend the range of
considered information collection task types with additional classes, in partic-
ular exploration and search, and ii) study the theoretical interactions between
mixed/heterogeneous information collection tasks performed simultaneously. In
particular, the idea was to investigate the problems arising from automated tech-
niques facilitating transparent switching between different information collection
tasks, such as switch from surveillance to target tracking and back.

Mission-centric/oriented information collection: the final objective of the second
phase of the Tactical AgentFly project was to further extend the integrated co-
ordination for mixed information collection. That is, the task was to propose
techniques for a team of UAVs performing information collection tasks, however
taking into account the plans of special operation units carrying out their own
mission on the ground in the town, so that the information needs of the mission
are optimally covered. The activity aimed at research and possibly prototyping
efforts towards considering temporal development and dependencies between the
individual information collection tasks as the mission progresses.

2.2 Tactical AgentScout

TACTICAL AGENTSCOUT project started as a branch of TACTICAL AGENTFLY
project that aimed at integration of aerial information collection with various types
of ground robotic assets. The foci of the project were on multi-agent planning and
task-allocation problems. The proposed solutions were to be demonstrated in a sim-
ulated tactical scenario taking place in a complex urban environment defined by
an a priori known street map. Furthermore, the environment included various 3D
terrain features, as well as buildings. Finally, the the environment should contain a
number of road blocks on the street map, which however were not a priori known to
the multi-robot team. The goal was to find a safe and effective path for a convoy to
traverse the urban environment. The task of the team of autonomous UGVs was to
cooperatively support the convoy by continuous exploration of the area and search
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Fig. 2 Visual impression of Tactical AgentScout simulated environment

for the road blocks on the way of the convoy. The information about the discovered
obstacles is then communicated to the convoy and can be used to update its plan. In
particular, the project included the following research topics:

Integration of various ground units: the main planned contribution of the Tacti-
cal AgentScout project was to enable integration of various autonomous ground
robots into the existing platform. In particular, the challenge was to plausibly
model the physical dynamics of the assets within the simulation.

Planning under uncertainty: the flight trajectory planning algorithms for UAVs
as used in Tactical AgentFly assumed reliable execution of the generated plans.
In the domain of ground vehicles, we deemed such an assumption too strong. The
goal was to develop a path planner for UGVs that is able to efficiently control the
vehicle also in dynamic, uncertain environments. To evaluate such a planner, we
aimed to simulate the UGVs using physically realistic models that let us generate
some of the problematic real-world phenomena such as tire spin, vehicle mass
momentum, limited engine power etc.

In a follow-up project we moved towards more advanced techniques studying var-
ious aspects of adversarial and cooperative behaviors in dynamic environments.
Specifically, the project addressed the following research challenges:

Patrolling of mobile targets: a complementary task to tracking a number of mo-
bile adversary targets is the protection of mobile ground units against attacks
from enemy units. The motivating scenario is an urban environment with a num-
ber of convoys passing through an area which should be protected by a small
mixed team of aircrafts, e.g., helicopters and small fixed wing aircrafts. In such a
scenario, it is vital for the patrol to execute a non-predictable patrolling strategy.
The opposite would allow the adversary to optimize with respect to the patrol’s
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strategy and attack the convoy in the worst timepoint, e.g., when the patrol just
left the convoy it protects. The solution was use of randomized strategies which,
however, still maintain certain average frequency of visits of each protected con-
voy. The research objective was to develop algorithms for computation of opti-
mal strategies for protecting of mobile targets in adversarial environments. The
resulting method has been published in [7].

Smart targets modelling: the mobile target tracking techniques as proposed in the
Tactical AgentFly project paid no attention to intelligence of the tracked targets.
As an extension, in this project we considered smart targets, i.e., such which ac-
tively monitor their environment and optimize their behavior to act with respect
to the information they acquire. Smart targets, when being tracked, are aware
of that fact and actively try to avoid the tracking unit. Complementary, we con-
sider trackers (be it UAVs, VTOLs, UGVs, or personnel) to be aware of the fact
that the tracked targets are aware of their activities and try to act in best re-
sponse to the whole setup. The objective here was to propose and solve a formal
game-theoretical model of pursuit-evasion scenario with heterogeneous teams of
agents.

Multi-agent re-planning and plan repair: classical-style planning is not robust with
respect to unexpected events occurring in dynamic environments. The standard
solution, in such cases, is to simply re-plan the agent’s behavior from scratch.
While decentralized extensions of classical planning can be used to compute ac-
tivities of the individual team members, full-scale re-planning can become too
costly due to the costs of communication in multi-agent teams executing a de-
centralized planning algorithm. Thus, the objective was to formalize multi-agent
plan repair problem and devise and evaluate algorithms for solving it. An initial
version of the plan repairing algorithm has been presented in [22].

Coordination and teamwork: reactive planning is an alternative approach to deal-
ing with dynamics of environments. The state-of-the-art techniques of reactive
planning, however, do not support implementation of team-level behaviors. The
objective here was to extend an existing agent programming framework so that it
can accommodate techniques for team-level coordination specification in terms
of reactive plans executed jointly by the team members. In particular, we aimed
at implementation of the distributed commitment machines approach [33] in a
chosen agent-oriented programming language.

3 Analysis and design of the system

The general description of the individual research issues discussed in the previ-
ous section and their respective software demonstrators provides a comprehensive
overview of the various, often conflicting, requirements on the technological infras-
tructure for the Tactical AgentFly and Tactical AgentScout project cluster. The
overall goal of the technological side of the whole endeavor, the main topic of this
chapter, could be formulated as follows:
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Develop a set of software tools enabling rapid prototyping of a broad range of simulated
missions involving teams of autonomous robotic assets, as well as various situation sce-
narios in tactical urban warfare the robots are involved in. Furthermore, the toolkit must
allow for batch evaluation of performance of the algorithms governing the behavior of the
multi-agent teams in a range of configurations of the simulated scenarios.

In the core, the objective was to facilitate modeling and execution of various types
of robotic systems which i) feature heterogeneous physical capabilities, ii) employ
heterogeneous control algorithms governing their autonomy, and finally iii) are em-
bodied in simulated, but realistic physical environments. As already discussed in
the introductory section, the underlying hypothesis of the research work in the twin
projects was that a significant increase of autonomy of the individual robots and
the multi-robot team itself will lead to reduction of human resources involved in
the operation and monitoring of such teams. The stress on the autonomy of the in-
volved agents, such as various unmanned aerial or ground vehicles, directly induces
the remaining requirements usually ascribed to intelligent agents[34]. In particular
these include reactivity, proactivity and in our context especially social capabilities.
In result, the character of the problem directly correlates with the usual assump-
tions underlying the multi-agent paradigm. Hence the choice of the conceptual and
analytical framework for multi-agent systems, as well as the initial tools and plat-
forms for development of multi-agent systems became natural and straightforward.
Additionally, our hypothesis was that the inherent decoupling of entities accord-
ing to the multi-agent systems paradigm should open a way towards future porting
and deployment of the developed agent (simulated robot) control algorithms to real
hardware. We also hypothesized that the decoupling, i.e., the inherent modularity
of multi-agent systems will facilitate rapid prototyping of a broad range of simu-
lated scenarios involving heterogeneous multi-robot teams. It also should have have
options opened for rich modeling of environments these robots operate in. Finally,
the previous industrial development and deployment of multi-agent systems, as also
discussed in [3], provided ample argument in favor of future scalability of the de-
veloped multi-robot simulations to relatively large numbers of involved agents.

The remainder of this section provides a discussion of the initial analysis and
design consideration tackling the technological problem stated above. Subsequently,
we provide an overview of the technologies and platforms we initially chose for
implementation of the first phases of the project cluster. In Section 4 below we
discuss our experience with these technologies and how the evolution of the projects
over time led to reconsideration of our initial choices.

3.1 Initial system requirements

During the initial system analysis step of the first phase of the Tactical AgentFly
project, we identified a list of architectural and functional requirements on a techno-
logical infrastructure underlying the project implementation. These can be divided
into four groups subsequently discussed below. The structuring along the four as-
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pects of the technological infrastructure also provides a scaffolding for discussion
of the system evolution in time and its critical analysis in the subsequent parts of the
chapter.

3.1.1 Multi-agent platform

Given the argument in favor of application of multi-agent paradigm in the projects
and the stress on future potential for porting and deployment of the developed algo-
rithms to real hardware assets, there arises a need for a multi-agent platform. I.e.,
a software supporting modeling of the individual agents, execution and life-cycle
management of the multi-agent system as a whole and services of a communication
middleware, such as a white pages register and a discovery service. Due to the focus
on relatively small and mid-scale simulation scenarios involving dozens, possibly
low hundreds of agents and environment entities, the requirements on network and
CPU distribution and agent mobility agent mobility were not an important issues
in our projects. Finally, since organizational structuring and coordination of MAS
teams was the main research focus on the application level in the projects cluster, we
felt that binding to a particular MAS organization philosophy would be rather a bur-
den possibly interacting with the coordination techniques under investigation. Thus,
an a priori organizational model imposed by the MAS platform was undesirable.

3.1.2 Environment simulator and scenario modeling

A simulated multi-robot system must be embodied in a physical environment which
faithfully models a set of relevant aspects of the real physical reality in the simula-
tion. Thus, the technological platform should facilitate rapid development and con-
figuration of instances of simulated environments. First and foremost, such scenar-
ios comprise the physical structure and topology of the environment. In particular,
our focus on tactical military operations in urban terrain dictated ability to model
landscapes with realistic terrain, traffic infrastructure of small and medium urban
areas including buildings, roads and bridges. Finally, due to the focus on robots
physically interacting with the environment, such as unmanned ground vehicles,
we needed to realistically model their physical interaction with the environment in-
cluding phenomena of gravity, object masses and rigid body interactions. Due to
the need to demonstrate functionality and robustness of the developed coordination
mechanisms in various settings, the platform should provide means for straightfor-
ward configuration of the physical features of simulated environments in different
simulation instances.

The platform should also support clear cut interfaces between agents and the
environment. That is, the software interfaces for implementation of robots’ sensors
and actuators must be well defined so that i) the agents use unified style of such
interfaces across the whole application, and ii) in the case of future need, these
could be easily bridged to physical hardware sensors and actuators.
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3.1.3 Experiments and configuration

The main objective of the described projects is to investigate various types of coor-
dination mechanisms among agents belonging to teams of cooperative individuals.
Thus, besides proposing and developing such algorithms, the main task on the ap-
plication level is to perform empirical evaluation of their performance and measure
it against benchmark cases and alternative state-of-the-art methods. Running such
experiments en masse requires that the platform is capable of providing means for
batch execution of experimental setups in different configurations and enables to
collect the resulting data sets in a straightforward manner. Furthermore, to facilitate
reproducibility of the experiments, the experiments should be run in a deterministic
manner with pre-configured random generators if needed. Finally, since there might
be hundreds of such experiment scenario instances, the platform must be able to ex-
ecute them in parallel, as well as in faster than real-time speed. I.e., it must support
both modes of scenario execution: physical-time-speed mode, where one objective
second correlates with one second in the simulation; and it should be able to run at
the top use of the available resources, such as the CPU speed, operating memory
limit, etc.

3.1.4 Agent behavior control

On one hand, often in the project cluster experiment setups the individual behavior
of the simulated robots was rather rich beyond the particular coordination mecha-
nism under investigation. For instance, while an autonomous ground vehicle must
coordinate its plans for traversal of a given town street network with its peers, at the
same time it is responsible for local execution of those plans. Besides steering the
physical body of the robot and monitoring the progress of the plan execution, this
task also involves relatively complex behaviors for dealing with the issues which
were abstracted away by the planner. For instance, the plan would prescribe driving
through a sharp curve in a narrow street, but due to the physical limits of the vehicle
the car could end up stuck in the corner and must maneuver out of the place e.g., by
iteratively driving backwards and forwards.

On the other hand, the environment contains also actors, which are not in the
focal point of the multi-agent coordination mechanisms. These include agents rep-
resenting the ground troops carrying out a tactical operation (the blue force), which
the robots are supposed to support. Furthermore, there can be also various kinds of
adversarial units (the red force), or civilians. Depending on the particular scenario,
their behaviors range from relatively simple, such as random movement within a
perimeter, to relatively complex ones implementing the mission played by the blue
force. From the point of view of the multi-robot team in consideration, such agents
model, as well as generate the environment dynamics relevant to the target coordi-
nation mechanism under investigation.

Finally, while some simulations would require rather abstract discrete time step-
wise simulation of agent’s actions, in other scenarios more realistic fully asyn-
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chronous time model is needed. Due to uncertainties with respect to the particular
style of the simulations required for evaluation of the broad range of the considered
centralized and decentralized coordination algorithms, the simulator shouldn’t be
strongly bound to a single simulation model.

3.1.5 User interface and visualization

To maximize applicability of the algorithms on real hardware robots in the future,
one of the requirements of the projects Tactical AgentFly and Tactical AgentScout
was that the developed coordination mechanisms must be demonstrated in scenarios
featuring believable adversaries, and close-to-real-world physical environments. In
result, the underlying technological infrastructure had to support rich visualization
interfaces providing both 2D and 3D graphical views on the state of the simulation
capable to display the physical dynamics of the simulated entities in real-time. Fi-
nally, the platform had to support creation of graphical user interfaces for implemen-
tation of real-time simulation and robot-team control interfaces (C2 user interfaces)
when needed.

3.2 Initial technological infrastructure: AgentFly

In 2008, at the time of starting the first phase of Tactical AgentFly project, time-
wise the first project of the cluster, the Agent Technology Center had already an
in-house developed technological infrastructure to start from. In the context of
AgentFly project, described below, we developed an advanced technological plat-
form for air traffic management and flight control of unmanned fixed-wing aircrafts.
The initial design of the technology used for the Tactical AgentFly and Tactical
AgentScout projects heavily relied on re-use and extension of proprietary, in-house
developed technologies from the AgentFly project. In the following, we provide a
brief overview of the individual software packages planned to be re-used, adapted,
or integrated with the newly developed technological platform.

3.2.1 Application domain fundamentals: AgentFly overview

The AgentFly system developed in ATG between 2005–20111 is a technological
platform facilitating development of mid and large scale simulations of autonomous
aircrafts. As of 2008, the system was primarily aimed at investigation of issues in
flight trajectory planning of various classes of fixed wing CTOL UAVs and their
collision avoidance. I.e., a typical AgentFly scenario instance was configured with
a landscape, a number of pre-configured no-flight zones and a number of aircrafts.

1 As of writing this report, the project is still being actively developed, extended, and optimized.
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Fig. 3 Snapshot of an AgentFly scenario simulations.

Each aircraft was initialized with an initial position, space constraints on its flight
trajectory envelope, speed vector (or landed on a ground runway) and a set of way-
points it should visit in particular times and fly over in particular speeds and heading
vectors. The aircrafts were able to compute optimal flight trajectories spanning the
waypoints, and at the same time respecting the constraints set up by the environ-
ment, together with the time, velocity and heading constraints. At the core of the
system lies a decentralized algorithm running on board of the simulated aircrafts
which was able to firstly detect conflicts between the trajectories of the planes and
subsequently compute solutions to the conflicts in the whole multi-aircraft system.
Figure 3 depicts a snapshot of an example scenario running in the AgentFly system.

Initially, the projects of the Tactical AgentFly and Tactical AgentScout cluster
were supposed re-use the existing algorithms for trajectory planning and collision
avoidance and extend them so that they could be integrated with algorithms for area
surveillance and target tracking.

3.2.2 Multi-agent platform: Aglobe

The architecture of the AgentFly system relies on a state-of-the-art multi-agent
platform Aglobe [29] and AglobeX Simulation its simulation extension (see Fig-
ure 4). Aglobe is an award-winning multi-agent platform, similar to JADE [4] or
Cougaar [13], aiming at testing of experimental scenarios featuring agents’ posi-
tion and communication inaccessibility. The platform focuses precisely on model-
ing and development of decentralized mutli-agent systems. It provides facilities for
residing agents, such as communication infrastructure, data store, directory services,
weak migration function, deploy service, etc. Aglobe’s implementation focuses on
extremely efficient message transport layer and agent life-cycle management and
thus features a very high level of scalability. From the perspective of a single agent,
the platform provides two types of interfaces. Firstly, the MAS platform provides
core functionalities including intra agent tasking, message communication, commu-
nication visibility, agent life-cycle, and migration. Secondly, it includes and handles
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Fig. 4 Left, Aglobe multi-agent platform architecture. Right, AglobeX Simulation extension of
the Aglobe platform. Both are depicted as they were instantiated in the AgentFly project as of
beginning of the Tactical AgentFly project.

a number of services including directory/yellow pages, communication monitoring,
and other. Due to its underlying architecture, the service interface is highly modular,
as the individual services can be optionally turned on/off.

In Aglobe, agents reside in containers, which can be seen as logical groups of
agents acting as a single entity from the perspective of the communication visibility
subsystem. The containers run on platforms, where each platform is run within a
single Java Virtual Machine (JVM), possibly on a single network node. Each agent
is running asynchronously in its own computational thread and it is driven by an in-
ternal event queue. The events are strictly personalized for each single agent and are
used both for self-tasking, as well as for processing external messages. The agents
run and communicate in a fully asynchronous manner with respect to each other.
The communication subsystem, the message transport layer, is optimized in vari-
ous respects. All messages are pooled for more efficient creation and destruction
of the underlying objects. User of the platform can configure whether the message
payloads are sent by serialization or as references (available only within the same
JVM). The message delivery mechanism also detects and derives efficient ways for
how a message it to be delivered with regards to platform decentralization, commu-
nication capabilities of the underlyig network stack and target platforms platforms
the agents reside on.

On the message transport layer, Aglobe is built a publish/subscribe mechanism
featuring global topic messages. These are used for system communication, as well
as widely employed by AglobeX Simulation simulator and other technology sub-
systems.
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3.2.3 Environment simulator and scenario modeling: AglobeX Simulation

AglobeX Simulation (see Figure 4) is a simulator extending the Aglobe multi-agent
platform. It aims at modeling and execution real-world 3D simulations including
both static, as well as mobile units including towns, ports on one hand, as well as
aerial and ground vehicles on the other.

The simulator is implemented as a number of coordinating Aglobe agents. The
responsibilities of the agents are initialization, finalization and execution of the sim-
ulation. In the course of a simulation the agents compute next time-step evolution
of the vehicle positions, as well as their simulate inputs to their sensors, detect col-
lisions, prepare required information about the vehicles for the communication vis-
ibility subsystem and so on. At the time of using the platform in our projects, the
core functionality of the AglobeX Simulation component was due to legacy reasons
centralized and with respect to other subsystems functioned in a client-server mode.
In its current incarnation, the simulator leverages the multi-agent paradigm as well
as thus enables distribution of the whole simulator over a set of network nodes. The
simulator’s clients are agents or groups of agents united in a single MAS container
controlling the simulated entities, which are representing their embodiments within
the simulated environment. The agents communicate with the simulation server via
topic messages. In one direction, the agents control their embodiments in the phys-
ical simulation and in the other direction, they are allowed to perceive the state or
changes in the environment through their sensors.

The simulator consist of these particular agents:

Scenario manager agent: manages, preprocesses, and serves the configuration data
to the simulation (see also Section 3.2.4), manages the simulation scenarios, their
starting, finish, as well as monitors their execution.

Time manager agent: provides synchronized time ticks for the whole simulation.
Simulation manager agent: manages client agents and client containers, creates

and removes simulated entities, mediates initial configuration to the entities (all
this based on the configurations from Scenario manager agent).

Entity simulator agent: computes the step-wise evolution of the entity states (po-
sitions, orientations, etc.). Each entity is described by its behavior transforming
the current state to a new one according to the commands received from the
related client agent, resp. agent container. The behaviours together describe me-
chanics of the environment.

Distance agent: computes and stores distances among all entities in the environ-
ment.

Visibility collision agent: processes data from the Distance agent and i) provides
them to communication visibility subsystem of Aglobe, and ii) uses them as a
basis for entity collision detection.

Sensor agent: represents all monitoring and detection systems of the simulated
entities (radars, cameras, etc.) and provides views to the simulation for the simu-
lation agents based on time ticks from the Time manager agent.
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All the server-side agents communicate among themselves via topic messages. The
agents use topic messaging to in effect orchestrate and synchronize themselves as a
single, centralized or distributed, simulation process.

3.2.4 Configuration, experiments, user interface and visualization

As already discussed above, in AglobeX Simulation, various types and courses
of simulation are conceptualized into scenarios. Each scenario describes the ini-
tial state of the simulation instance, as well as the initial states of the controlling
client agents. Each scenario also contains an initialization process for the related
simulation. The scenarios are Java programs supported by mechanisms for XML-
based configuration processing. A single scenario, together with its configuration
initializes and executes a single simulation instance. Besides that, scenarios can also
contain components gathering, processing, and storing results from experiments. A
scenario can also describe a suite of particular experiments together with their au-
tomated configurations. The experimental results are collected from the simulated
processes via topic messages or directly by monitoring the simulation evolution it-
self.

As a full-featured MAS platform, Aglobe provides various user interfaces (UIs)
as well. The core one, the platform management UI. It contains a list of services
and agents running on the platform and allows a user to run new, stop or examine
services and agents running within the platform. To facilitate communication moni-
toring and debugging, there is also a communication sniffer tool. It enables tracking
of inter-agent conversations and inspect the intercepted messages including their
content. Optionally, agent implementations can come with their own application
specific UIs. An example of such, is an informational UI provided by the Pilot agent
of the AgentFly system.

AglobeX Simulation comes with its simulation-specific user interface. The Sce-
nario manager agent provides dialogs for scenario selection and reset. The Time
manager agent allows users to start, or stop simulation time, as well as set the sim-
ulation speed. Similarly, there are lists of the simulated entities, their respective
agents, logging consoles, and others.

The last subsystem of the initial technological infrastructure is the Visio visu-
alizer for the simulated world populated by agents. Visio is build on Java3D li-
brary [18] and JOGL library [21]. It enables 3D and 2D visualization of the simu-
lated worlds, including the physical environment, simulated entities and additional
information used during implementation, debugging phase and demonstrations. The
visualized elements are organized in a hierarchical layout (used for the canvas draw-
ing process) and a layered layout (used for turning on/off groups of visual elements).
The visualization layers communicate with the rest of the system, i.e., client and
simulation agents, by standard Aglobe topic messages.
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Fig. 5 Initial architecture of the technological infrastructure for the first phase of the Tactical
AgentFly project based on AgentFly project (feature framing represent architectural composition,
arrows represent coupling).

3.2.5 Agent behavior control: POSH

A significant requirement coming out of the initial analysis of the technolog-
ical infrastructure underlying implementation of the Tactical AgentFly/Tactical
AgentScout cluster was a need for a framework and an associated toolkit facilitating
scripting of agent behaviors. The scenarios modeled in the project AgentFly did not
require such complex behavior implementations. Early on, it became clear that for
the projects Tactical AgentFly and Tactical AgentScout we need to bring in a new
technology facilitating behavior scripting and integrate it with the rest of the system.
Our initial idea was to leverage the state of the art frameworks for development of
intelligent autonomous agents [5]. We chose to consider the POSH (Parallel-rooted,
Ordered Slip-stack Hierarchical) reactive planning engine [9, 8]. POSH can be seen
as a programming language allowing to execute programs encoding reactive action
selection based on both the current state of the environment the agent perceives,
together with its internal state, which can feature relatively complex data structures
(beliefs). POSH follows the paradigm of behavior oriented design where behavior
modules of a POSH agent provide the primitives for formulation of the plans. These
are subsequently executed in run-time and represent the agent’s deliberation about
the particular action to be taken in the next step.

3.3 Initial system architecture

Figure 5 depicts the initial architecture of the underlying technological platform for
the project cluster. It is based on the technologies from the AgentFly project. The
platform stack runs within an instance of Java Virtual Machine (JVM) and the whole
system was written in Java. Majority of the subsystems are implemented as agents
running in the Aglobe MAS platform container. The Visio visualizer subsystemt is
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partially independent from Aglobe, since it incorporates a standalone part of the
visualization engine.

All technological components of the system are configured with a simulation
scenario descriptions and their respective XML configurations, initialization pro-
grams and experiment descriptions. These parts are depicted as Init & Config &
Experiment subsystem. As already noted in the previous subsections, the AglobeX
Simulation subsystem (abbreviated as XSimulation) runs as an orchestra of Aglobe
agents as well. The simulation subsystem consist of the Simulator component man-
aging time and simulation state. The Environment component manages simulated
entities, sensors, and communication visibility.

The AgentFly system as a whole is represented by agents acting as aircraft pi-
lots. A pilot agent implements a particular agent controls mechanism (abbreviated
as AgCtrl). The component implements two main technologies. Firstly, it is a flight
path planner and secondly, a decentralized collision avoidance mechanism, coined
also deconfliction. These two components form the intelligent decentralized behav-
ior of the individual aircrafts.

Finally, the visualization subsystem facilitates 3D and 2D visualizations, both
based on Visio engine.

4 System implementation and experiences

The works on the projects Tactical AgentFly and Tactical AgentScout took part
from early 2008 until mid 2011. Both projects were divided into two phases, each
taking 12 months duration. Generally speaking, the initial phases of the projects
were dedicated mostly to development and feasibility studies of the basic technolog-
ical framework needed for realizing the main objectives. The successive iterations
then focused primarily on the core objectives, namely research, development and
empirical evaluation of various advanced multi-agent coordination algorithms.

In Subsection 3.1 we identified and summarized the main requirements on a tech-
nological infrastructure of the Tactical AgentFly and Tactical AgentScout project
cluster. The remainder of this section discusses the details of their implementation
as they were gradually incorporated into the code base. I.e., starting from the tech-
nologies underlying the AgentFly project, we discuss how the system architecture
evolved by incorporating the individual requirements. During the process, we had
to implement completely new modules and libraries and some of the modifications
of the core elements of the infrastructure at the time resulted in significant shifts
of its underlying philosophy. In result, some of the modifications were not back-
wards compatible with the original multi-agent platform anymore and led to signif-
icant architectural challenges. Alite is an agent simulation toolkit comprising all the
general-purpose modules and libraries developed in the course of the works on the
here described twin projects. Its gradual implementation could be seen as a conse-
quence of tackling these challenges and, together with the gradual system evolution
from a rigid single-philosophy embracing MAS platform to a pragmatic toolkit fa-



Simulated Multi-robot Tactical Missions in Urban Warfare 19

cilitating both a MAS platform composition, as well as rapid prototyping of the
application specific functionalities. Recently, Alite grew out of providing only tech-
nological infrastructure for the Tactical AgentFly and Tactical AgentScout project
cluster and it is already being used and extended in the context of various other
projects ATG is involved in. While the initial design of the twin projects heavily
relied on the Aglobe MAS platform and its AglobeX Simulation extension, the final
phase of the Tactical AgentScout project was completely written using Alite toolkit
and the libraries it provides. The remainder of this section tells the story of teh grad-
ual shift of the underlying architectural philosophy on the background of series of
extensions and requirements incorporation into a single system.

The treatment of the individual requirements follows the structure already in-
troduced in the previous sections. I.e., starting with simulation and environment
modeling issues, we continue by discussion of execution and configuration of ex-
periments, through requirements and evolution of the agent behavior control mech-
anisms finally to discuss the implementation of user interfaces and visualization
components of the system. Wherever possible, we respect the timeline of the work
on the individual requirements.

4.1 Simulation and Environment Modeling

Due to the focus of the here described project cluster on tactical missions in ur-
ban environments, one of the first tasks the project team faced was extension of the
AglobeX Simulation module with the ability to handle complex urban environments
and landscapes. In particular, we extended it to handle 3D models describing build-
ings and the underlying street map providing the high-level environment abstraction
the agents lived in.

With 3D buildings representing a town, agents moving along streets between
these buildings and aircrafts flying over and screening the area by use of cameras,
the environment modeling also needed to handle occlusions. To tackle this problem,
we implemented an environment-specific simulation agent providing an occlusion
sensor to the aircraft agents running in the system. As we discuss later, due to the
inherent complexity of the AgentFly’s AglobeX Simulation architecture, this design
decision later turned out to be rather ineffective and after replacing the core simula-
tion component by Alite specific module, the occlusions handling was implemented
in a form of pure individual-agent level sensor.

The task of the aircrafts in the Tactical AgentFly project was to perform surveil-
lance and tracking of urban areas with simulated human agents performing either
relatively simple adversarial behavior (red force), or representing civilians in the
town. The embodiments of ground entities were added into the environment as a
new type of simulated entities (defined again by 3D position and direction) and in-
tegrated into the lists of simulated entities. They feature their own mobility models
and behavior mechanics controlled by reactive planning engine(s) discussed later in
this section.
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The Tactical AgentScout project brought a new set of requirements which led
to significant changes of the simulator. The incorporation of simulated UGVs, un-
manned ground vehicles, resulted in a need to significantly adapt the model of the
general physical dynamics of physical agents in the system and resulted in an incor-
poration of a 3D physics engine into the simulator. Execution of trajectory plans by
autonomous ground vehicles in physical conditions can result in frequent plan in-
validation. Besides dealing with terrain features, such as slopes, potholes, or stones
on the ground, some of the corners are not traversable by the vehicle in its current
speeds. In result, the autonomous cars have to move around the town by executing
and continuous monitoring and adaptation of the path plans. As a part of the so-
lution to the problem, we integrated JBullet an open source high-fidelity physics
simulation engine [19].

To enable high-level control of the UGVs, which abstracts away the physical
reality of the environment, we implemented discrete time movement of simulated
ground vehicles on a street graph. In result, the high-level control algorithms steer
the cars between waypoints on the street map (e.g., junctions). This development,
together with the above described move from proprietary physical environment rep-
resentation to a state-of-the-art technology for simulated physics led to abandon-
ment of the AglobeX Simulation component from the system. This radical step was
reinforced by the fact that AglobeX Simulation supports only simulated continu-
ous space entity motion, however for many of our experiments only rough discrete
motion on graph-based representations sufficed. In result, the move to pure Alite
simulator implementation led to significant decrease of implementation, as well as
debugging complexity of the individual experimental scenarios and allowed us to
implement also simplified simulation model based on events instead of discrete time
ticks (see also below).

To implement aircrafts performing close-up tracking of mobile targets, such as
pedestrians and cars resulted in a need to incorporate reactively controlled aircrafts
of various types into the system, be it conventional fixed-wing planes (CTOLs),
or helicopters (VTOLs). Such UAVs are able to change their flight trajectory in a
reaction to changes of movement patterns performed by the ground target. In the
case of fixed-wing aircrafts, which cannot stop in mid-air, this problem results in a
need to perform relatively complex flight patterns, such as various loops over the
target. Together with a need to implement a fine-grained physical dynamic feedback
control of helicopters respecting a realistic model of their physical movements, this
led to a requirement to adapt the simulator to a much finer grained time resolutions.

Fixed-wing aircrafts feature a much simpler model of their physical dynamics
and therefore can afford for longer delays between individual steering points. Due
to relying on features such as this, the underlying AgentFly infrastructure turned out
to be too rigid for our purposes. An implementation of the required fine time gran-
ularity control of physical entities would lead to a significant abuse of the platform
and would have result in significant re-implementation of the mechanics integrat-
ing high-level planners and the low level physical control of the plane. In result, as
already indicated above, we gradually departed from the AglobeX Simulation com-
ponent and implemented the fine-grained simulator event loop in Alite from scratch.
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The final implementation proved to be flexible and easily integrable with the other
parts of the resulting system.

4.2 Evaluation of multi-agent coordination techniques

The main objective of the twin projects was to develop and most importantly exper-
imentally evaluate various decentralized algorithms for coordination of multi-agent
teams. This objective results in two basic requirements. Firstly, the simulator must
be highly configurable in order to allow for high flexibility in terms of both, simu-
lation experiment structure (number of agents, their various types, different initial
conditions, etc.) and the executed scenario storyboard, i.e., the particular mission to
be executed. Secondly, experiments comprise of large numbers of executed simula-
tion instances and their runs have to reliably reproducible.

The Aglobe MAS platform, together with the AglobeX Simulation extension
for AgentFly feature an XML-based configuration facility. This however turned out
to be too rigid for the purposes of the Tactical AgentFly and Tactical AgentScout
projects. The XML-based configuration files are interpreted by the simulator and the
MAS platform so that the correct numbers of agents with correct initial conditions
are instantiated in the system at the beginning of a run. However, such files allow
for configuration of features foreseen during the system development and thus are
inflexible with respect to the extremely broad range of scenarios implemented in
the here described projects. As a part of departure from the Aglobe and AglobeX
Simulation technology, we implemented a flexible configuration facility based on
employment of dynamic programming language interpreters of Groovy [16] and
Clojure [12]. Interpretation of full-fledged programs in run-time allows to configure
any aspect of simulations in a concise and flexible way. In our context, the additional
overhead of configuration script recompilation turned out to be relatively small and
the corresponding minor slow-down of experiment runs is acceptable, as well.

An important aspect of simulation development is reproducibility of simulations.
Large-scale simulations involve various aspects of non-determinism which can lead
to non-reproducible simulation runs. Such factors include parallel and random pro-
cesses, as well as limitations of the underlying hardware, such as CPU scheduling,
or memory swapping on the limit of resource utilization, etc. To ensure reproducibil-
ity of experimental runs, we carefully considered and implemented the concept of
in vitro simulation. That is, a simulation which controls all the aspects of the mod-
eled system, or carefully accounts for those, which were abstracted away from. In
particular, this means that the simulator has to have an ability to suspend and later
resume the simulation process. Furthermore, it should have an ability to speed it up,
or slow it down in response to e.g., resource utilization of the underlying hardware,
so that race conditions and different results of process scheduling do not affect the
simulation outcome. Finally, the random processes involved in the simulation must
be also under the simulator’s control so that the same sequences of random events
are generated in two independent runs of the same simulation.
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The vanilla MAS platform Aglobe is based on the assumption of full autonomy
of agents which all run asynchronously in a truly decentralized fashion. This feature,
while desirable in extremely large-scale simulations of air-traffic, turned out to be
difficult to live with due to problems with the inherent non-determinism of the plat-
form asynchronicity and the reliance of the simulation extension on discrete time
ticking dynamics. In result, the need to run huge numbers of reproducible experi-
ment runs turned out to hinge on the speed of simulation run execution and ability
to make the runs deterministic on demand. To tackle this issue, we departed from
the exclusive model of centralized discrete time ticks and implemented event-based
simulation mechanism [2]. This allows the system to disrespect real-time constraints
of the wall clock ticking mechanism and run the simulation as fast as possible given
the available computational hardware resources (memory and CPU). However, at
the same time the resulting Alite simulator still features the ability to run at real-
time simulation speed for demonstration purposes. In the Tactical AgentFly and
Tactical AgentScout projects, the newly implemented event-driven Alite simulator
enabled complete synchronization of the simulated processes and thus facilitated
high level of control over the simulated environment.

4.3 Scripting and Agent Control

As already mentioned above, realistic evaluation of various coordination mecha-
nisms requires modeling of realistic behavior of the various actors comprising the
environment the simulated multi-robot team acts in. As already discussed in Sec-
tion 3, our initial idea was to employ a state-of-the-art agent programming frame-
work POSH. Early on, however, this choice turned out to be difficult due to the
fact that the programming system is a research prototype and was not ripe enough
for straightforward integration into the project code base. Besides that, our initial
feasibility study showed that the use of the framework by inexperienced users, pro-
grammers involved in our projects, was rather problematic also due to difficult a
priori conceptual framework underlying the system.

The initial solution to our problem was implementation of Lightweight Reactive
Planner (LRP) [27], a proprietary and relatively simple hierarchical reactive-control
engine. While the component served us well in the first iterations of the project,
later it also turned out to be inflexible due to its extreme simplicity. In result, we
moved to implementation of Belief-Desire-Intention (BDI) agents implemented in
an agent-programming framework Jazzyk [25]. Jazzyk features a high-level of mod-
ularity with respect to integration with 3rd party and legacy systems and allows their
straightforward integration into the system in the form of agents’ knowledge bases.
This allowed us to use heterogeneous knowledge reasoning engines, such as Pro-
log, or object-oriented databases within a single agent system and at the same time
maintain a high level of control over agent’s behaviors, which were implemented as
Jazzyk situated reactive plans.
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4.4 User interface and visualization

The last, but at the same time one of the most important technological parts of the
whole mosaic of subsystems are user interfaces and visualizers. Visualization com-
ponents facilitate various debug, as well as demonstration views on what is going
on within the simulation. Graphical 3D demonstrators constituted important deliv-
erables of the Tactical AgentFly and Tactical AgentScout projects. To facilitate
vivid and believable presentation of the research results we are using a composition
of various 2D and 3D visual representations.

The requirements on simulation visualization can be divided into two types: i)
global overview, and ii) informative details. At the same time, both types of vi-
sualizations had to be provided in 2D and 3D as appropriate with respect to the
particular purpose. The approach to tackle this issue in the AgentFly project was
based on Java 2D graphics and a protocol communicating with external 3D engine
(namely CrystalSpace [14]). With regard to backward incompatibility of changes in
newer versions of the 3D engine, this model was dropped. Later, still in the context
of the project AgentFly, we implemented an in-house full-featured 3D and 2D visu-
alization engine build on Java3D library [18] and later with several features based
on Java native connections to OpenGL [21]. The engine uses concept of layers op-
tionally showing various information from the running simulation. These layers are
connected with data sources in the simulation by the Aglobe asynchronous messag-
ing interface.

In the early phases of Tactical AgentFly and Tactical AgentScout projects, we
re-used the working visualization engine from AgentFly. The engine was during the
time extended only by additional 3D models and visualization layers for various
trajectory and plan types (e.g, for UGVs and VTOLs).

However, with the already discussed departure from use of the AglobeX Simu-
lation simulator, we were given an opportunity to improve upon the visualization
technology and replaced the obsolescing visualization engine with Java Monkey
Engine [20], a state-of-the-art Java 3D engine.

Additionally, we have created a simple 2D visualization engine primarily for
debugging purposes of the new simulations and environments. The 2D engine was
designed considering the common principles of Alite: flexibility, openness and mod-
ularity and became a universal tool for 2D visualizations of global overview of sim-
ulated environments. Unlike in the AgentFly project, we carefully crafted the system
architecture so as to respect the principle of non-interference of visualization with
the run of the simulation itself. This is mainly to preserve reproducibility of the en
masse run experiments, which do not make use of the visualization code at all. The
simplicity of the visualization engine also facilitated development of lightweight
APIs, so that programmers could make use of it in a straightforward and flexible
manner.
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4.5 Alite

Alite [’eIlaIt] [1] is a software toolkit aimed at simplifying implementation con-
struction (not only) of multi-agent simulations and multi-agent systems, such as
those implemented in the context of the Tactical AgentFly and Tactical AgentScout
projects in general. The objectives of the toolkit are to provide highly modular,
flexible, and open set of functionalities defined by clear and simple APIs towards
easy rapid prototyping and fast implementation. The toolkit does not serve as a pre-
designed framework or platform for a complex purpose, it rather associates number
of highly refined functional elements, which can be variably combined and extended
into a wide spectrum of possible systems.

The guiding principles underlying the Alite design are i) modularity, so that the
system does not commit a developer to a particular definition of concepts such as
agent, environment, etc., and ii) compositionality, so that the various components of
the toolkit can be put together in a rapid and flexible manner. In result, Alite can
be seen as an association of highly refined functional elements providing clear and
simple APIs, so that relatively complex multi-agent simulation scenarios can be put
together rapidly.

Alite agents have access to simple interfaces to the environment (sensors and ac-
tuators), while their internal lifecycle is not bound by any a priori philosophy. Ad-
ditionally, they can make use of various types of communication middleware inter-
faces allowing to model various types of intra-agent communication (synchronous,
asynchronous, peer-to-peer, broadcasting, multi-casting, etc.). Additionally, Alite
comes with libraries including various types of planners (reactive, deliberative)
and multi-agent solvers (e.g., task allocators, solvers for problems, such as the dis-
tributed vehicle routing problem, etc.).

By its compositional nature, Alite provides means for both rapid prototyping, as
well as high-level of elaboration tolerance of the implemented systems. E.g., once
a simulation scenario, or a functional multi-agent system is put together from var-
ious components, application-level customizations and proprietary domain-specific
mechanisms, it is very easy to replace one stock planner, or multi-agent solver by
another one, as far as they share the underlying assumptions for their use.

Alite addresses the problem of MAS platform resilience in the face of a need to
incorporate various a priori unknown future requirements by variability in compo-
sition of functional elements. The number of possible combinations include wide
spectrum of system types, in contrast to a pre-designed frameworks as [29, 4, 13].
As multi-agent application’s requirements evolve, the requirements on the agent
platform itself are changing. Alite does not provide “a single platform for all”, but
rather offers an efficient way to build a platform that more precisely fits the partic-
ular needs of the MAS application under development. The application can utilize
one or more functional elements. As of writing this chapter, Alite provides:

common-event-queue: a general implementation of a temporal event queue and
temporal events (can be used for event-based simulations, agent message queues,
etc.).
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common-entities: a general description of any entity in the system. An entity is
defined only by its name (represent agents, simulated embodiements, etc.).

common-capability-register: a general implementation of a simple register of pos-
sible capabilities provided by entities (usable for directory services, register of
simulation components, etc.).

communication: a component of communication interfaces and basic message
transports (includes direct and asynchronous message transport, protocol abstrac-
tion, abstraction of communication modes, etc.)

initialization: a component defining basic interfaces for initialization scripts and
configuration (includes a config-reader based on Groovy)

environment: a component of interfaces defining basic elements for simulated
worlds (includes state storages, and bases for sensors and actuator interfaces).

simulation: a component mediating event-based simulation (it is based on the
common-event-queue and enriches it by temporal control).

visualization: a set of component containing various visualizers or wrappers to
3dr party visualizing applications (includes 2D visualization, 3D visualization
based on JME, wrapper to Google Earth, and others).

4.6 Architectural changes of the technological infrastructure over
time

In the previous sections, we have discussed changes in particular parts of the infras-
tructure underlying the project cluster. Figure 6 depicts the overall system architec-
ture as it chronologically evolved in the four iterations of the project cluster (two
phases of the two projects).

The initial architecture for first Tactical AgentFly project come out of AgentFly
with all technological features based on Aglobe (see Section 3.3).

In the next project, the Agent Control (AgentCtrl in the Figure) mechanisms were
replaced by simplified implementation in Alite. The implementation was tested in
newly added 2D visualizer, environment and simulation. All these components were
initialized by Alite initialization mechanism (abbrev. Init) using optionally config-
urable parts and experiment description. The two systems were integrated by injec-
tion of positions from the new environment into the original environment and using
time synchronization messages between the two simulators. The original system
henceforth acted as a simulator for AgentFly airplanes and 3D visualizer, while the
Alite simulator handled the ground mission simulation.

In the third project iteration all parts of the original system excluding the 2D
and 3D visualizers were already abandoned. Simulations, environments and agent
control, together with tested algorithms were run in the new system. Scripting mech-
anisms were also introduces to simplify implementation of particular agent control,
mission scripting, and has enabled more general dynamic configuration and ini-
tialization. The integration of the two systems was based on propagating the envi-
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Fig. 6 Changes of the technological infrastructure over time. Firstly, the initial phase of the Tac-
tical AgentFly project (a) was fully implemented using the Aglobe platform with AglobeX Sim-
ulation (abbrev. XSimulation). The initial infrastructure underlying the first phase of the Tactical
AgentScout project (b) already partially abandoned some parts of the initial architecture. In the
third iteration, namely the second phase of the Tactical AgentFly project, the original Aglobe a
XSimulation are employed solely for visualization and configuration purposes. Finally, the second
edition of the Tactical AgentScout project was fully implemented using the Alite toolkit. Feature
framing represents architectural composition, solid arrows represent coupling, and dashed arrows
initialization. Alite does not contain any platform code, thereby it only associates the composition
of various utilized technological features (dash-dotted block).

ronment information (mainly positions of the simulated entities) into the original
2D/3D visualization through the Visio engine.

In the last project iteration, a new 3D visualizer based on Java Monkey Engine
was added and allowed full shift from Aglobe-based system to more precisely fitting
architecture covered by Alite Toolkit.
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5 Critical analysis of the experience and lessons learned

To conclude the report of the previous sections on the implemented agent-based
technological infrastructure underlying the Tactical AgentFly and Tactical AgentScout
project cluster, let us identify and summarize the main lessons we learned in the pro-
cess.

The here described project in fact comprises four more or less technologically
separate sub-projects: the two thematically related projects Tactical AgentFly and
Tactical AgentScout, both implemented in two phases of one year duration each.
It can be said that to a large extent almost any software project can be implemented
with almost any toolkit, development framework and programming language and
following any kind of software engineering methodology. At the same time, how-
ever, some tools and methodologies fit some application domains better and lead to
more efficient and more natural, resp. straightforward design and implementation
process. Due to its structure and 4-year duration, we were given a unique opportu-
nity to learn from past experiences, iteratively re-implement parts of the system and
experiment with various configurations of its components and thus improve upon
the previous experiences. In result, we not only identified the most important char-
acteristics an ideal technological platform for research of coordination mechanisms
in multi-robot missions in military operations should feature, but were also allowed
to develop, implement, evaluate and even re-design various components of the tech-
nology as well.

From the technological perspective, our work can be seen as a four year long ex-
periment with development of MAS platform, in particular including various sim-
ulators for mid and large-scale multi-robot systems comprised of heterogeneous
robotic assets, such as CTOLs, VTOLs, UGVs and even simulated humans, differ-
ent 2D and 3D visualizers, user interfaces and approaches to configuration and en
masse experiment execution. We’ve learned that the two most important features
around which the design decisions regarding the technological infrastructure re-
volve are the ability to support rapid prototyping and technologies enabling efficient
and fast empirical evaluation of the implemented research algorithms. Generally,
the discussion of architectural changes the platform underwent in the course of the
project clearly shows that in time, we moved from an architecture embracing an
instance of “one size fits all” philosophy towards open modular design compris-
ing of a number of heterogeneous building blocks which can be composed into an
application-specific design. In the following subsections, we discuss the individual
aspects of the system and how the identified requirements on rapid prototyping and
efficient empirical evaluation influenced their design.

5.1 Multi-agent platform

A software platform for implementation and run-time control of the individual
agents running within the system is the most important component of the overall
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technological infrastructure. The project objectives dictated a need to compose vari-
ous realistic simulation scenarios featuring different types of agents acting in various
time paces, etc., so that we are able to test various research algorithms for multi-
agent coordination. The sheer range of the scenario variety and at the same time the
push towards rapid prototyping and fast research-implementation-evaluation turn-
over often resulted in clashes with the internal structure and the underlying philoso-
phy of the currently employed multi-agent platform.

The lesson learned on this front is that often learned also in mainstream industrial
software engineering. Namely, that in development of multi-purpose technologies,
such as the one discussed here, it is often the case that an a priori application design
philosophy, while being beneficial in the early stages of the project, tends to stand in
the way of the development process in later stages. The stream of new requirements,
not foreseen at the time of platform design, may sometimes diverge and even con-
tradict some of the underlying principles of the design philosophy of the platform.
An example of such was the inherent assumption of the Aglobe MAS platform with
its AglobeX Simulation extension that the MAS application components should be
modeled exclusively as agents, which communicate asynchronously. While this op-
tics is well applicable in many applications, this design philosophy has vast conse-
quences on the complexity of the application design, easiness of system debugging
and reproducibility of experiment runs. Often implementing the simulator itself is
more efficient using plain object-oriented programming principles with simple di-
rect call method method invocation, rather than modeling even the system com-
ponents as agents possibly running on different network nodes. Instead of work-
ing around this feature and thus abusing the underlying philosophy, in this case we
rather decided to depart from this principle altogether and thus sped up the scenario
development process.

In essence, the core lesson described above is that different MAS applications re-
quire different philosophies and technological features and the developers should be
rather supported in compositional application development. In particular, this means
that our resulting MAS technological platform based on the Alite toolkit keeps the
MAS design open and comprising a number of complementary building blocks with
clear interfaces keeps the door open to swift future redesigns of the application in
question. Such crucial building blocks include various approaches and implemen-
tations of features, such as message passing asynchronicity, platform distribution
among a number of network nodes, code mobility, agent lifecycle management, etc.
Including a particular choice of these features in a single monolithic technological
platform and its later extensions often tend to lead to software bloat and design de-
cisions which constrain developers not because of some crucial issue, but due to
respecting various interdependencies among the implemented features themselves.
The lesson learned in the Tactical AgentFly and Tactical AgentScout cluster is that
this situation should be avoided as much as possible. The shift the here described
technological infrastructure underwent can be best described as

a move from a relatively rigid general-purpose MAS platform towards a toolkit facilitating
rapid application-specific MAS platform construction.
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5.2 Environment simulation and scenario modeling

As already discussed in the previous subsection the range of simulation scenarios
and modeled missions in our projects was rather large. Different scenarios aimed
at evaluation of different multi-agent coordination algorithms often required very
different environment features. While at times the environment could be modeled as
a coarse grained graph structure with only interpolation of physical movements on
the ground in the simulation, often we also needed high-fidelity environmental fea-
tures including detailed physical landscape and building models. One of the lessons
learned in the projects of the Tactical AgentFly and Tactical AgentScout cluster is
that the stress on modularity and composability is crucial also with respect to an en-
vironment model, as well with respect to the particular model of time the simulator
employs.

One of the most important parts of the simulation process is time handling. The
underlying philosophy of the AglobeX Simulation simulator is a simulation model
based on synchronous, constant-delay time ticks, which are asynchronously dis-
tributed to the simulated agents and other parts of the simulation. There are two
common problems with such understanding of time counting in a simulation and
both share their roots in the efficiency of the dependent simulation process. One is
the temporal homogeneity and the other is causal homogeneity. While for many ap-
plications, the fine grained time model is directly employable, in our simulations it
turned out to be rather inefficient. In particular, when a simulation contains agents
working at various speeds, resp. being idle with different periods of time, the slow-
est time delay between two simulation ticks must correlate with the fastest agent
in the system. This however leads to inefficiencies when an agent which normally
exploits the fine grained time ticks becomes idle for a longer period of time. Essen-
tially, nothing happens in the simulation, nevertheless the simulator is still forced
to process all the homogeneous minuscule time ticks in between. Furthermore, syn-
chronous time ticking simulations are inefficient for applications comprising large
numbers of otherwise causally independent processes (e.g., flight of a UAV and ac-
tivities of a ground soldier). In discrete time ticking simulations, such processes can
become unnecessarily synchronized.

In the course of the projects development, we moved from synchronous time
ticking to event-driven simulations. Yet, we were careful enough to maintain the
ability of the simulator to switch to discrete time ticking whenever necessary. This
allowed us to significantly speed up simulation time of scenarios which can be,
without loss of generality, implemented in event-driven simulations. In result, we
were able to shorten the research-implementation-evaluation cycle and ultimately
also speed up the project completion. Additionally, in our experience, employment
of event-driven simulations also simplifies the code required for implementation of
agent deliberation and its interaction with the environment.

Finally, the requirement of reproducibility of simulation runs led us to attempts
to realization of the concept of in vitro simulations. Since we were aware of this
problem right from the beginning of the project it did not manifest itself in a sig-
nificant manner in the course of our work. However, we consider it a noteworthy
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point to consider in simulator development. In simulations of multi-robot systems,
the realization of in vitro simulators can become of an issue with growing demands
on scalability of the system. While having all the aspects of the simulation under
control of the simulator in a deterministic and synchronized manner is possible and
manageable, the trade-off with growing scale of the system is its worse run-time per-
formance, as well as possibly worse elaboration tolerance issues of the implemented
system. The simulator can simply become too large component of the system featur-
ing too many characteristics with underlying assumptions which significantly con-
strain simple and straightforward implementation of other parts of the system, e.g.,
agent behaviour control.

5.3 Experiments and configuration

One of the important lessons learned in our experience during the work on the twin
projects is that in systems where the variation of future scenarios of its applica-
tion cannot be easily foreseen, high level of configurability has to be implemented.
Rather than relying on pre-defined configuration schemes, such as XML files, our
decision to move to integration of full-fledged dynamic language interpreters turned
out to be a good one. The cost of run-time configuration compilation at the beginning
of the simulation run is negligible with respect to the overall simulation execution
time. Furthermore, the gained benefit of practically limitless configurability of the
simulation supports the rapid development principle and contributes to high level
of modularity of the resulting simulations. These can be essentially constructed and
initialized in the configuration scripts. In result, the tasks of simulation components
implementation and scenario configuration become clearly separated what allows
high flexibility in the development process.

The second important lesson to be learned from the work on the Tactical Agent-
Fly and Tactical AgentScout project cluster is the stress on speeding up the
research-implementation-evaluation turn-around. While the increased software plat-
form modularity contributes to speeding up the first components of the cycle, at-
tempts to speed up the runs of experimental setups improves upon the latter parts. It
is also important to realize, that not only does faster experiments execution shorten
the time needed for evaluation of the algorithms under investigation, it speeds up
debugging and implementation part of the cycle as well.

In our particular project, the implementation of an event-driven simulation frame-
work led to higher control over execution time of the simulation runs and speeding
up the experiments evaluation. This experience however should be considered care-
fully in the context of our projects. For instance scenarios which would require
extremely fine grained synchronous time would probably not benefit from imple-
mentation of event-driven simulation loop and also respecting of the requirements
on implementation of in vitro simulations might become burdensome.
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5.4 Agent behavior control

In terms of agent behavior control, again there are two issues to consider. On one
hand it is the expressive power of the employed reasoning framework and on the
other it is the modularity and integrability of its implementation. Furthermore, while
some scenarios require quite a heavy-weight deliberation mechanism, in others,
plain reactive control is sufficient. The lesson learned on this front leads to realiza-
tion that if flexibility with respect to future applications is an issue, perhaps rather
than employing a relatively heavy-weight agent deliberation framework (e.g., im-
posing BDI-style agent architecture), it might be more beneficial to use a simpler,
but more general toolkit. I.e., it might be more flexible to invest an effort in learning
and gaining experience with simple, but extensible deliberation models, such as e.g.,
finite state machines, rather than commit all future agent deliberation implementa-
tions to a particular intelligent agent architecture.

In our case, the choice of the Jazzyk language interpreter turned out to be a suit-
able choice for the more advanced simulation scenarios. The language is extremely
simple, but at the same time it allows for compositional programming of agent be-
haviors. Additionally, it directly supports integration with the underlying simulator,
as well as various knowledge representation technologies.

5.5 User interface and visualization

While user interfaces and visualization do not often stand in the focal point of proto-
typing in research projects, at this point, we would promote this issue and encourage
rich visualization of simulations, especially in robotics research. Not only do real-
istic 3D scene visualizers provide attractive demonstrations, they also constitute a
plausible basis for evaluation of the algorithms by non-experts. In our case, presen-
tation of live 3D demonstrators and video sequences captured from various simula-
tion runs proved to be beneficial in communication with both, the project sponsor,
as well as 3rd parties.

The state of the art in open-source 3D scene modeling and animation technolo-
gies is at a stage, where straightforward use of the tools by non-expert programmers
is easy. Having said that, it is of course important to design the interfaces to the
3D world visualization in a manner, which again stresses rapid prototyping of the
resulting scenarios. In our case, integration of various types of 2D and 3D visualiza-
tion engines in the Alite toolkit turned out to be relatively straightforward and cheap
in terms of the involved implementation effort.
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Fig. 7 Mixed-reality in the project AgentFly-In-Air, together with details of a Procerus Unicorn
UAV test aircraft.

5.6 Towards AgentFly-In-Air

After completing the projects Tactical AgentFly and Tactical AgentScout, we col-
lected a significant body of research results, experience and advanced its in-house
technological platforms for development of mid and large scale simulations of
multi-robot systems. A natural step along the above described research track was
to move closer towards deployment of the developed algorithms to real hardware
robots. The project AgentFly-In-Air (see Figure 7) aims exactly in this direction.
The 18 months long project was started in mid 2011 and as of writing this chapter
it is in active development to be completed by the end of 2012.

The foreseen demonstration scenario will involve a number of real, as well as
simulated aircrafts performing a continuous surveillance of a pre-defined area and
tracking of a number of mobile targets on the ground. Ideally, these will be embod-
ied by real human subjects carrying GPS devices connected to a central simulation,
resp. evaluation engine. By this experiment, firstly, we will demonstrate applica-
bility and portability of the multi-agent coordination algorithms developed in the
context of the above described projects to real hardware, and secondly, provide a
proof-of-concept for the idea of mixed-reality multi-agent simulation. I.e., such, that
besides a number of simulated agents, it will partly run in reality and will include
real world robotic assets.

The imperative to port and deploy a selected subset of the algorithms developed
in the context of its precursor projects in real hardware brought new requirements
on the design of the overall system and raised new challenges as well. On the front
of the application level functionality, the main issues are rooted in decentraliza-
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Fig. 8 Procerus Unicorn UAV test aircraft with accessories.

tion of the coordination algorithms and scalability of the algorithms to the on-board
hardware and its resource limitations w.r.t. CPU power, battery usage, communi-
cation bandwidth, etc. Complementary to that, availability of only limited number
of hardware robots, in our case two Procerus Unicorn aircrafts (see Figure 8), re-
quires development of technology enabling development and execution of mixed
simulations. That is experiments in which parts of the overall system are simulated,
but significant parts are implemented in real hardware. In result, as a part of the
project, we develop a technology allowing to model multi-agent systems in which
all agents are equal w.r.t. their run-time characteristics and interfaces to the physical
environment regardless of whether the agents themselves, resp. the environment are
simulated, or deployed on real hardware. In result, the system should provide high
level of modularity and facilitate gradual steps from fully simulated multi-robotic
system through mixed simulation ultimately to pure hardware deployment.

The opportunity to employ the technological infrastructure developed in the con-
text of Tactical AgentFly and Tactical AgentScout in a new setting embedded
partly in real hardware, allows us to once again reconsider and critically analyze
the use of the above discussed software components. One of the important issues
arising from the need to both model, as well as to incorporate true robotic assets
in the evaluation scenarios is the already discussed message delivery asynchronic-
ity. While in the purely simulated scenarios, for the sake of respecting the in vitro
simulation principles, we abandoned the real-world asynchronous inter-agent com-
munication model, in the project AgentFly-In-Air we have to come back to it. In
result, we consider to once again employ the Aglobe MAS platform as the under-
lying technology, but instead of using it to manage also agents’ lifecycles, we will
treat and use it purely as a decentralized communication middleware (see Figure 9).
After all, a fine-grained management of agent lifecycle in terms of control of threads
and processes running the logic of the individual agents becomes pointless in hard-
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Fig. 9 Planned architecture for the project AgentFly-In-Air. The ground station runs a simulation
based on Alite Toolkit. Communication with the real airplanes is mediated by Aglobe. The aircraft
logic is a composition of new future Alite modules. As planners, modules from predecessor projects
will be used and as a terminal planner Agentfly’s Pilot Agent with path planning and collision
avoidance will be integrated.

ware multi-robot systems. We are of course aware, that by this step we will loose
the ability to execute evaluation in fully controlled environments akin to in vitro
simulations, except with hardware robots.

In terms of environment modeling, we will face tasks to integrate real world
sceneries into the simulator. It means, that to facilitate execution of the foreseen
project demonstrator, we will have to be able to model a particular test ground within
the simulation, including its landscape, terrain features, traffic network, buildings,
etc. Implementation of new components facilitating various aspects of the mixed
simulations, such as the landscape modeling, within the Alite toolkit will pose new
implementation challenges in the project.

6 Future perspectives and final remarks

With the growing complexity of multi-agent applications and environments in which
they are deployed, there is a need for development techniques that would allow for
early testing and validation of application design and implementation. This is par-
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ticularly true in cases where the developed multi-agent application is to be closely
integrated with an existing, real-world system of multi-agent nature. Our work in the
context of the here described project cluster including Tactical AgentFly, Tactical
AgentScout and AgentFly-In-Air projects aims exactly at this objective.

Our experience in the course of the years 2008–2011 boils down to realization
that due to the extremely wide range of scenarios for early testing and validation
of algorithms, the scenario development and simulation technological infrastructure
should remain extremely modular and feature a compositional architecture.

In the light of this lesson, we feel that rather than in development of special-
purpose MAS platforms, the open challenges for the community lie in investigation
of programming-framework-independent methodological guidelines for engineer-
ing of such multi-agent based software artifacts. Of course we understand that no
unified MAS development methodology would fit the requirements of various ap-
plication domains, however collecting and learning from experience with building
such systems is still a realm in which not enough report are produced. Similarly to
the MAS platform lesson highlighted in the critical analysis of the projects imple-
mentation, perhaps rather than aiming at a unified MAS development methodology
(platform), our goal should rather be a set of rudimentary building blocks out of
which such application-specific methodologies can be easily constructed on pur-
pose.

To conclude the chapter, we would like to draw the attention to the notion of
mixed-reality simulation and the methodological guidelines to be followed in devel-
opment of such systems. Development and deployment of such complex multi-agent
systems is a challenging task. Large numbers of spatially distributed active entities
characterized by complex patterns of mutual interaction and feedback links give rise
to dynamic, non-linear emergent behaviors which are very difficult to understand,
capture and, most importantly, control. We argue that because of the complexity of
the above-described types of applications, it is no longer possible to develop such
systems in a linear, top-down fashion, starting from a set of requirements and pro-
ceeding to a fully developed solution. Instead, more evolutionary, iterative method-
ologies are needed to successfully approach the problem of development of complex
multi-agent systems.

In [26], we make first steps towards tackling this open challenge and give a pre-
liminary outline of the simulation-aided design of multi-agent systems (SADMAS)
approach. SADMAS is a development methodology relying in its core on the ex-
ploitation of a series of gradually refined and accurate simulations for testing and
evaluation of intermediary development versions of the engineered application. In
particular, we propose and argue in favor of using a series of mixed-mode simula-
tions in which the implemented application is evaluated against a partly simulated
environment. Over time, the extent of the simulation will be decreasing until the
application fully interacts with the target system itself. We argue that this approach
could help accelerate the development of complex multi-agent applications, while at
the same time keeps risks and costs associated with destruction or loss of the tested
assets low. We believe that more research in this area is needed in order to better
understand the core problems and issues stemming from deployment and evaluation
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of embodied multi-agent systems in real world scenarios, be it in industrial settings,
or in military scenarios, such as those described earlier in this chapter.
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