
Decentralized Multi-agent Plan Repair in
Dynamic Environments∗

Antońın Komenda, Peter Novák, Michal Pěchouček

Agent Technology Center
Dept. of Computer Science and Engineering, FEE

Czech Technical University in Prague
Czech Republic

Abstract

Achieving joint objectives by teams of cooperative planning agents
requires significant coordination and communication efforts. For a single-
agent system facing a plan failure in a dynamic environment, arguably,
attempts to repair the failed plan in general do not straightforwardly bring
any benefit in terms of time complexity. However, in multi-agent settings
the communication complexity might be of a much higher importance,
possibly a high communication overhead might be even prohibitive in
certain domains. We hypothesize that in decentralized systems, where
coordination is enforced to achieve joint objectives, attempts to repair
failed multi-agent plans should lead to lower communication overhead than
replanning from scratch.

The contribution of the presented paper is threefold. Firstly, we for-
mally introduce the multi-agent plan repair problem and formally present
the core hypothesis underlying our work. Secondly, we propose three al-
gorithms for multi-agent plan repair reducing the problem to specialized
instances of the multi-agent planning problem. Finally, we present results
of experimental validation confirming the core hypothesis of the paper.

1 Motivation
Classical planning and multi-agent planning based on classical planning are ap-
proaches to constructing autonomous agents and teams of agents, which attempt
to achieve their objectives in an environment. The result of the planning process
is traditionally a plan, a sequence of actions the agent should perform in order
to achieve a given goal. When the agent is situated in a dynamic environment,

∗This is the full version of an extended abstract published in Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012, Valencia, Spain.

1

occurrence of various unexpected events the environment generates might lead
to the plan invalidation, a failure. A straightforward solution to this problem is
to invoke a planning algorithm and compute a new plan from the state the agent
found itself in after the failure to a state conforming with its original objective.

Planning, as well as replanning, in the case of a failure occurrence, is a
costly procedure, especially in terms of its time complexity. It is relatively
straightforward to see, that in many cases, however, a relatively minor fix to
the original plan would resolve the failure possibly at a lower cost. Because
it is not clear what exactly are the planning domains and types of dynamic
environments which would allow for such a repair approach, it can be argued
that non-informed plan repair attempts can in many cases even raise the overall
complexity of the approach in comparison to replanning. This would be due
to futile attempts to repair the failed plan before inevitably falling back to
replanning.

In general, plan repair can be seen as planning with re-use of fragments of the
old plan. There is a number of works, empirically demonstrating that plan repair
in various domains performs better than replanning (e.g., [8, 2, 5]). However,
in [10], Nebel and Koehler theoretically analyzed plan re-use (plan repair), and
conclude that in general it does not bring any benefit over replanning in terms
of computational time complexity.

In situated multi-agent systems, however, the time complexity is often not
of the primary importance. In such systems, often it is the communication com-
plexity which is a higher priority concern. Consider application domains, such
as e.g., undersea operations by teams of coordinated autonomous underwater
vehicles. While the state-of-the-art technology allows to employ relatively pow-
erful computers on board of such robots, the communication links are extremely
constrained and expensive; wireless networks cannot be deployed and commu-
nication is performed mostly using acoustic signaling. In such applications, it
is the communication complexity of the distributed planning algorithms which
matters more than time complexity. Consequently, employment of multi-agent
plain repair techniques can provide a tangible benefit over replanning for a team
of robots whose multi-agent plan fails.

The motivation for our research is the intuition that multi-agent plan repair,
even though not always the fastest approach, should under specific conditions
generate lower communication overheads in comparison to replanning. The
conditions correspond to the level of required coordination and the types of
failures the environment generates. While the hypothesis is rather intuitive,
our approach is significant in that we give it a rigorous treatment. Besides
our preliminary approach in [7], this aspect of multi-agent planning and plan
repair, while obviously important with arrival of truly distributed algorithms
for multi-agent planning, such as the one by Nissim et al. [11] did not witness
considerable attention of the community yet.

The contribution of the the presented paper is threefold. Firstly, after intro-
ducing the general problem of multi-agent planning stemming from the formu-
lation due to Brafman and Domshlak [3] in Section 2, in subsequent Section 3
we formally introduce the multi-agent plan repair problem and formally state

2

the core hypothesis of the presented research. Secondly, still in Section 3, we
propose three algorithms for multi-agent plan repair reducing the problem to
specialized instances of the multi-agent planning problem. Finally, in Section 4
we present experimental validation confirming the core hypothesis of the paper.
Section 5 concludes the paper by some final remarks regarding the shortcomings
of our approach and future outlooks in the here described line of research.

2 Multi-agent planning
Classical, single-agent planning problem is characterized by a set of states with
a unique initial state, a final state (a set of final states) and a set of actions
representing the transitions between these states that the system undertakes
upon performing the actions. We define multi-agent planning problem as an
extension of the classical single-agent planning. We consider a number of co-
operative and coordinated actors featuring possibly distinct sets of capabilities
(actions), which concurrently plan and subsequently execute their local plans
so that they achieve a joint goal.

An instance of a multi-agent planning problem is defined by: i) an environ-
ment characterized by a state space, ii) a finite set of agents, each characterized
by a set of primitive actions (or capabilities) it can execute in the environment,
iii) an initial state the agents start their activities in and iv) a characterization
of the desired goal states. Before treating the problem of multi-agent planning
and summarizing a state-of-the-art algorithm for solving it, we first formally
introduce the underlying concepts.

2.1 Preliminaries
Consider a set of atoms {p1, . . . , pn}. A state is a set of terms from a language
L = {p1, . . . , pn,¬p1, . . . ,¬pn} where ¬p denotes a negation of p. We also
assume the standard tautology p ≡ ¬¬p for every p ∈ L. Furthermore, we
require all states to be consistent, i.e., for a state s ⊆ L we have that p ∈ s if
and only if ¬p /∈ s. Note, in general, the states do not have to be complete, i.e.,
it might be that there is a p ∈ L, such that {p,¬p} 6⊆ s. S denotes the set of all
states and we assume there is a distinguished state χ ∈ S denoting an undefined
state in which the overall system can be in. To simplify the notation, we also
extend the negation to states as follows ¬s = {p|¬p ∈ s}. The set of atoms
corresponding to a set of terms φ ⊆ L is denoted φ = {p | p ∈ φ or ¬p ∈ φ}.

A primitive action, or simply an action, is a tuple φaψ, where a is a unique
action label and φ, ψ ⊆ L respectively denote the sets of preconditions and
effects of a. The preconditions and effects are assumed to be consistent sets of
terms. Whenever the context is clear, we simply write a instead of φaψ. Act
denotes the set of all actions and we furthermore assume there is a distinguished
empty action ∅ε∅ ∈ Act with no preconditions and no effects.

We say that an action φaψ is applicable in a state s iff φ ⊆ s. An application
of φaψ is defined by the state transformation operator ⊕ : S ×Act → S defined

3

as follows:

s⊕ a =
{

(s ∪ ψ) \ ¬ψ iff φ is applicable in s,

χ otherwise.

Note that given a consistent state s and an action φaψ, the application of a
to s results in either the undefined state χ, or, in the case a was applicable in s,
a consistent state s′ again. The application of φaψ to s first enriches s with all
the effects of a, however, in the case there exists some p ∈ s, s.t., ¬p ∈ ψ, the
simple unification would make the resulting state inconsistent. The subsequent
set subtraction of terms which were the source of such inconsistencies makes the
resulting state consistent again, while at the same time preserving the effects of
a. Furthermore, ⊕ is associative, hence we can write s⊕ a1 ⊕ · · · ⊕ an.

An agent α = {φa1a1ψa1 , . . . , φananψan} is characterized precisely by its
capabilities, a finite repertoire of actions it can preform in the environment.
From now on, we assume that there exists a language L giving rise to a state
space S.

2.2 The Problem of Multi-agent Planning
Definition 1 (multi-agent planning). A multi-agent planning problem is a tuple
Π = (A, s0, Sg), whereA is a set of agents α1, . . . , αn, featuring mutually disjoint
sets of actions, an initial state s0 ∈ S and a set of goal states Sg ⊆ S.

Before formally defining the notion of a solution to a multi-agent planning
problem, we first introduce a sequel of auxiliary notions.

Given an agent α, a single-agent plan P is a sequence of actions a1, . . . , ak,
s.t., ai ∈ α for every i. P [i] denotes the i-th action in P , or P [i] = ε in the case
i is larger than the length of P , which in turn will be denoted |P |.

A team of agents A = α1, . . . , αn can act in the environment concurrently.
A joint action φaaψa of the team is specified by a = (φa1a1ψa1 , . . . , φananψan)
a tuple of actions corresponding to the individual agents, i.e., ai ∈ αi for each
i, its preconditions φa =

⋃n
i=1 φai

and its effects ψa =
⋃n
i=1 ψai

. a[k] denotes
the k-th action of a. Similarly to actions of individual agents, φa and ψa are
assumed to be consistent sets of terms. The notion of action applicability in
a state s, as well as application of a to s straightforwardly extend from the
definitions for primitive actions.

Definition 2 (multi-agent plan). Let Π = (A, s0, Sg) be a multi-agent plan-
ning problem with A = α1, . . . , αn. A synchronous multi-agent plan P =
{P1, . . . , Pn}, consisting of single agent plans P1, . . . , Pn respectively constructed
from actions of the agents α1, . . . , αn is a solution to Π if the plan P satisfies
the following:

1. P is well-formed, i.e., |Pi| = |Pj | for all i, j ≤ n. |P| = |Pk|, for some
k ≤ n, denotes the length of the multi-agent plan P;

2. P is feasible, i.e., there exists a sequel of states s1, . . . , sm, s.t. m = |P|
and si+1 = si ⊕ ai with ai = (P1[i], . . . , Pn[i]) for all i < m; and finally

4

3. P reaches the goal Sg, i.e., there exists sg ∈ Sg, s.t. sm ⊆ sg.

We also say that P solves the problem Π. Finally, Plans(Π) denotes the set of
plans which are solutions to a given multi-agent planning problem Π.

Additionally, P[k] denotes the joint action of the team in the step k and
P[k, i] denotes the primitive action of the agent i in the step k. This notation
allows us to introduce the following plan-matrix notation for a multi-agent plan
P, which provides a more visual understanding of multi-agent plans:

P =

a11 a21 · · · am1
a12 a22 am2
...

. . .
...

a1n a2n · · · amn

where aij = P[i, j]. Indices i (i ≤ m = |P|) and j (j ≤ n) denote the step of
the plan P and the agent which performs the primitive action, respectively.

We say that two multi-agent plans P1, P2 are equal (P1 = P2) iff they have
the same length (|P1| = |P2|) and for all i and j we have P1[i, j] = P2[i, j].

A concatenation of two multi-agent plans P1 and P2 over the same agents
α1, . . . , αn is defined as a plan P = P1 · P2, where for each i and j we have
P[i, j] = P1[i, j] if i ≤ |P1| and P[i, j] = P2[i − |P2|, j] for i > |P1|. In the
plan-matrix notation, the concatenation would correspond to simple columns-
appending operation. Note, concatenation of multi-agent plans is an associative
operation.

Given a multi-agent plan P, P[i..j] denotes a fragment of P from the step i
to the step j. More precisely, P[i..j] is a fragment of P iff there exist multi-agent
plans Pprefix and Psuffix , such that Pprefix · P[i..j] · Psuffix = P. Finally, P[i..∞]
denotes the i-th suffix of the plan P, i.e., P[i..∞] = P[i..|P|]. P1 · P2 is said to
be a decomposition of a multi-agent plan P iff P = P1 · P2.

Given two multi-agent plans P1 and P2 we can define how different they
are. diff (P1,P2) denotes the difference between P1 and P2, that is the overall
number of primitive actions in P1, which do not correlate with the correspond-
ing primitive actions in P2 and vice versa. Formally, diff (P1,P2) = |{(i, j) |
P1[i, j] 6= P2[i, j]}|. In the case |P1| ≤ |P2|, diff (P1,P2) = diff (P1 · Pε,P2),
where Pε is a plan padding of P1 to the overall length |P1 · Pε| = |P2| and filled
with empty actions, i.e, for each i, j, we have Pε[i, j] = ε. Note that the measure
diff is position agnostic, i.e., we define diff (P1,P2) = diff (P2,P1) in the case
|P1| > |P2|.

2.3 Planning Algorithm
The above formulation of the multi-agent planning problem is well in line with
the original formulation of MA-Strips planning due to Brafman and Domsh-
lak [3]. The authors there additionally distinguish between the public and pri-
vate actions of the individual agents. An action is public whenever its precondi-
tions or effects involve atoms occurring in preconditions or effects of an action

5

belonging to another agent of the team. Formally, given a multi-agent team
A = α1, . . . , αn, the set of public actions is defined as Actpub = {a | ∃i, j : i 6=
j, a ∈ αi, a′ ∈ αj , and (φa ∪ψa)∩ (φa′ ∪ψa′) 6= ∅}. Recall, φ denotes the set of
non-negated atoms occurring in φ. Actpriv = Act \Actpub, where Act =

⋃n
i=1 αi

is the set of all actions the team A can perform.
The distinction of actions to private and public turns out to be an impor-

tant one. Since private actions do not depend, nor are dependencies of other
actions performable by the team, planning of sequences of private actions can
be implemented strictly locally by the agent the actions belongs to. In effect,
the public actions become points of coordination among the multi-agent team
members and a truly decentralized multi-agent planning algorithm for a plan-
ning problem Π can be implemented in two interleaving stages until a suitable
multi-agent plan is found: i) a plan consisting exclusively of public actions of the
agent team is calculated, and subsequently ii) the sequences of private actions
between the public actions of each individual agent are computed to fill in the
gaps.

The main contribution of the Brafman and Domshlak’s paper lies in pointing
out that the algorithms can be implemented by reduction of the first stage of
the planning process to a constraint satisfaction problem (CSP) corresponding
to the multi-agent planning problem with public actions only. The second stage
can be subsequently solved by any classical single-agent planning algorithm. In
result, solving a given multi-agent planning problem can be loosely formulated
as a CSP with the following two types of constraints:

coordination constraint: a sequence of joint actions P (candidate multi-
agent plan) satisfies the coordination constraint iff for every action φaaψa =
P[k, i] performed by the agent αi in the step k we have, that if a is a public
action, then

• for every p ∈ φa, there must exist φapapψap = P[kp, ip], such that
p ∈ ψap

and 0 < kp < k (there is some previous action which causes
p to hold), and

• for no k′, s.t., kp ≤ k′ < k there exists φ′a′ψ′ = P[k′, i′], such that
¬p ∈ ψ′ (p won’t be invalidated between causing it in the step kp and
execution of a in the step k).

internal planning constraint: a sequence of joint actions P satisfies the in-
ternal planning constraint iff for every agent, the corresponding single-
agent planning problem with landmarks {a | a = P[k, i] ∈ Actpub} is
solvable. I.e., a single-agent planning algorithm is able to fill in the gaps
between the public actions in the candidate multi-agent plan.

Algorithm 1 lists the original multi-agent planning algorithm MA-Plan by
Brafman and Domshlak in [3]. The algorithm iterates through CSP formulations
of the planning problem according to δ, informally the number of coordination
points between the agents in the multi-agent team. I.e., δ determines the number

6

Algorithm 1 MA-Plan(Π):
Input: A multi-agent planning problem Π = (A, s0, Sg).
Output: A multi-agent plan P solving Π, if such exists.

δ = 1
loop

Construct CSPΠ;A
if solve-csp(CSPΠ;δ) then

Reconstruct a plan P from a solution for CSPΠ;δ.
return P

else
δ = δ + 1

end if
end loop

of joint actions in a candidate multi-agent plan consisting of only public actions.
Filling the gaps between the individual single-agent public actions, if possible,
then gives rise to the overall multi-agent plan. In the case such a plan completion
does not exist, the process continues by testing longer candidate plans.

The original multi-agent planning algorithm assumes a centralized planning
architecture. I.e., it is a centralized planning algorithm computing multi-agent
plans for a team of agents which are supposed to be subsequently executed in a
decentralized fashion. Our motivation is however a decentralized planning/plan
repair algorithm followed by a decentralized plan execution.

Nissim et al. in [11] adapted the original blueprint algorithm described
above to a distributed setting. The adaptation rests on formulating the multi-
agent planning problem as a distributed constraint satisfaction problem instance
(DisCSP) and subsequently utilizing a a state-of-the-art DisCSP solver for solving
it, plus managing the overhead involved in the resulting distributed algorithm.
The resulting algorithm, however, closely follows the scheme of the original
algorithm as listed in Algorithm 1. From now on, whenever we speak about
the implementation of the multi-agent planning algorithm, we have in mind its
decentralized version due to Nissim et al. [11].

3 Multi-agent plan repair
Consider a multi-agent planning problem Π = (A, s0, Sg) and a plan P solving
Π. Furthermore, consider an environment in which, apart from the actions
performed by the agents of the team A, no other exogenous events occur. We
say that such an environment is ideal, or non-dynamic. The execution of P in
such an environment is uniquely determined by the set of states s0, . . . , sm, such
that si+1 = si ⊕ P[i] (cf. also Definition 2).

In dynamic environments, however, it can occur that in the course of exe-
cution of P, the environment interferes and the execution of some action P[i]

7

from the plan P does not result in precisely the state si+1 as defined above.
We could say that at step i an unexpected event occurred in the environment.
For simplicity, we consider only unexpected events happening exclusively in the
course of execution of some action (as if it took a non-zero time), not such
which could occur while the agent is deliberating the execution (i.e., as if the
deliberation was instantaneous).

Note that not all unexpected events in a dynamic environment necessarily
lead to problems with execution of the plan P. However, there are at least two
cases of such events, which can be considered a plan execution failure.

A weak failure of execution of the plan P at step i w.r.t. the multi-agent plan-
ning problem Π is such, when the state sf resulting from an attempt to perform
an action φaaψa = P[i] for some i does not satisfy some of the postconditions
of a, i.e., ψa 6⊆ sf .

A strong failure of execution of the plan P at step i w.r.t. the planning
problem Π occurs whenever the i-th action of P cannot be executed due to
its inapplicability. I.e., the execution of the plan up to the step i resulted in
states s0, s

′
1 . . . , s

′
i, possibly with some weak failures occurring in the course of

execution of the plan fragment and P[i] is not applicable in s′
i.

The weak and the strong plan execution failures are, however, just two ex-
amples of a plan failure. There certainly are application domains in which weak
failures can be tolerated as far as the goal state is reached after execution of the
multi-agent plan. Alternatively, there might be domains in which other types
of plan execution failures can occur, e.g., any change of the state not caused by
the involved agents can be considered a failure as well. To account for the range
of various types failures, from now on, we only require that a plan execution
monitoring process determines some plan execution failure at a step i which
results in some failed state sf .

Definition 3 (multi-agent plan repair). Let Π = (A, s0, Sg) be a multi-agent
planning problem. A multi-agent plan repair problem is a tuple Σ = (Π,P, sf , k),
where P is a multi-agent plan solving the planning problem Π, k is the step of
P in which its execution failed and sf ∈ S is the corresponding failed state.

A solution to the plan repair problem Σ is a multi-agent plan P ′, such that
P ′ is a solution to the planning problem Π′ = (A, sf , Sg). We say that P ′ repairs
P in sf . In the case Plans(Π′) = ∅, we say that the plan is irreparable given the
failure occurring at the state sf .

Given two multi-agent plans P1 and P2 both repairing a multi-agent plan
P for a problem Π in a state sf , we say that P1 is preserving P more than
P2 iff diff (P1,P) ≤ diff (P2,P) and denote the relation by P1 � P2. The
minimal repair of the multi-agent plan P is such a plan Pmin ∈ Plans(Π′),
which is minimal w.r.t. the mutual differences between the plans solving Π′.
I.e., Pmin ∈ arg min

P′∈Plans(Π′)
diff (P,P ′).

Note, there might be several distinct minimal repairs of a given multi-agent
plan.

8

In general, the multi-agent plan repair problem can be reduced to solving a
modified multi-agent planning problem and thus gives rise to a straightforward
plan repair algorithm based on replanning in two steps: 1) construct the multi-
agent replanning problem Π′ as prescribed in Definition 3, and subsequently 2)
utilize the MA-Plan algorithm (Algorithm 1) to solve the problem Π′.

The original motivation underlying this paper was the hypothesis that at-
tempts to repair failed multi-agent plans lead to lower communication overhead
than replanning. Clearly, not all planning problems could benefit from such
a mechanism. Since we focus on multi-agent planning problems, which in a
sense enforce coordination among the members of a multi-agent team, we firstly
introduce the concept of k-coordinated multi-agent planning problems.

Definition 4 (k-coordination). We say that a multi-agent plan P is k-coordina-
ted iff each fragment P of length k contains at least one joint action containing
a public action. Formally, for every P ′, s.t. P = Pprefix ·P ′ ·Psuffix with |P ′| = k,
there exist i and j so that P ′[i, j] ∈ Actpub .

We say that a multi-agent problem Π is k-coordinated iff all the plans P ∈
Plans(Π) solving Π, which cannot be compressed are k-coordinated. A plan
P ∈ Plans(Π) can be compressed iff it contains a fragment P ′, s.t. P = Pprefix ·
P ′ · Psuffix and Pprefix · Psuffix ∈ Plans(Π).

We informally say that multi-agent planning problems leading to plans con-
taining coordination points (public actions) placed relatively frequently through-
out the plans are tightly coordinated. More formally, a multi-agent planning
problem Π is tightly coordinated if it is k-coordinated and k is relatively low in
comparison to the lengths of plans from Plans(Π). In the case k is relatively
high w.r.t. the plan lengths, we say that the problem is loosely coordinated and
finally, if the plans do not involve public actions, i.e., coordination is not needed
at all, we say the problem is uncoordinated.

The core hypothesis of the paper can be then formulated as follows:

Hypothesis 1. Multi-agent plan repair approaches producing more preserving
repairs than replanning tend to generate lower communication overhead for
tightly coordinated multi-agent problems.

A crisper, though perhaps a more challenging version of the hypothesis would
express the communication overhead in terms of the average communication
complexity:

Hypothesis 2. When applied to tightly coordinated planning problems, multi-
agent plan repair algorithms producing more preserving repairs than replanning
feature a lower average communication complexity than replanning.

In the remainder of this paper, we approach resolution of Hypothesis 1.
Treatment of Hypothesis 2 is beyond the scope of this paper and is left for
future work.

9

Algorithm 2 Back-on-Track-Repair(Σ)
Input: A multi-agent plan repair problem Σ = (Π,P, sf , k), with Π =

(A, s0, Sg) and a sequence of states s0, . . . , sm execution of P generates in
the ideal environment.

Output: A multi-agent plan P ′ solving Σ if a solution exists.

Construct Πback = (A, sf , {s0, . . . , sm})
if MA-Plan(Πback) returns a solution Pback then

Retrieve the state sj of P to which Pback returns
return P ′ = Pback · P[j . . .∞]

end if

3.1 Back-on-track Repair
Unexpected event occurring in an environment can cause a failure in execution
of a plan performed by some multi-agent team in that environment. The result is
that the overall state of the system is not the one expected by the undisturbed
plan execution at the particular time step. A straightforward idea to fix the
problem is to utilize a multi-agent planner to produce a plan from the failed
state to the originally expected state and subsequently follow the rest of the
original multi-agent plan from the step in which the failure occurred. The
following multi-agent plan repair approach, coined back-on-track (BoT) repair,
is inspired by this idea, in fact a slight generalization of it.

Definition 5 (back-on-track repair). Let Σ = (Π,P, sf , k) be a multi-agent
plan repair problem and Π′ = (∆, sf , Sg) being the corresponding modified
multi-agent replanning problem.

We say that a plan P ′ ∈ Plans(Π′) is a back-on-track repair of P iff there is
a decomposition of P ′, such that P ′ = Pback · P[i..∞] for some i ≤ |P|.
P ′ = Pback ·P[i..∞] is said to be a proper back-on-track repair iff |P[i..∞]| >

0. I.e., P ′ preserves some non-empty suffix of P.

Informally, the back-on-track approach tries to preserve a suffix of the orig-
inal plan and prefix it with a newly computed plan Pback starting in sf and
leading to some state along the execution of P in the ideal environment. Note,
that all plans from Plans(Π′) are back-on-track repairs of the original plan. The
length of the preserved suffix of the original plan provides a handle on the re-
pair quality ordering of the plans. The longer the preserved suffix, the more
preserving the plan is. On the other hand, even when the plan repair problem
Σ is indeed solvable, there might not be any valid proper back-on-track repair
of the original planning problem.

Algorithm 2 realizes a multi-agent plan repair procedure according to the
back-on-track plan repair principle. Since the MA-Plan algorithm searches for
the shortest plan from the initial state to a goal state, the Back-on-Track-Repair
computes plans which return back to the original one in the shortest possible
way.

10

Algorithm 3 Lazy-Repair(Σ)
Input: A multi-agent plan repair problem Σ = (Π,P, sf , k), with Π =

(A, s0, Sg) and |A| = n.
Output: A multi-agent plan P ′ solving the problem Σ according to the lazy

approach, if a solution exists.

Construct P[k..∞], the executable remainder of P from the step k and state
sf
Construct Πlazy = (A, s|P|, Sg)
let P lazy be a solution to MA-Plan(Πlazy) if such exists.
return P[k..∞] · P lazy

3.2 Simple Lazy Repair
The back-on-track multi-agent plan repair approach seeks to compute a new
prefix to some suffix of the original plan and repair the failure by their con-
catenation. An alternative approach, coined lazy, attempts to preserve the
remainder of the original multi-agent plan and close the gap between the state
resulting from the failed plan execution and a goal state of the original planning
problem.

Let sf be the state resulting from a failure in execution of a multi-agent
plan P in a step k. We say that a sequence of joint actions P ′ is an executable
remainder of P from the step k and the state sf iff there exists a sequence of
states sk, . . . , s|P|, such that sk = sf , si+1 = si⊕P ′[i−k+ 1] and for every step
i and every agent j, we have that P ′[i− k + 1, j] = P[i, j] in the case P[i, j] is
applicable in the state si and P ′[i− k + 1, j] = ε otherwise.

The following definition provides a formal definition of the lazy approach.

Definition 6 (simple lazy repair). Let Σ = (Π,P, sf , k) be a multi-agent plan
repair problem and Π′ = (A, sf , Sg) being the corresponding modified multi-
agent replanning problem.

We say that a plan P ′ ∈ Plans(Π′) is a lazy repair of P iff there is a decom-
position of P ′, such that P ′ = P[k..∞] · P lazy, where P[k..∞] is the executable
remainder of P from the step k, execution of which results in the state slazy
when starting in sf , and P lazy is a solution to the multi-agent planning problem
Πlazy = (A, slazy, Sg).

Algorithm 3 realizes multi-agent plan repair based on the lazy repair ap-
proach described above.

The back-on-track approach always succeeds to compute some multi-agent
plan repairing the original plan from the failed state in the case the replanning
form scratch would compute such a plan from that state as well. The lazy
approach is in this sense incomplete, as it might happen that the execution of
the executable remainder of the original plan diverges to a state from which
no plan to some goal state exists. Given that dynamic environment in general
could generate irreparable failures, this incompleteness cannot be considered a

11

shortcoming of the lazy approach in general. Of course in domains in which no
irreparable unexpected event might occur, while at the same time the agents
are allowed to perform actions potentially having irreversible and potentially
harmful effects, the lazy approach has to be employed with caution.

3.3 Repeated Lazy Repair
In dynamic environment plan failures occur repeatedly, i.e., even after a repair
of a failed plan, it is possible for the repaired plan to fail again. In this situation
both the back-on-track, as well as the lazy multi-agent plan repair algorithms
lead to prolonging the really executed plan. In the case of the back-on-track
approach, this is inevitable, since upon the repair, the subsequent plan execution
process immediately processes the newly added plan fragment. In the case of
the lazy repair, however, upon occurrence of another failure during execution of
the repaired plan, it is not always necessary to prolong the overall multi-agent
plan.

The intuition behind the repeated lazy plan repair approach is that a failure
during execution of an already repaired plan makes the previous repair attempt
irrelevant and its result can be discarded, unless the failure occurred already
in the plan fragment appended by the previous repair. The following definition
formally introduces the extension of the lazy multi-agent plan repair approach.
For clarity, from now on, we refer to the lazy multi-agent plan repair approach
introduced in Definition 6 as simple lazy repair.

Definition 7 (Repeated lazy repair). Let Π = (A, s0, Sg) be a multi-agent
planning problem with a solution P and Σ1 = (Π,P, sf1 , k1) be a multi-agent
plan repair problem with a lazy repair solution PΣ1 = P[k1..∞] ·Psuffix and Σ2 =
(Π,PΣ1 , sf2 , k2) be a multi-agent plan repair problem the system is currently
facing.

We say that P ′ is a repeated lazy repair of P1 iff

1. P ′ is a simple lazy repair solution to Σ′ = (Π,P, sf2 , k2) in the case k2 ≤
|P[k1..∞]|; and

2. P ′ is a simple lazy repair solution to Σ2 otherwise.

The repeated lazy repair leads to a straightforward extension of the lazy
plan repair algorithm listed in Algorithm 3. Note, that the repeated lazy repair
algorithms enables a plan execution model which preserves significantly longer
fragments of the original plan. That is, upon a failure, instead of trying to repair
the failed plan right away, as both the back-on-track and simple lazy plan repair
algorithms do, the system can simply proceed with execution of the remainder
of the original plan and only after its complete execution the lazy plan repair is
triggered. The approach simply ignores the plan failures during execution and
postpones the repair the very end of the process, hence the “lazy” label for the
two algorithms.

12

Algorithm 4 Repeated-Lazy-Repair(Σ1,PΣ1 ,Σ2)
Input: A multi-agent planning problem Π = (A, s0, Sg), a multi-agent plan
P = P[k..∞] · Psuffix solving Π, and two multi-agent plan repair problems
Σ1 = (Π,P, sf1 , k1) with a solution PΣ1 and Σ2 = (Π,PΣ1 , sf2 , k2).

Output: A multi-agent plan solving Σ2 if a solution exists.

if k2 ≤ |P[k..∞]| then
Construct Σ′ = (Π,P, sf2 , k2)

else
Σ′ = Σ2

end if
return a solution to Lazy-Repair(Σ′) if such exists

4 Experimental validation
To verify the Hypothesis 1, we conducted a series of experiments with imple-
mentations of the multi-agent plan repair algorithms described in Section 3.
Below, we firstly describe the experimental setup used for the experiments and
subsequently interpret the data collected and revisit Hypothesis 1.

4.1 Experimental Setup
The experiments were based on a two-stage algorithm. In the first phase, for
a given domain a multi-agent plan was computed using the MA-Plan algorithm
based on a distributed constraint satisfaction solver for computing the candidate
coordination plans and implementation of a best-first-search action planning
algorithm as part of FF [6] for computing the local, single-agent plans. We
used the implementation of the distributed multi-agent planner authored by
Nissim et al. also used for the experiments conducted in their paper [11]. In
the second phase, we executed the multi-agent plan. In the course of the plan
execution, we simulated the environment dynamics by producing various plan
failures according to a variable failure probability. The plan execution was
monitored and upon a failure detection a plan repair algorithm was invoked.
Algorithm 5 lists the pseudo-code of the process.

Before execution of each plan step, the joint action is checked for applicability
in the current state. In the case it is not applicable, a plan repair algorithm is
invoked and the execution continues on the repaired plan. Otherwise, the state
is updated with the joint action.

The execute-fail function in the algorithm either updates the current state
by the joint action provided as a parameter as if in the ideal environment, or to
generate an unexpected event occurring in the simulated dynamic environment.

We distinguish two types of plan failures: action failures and state perturba-
tions. Both failure types are parametrized by a uniformly distributed probability
P , which determines whether a simulation step fails, or not. Both failure types
are weak failures. That is, they are not handled immediately, but can preclude

13

Algorithm 5 Plan execution and monitoring algorithm.
Input: An initial multi-agent planning problem Π = (A, s0, Sg).

P = MA-Plan(Π)
s = s0; step = 1
repeat

if φP[step] 6⊆ s then
P = Repair(Π,P, s, step)
step = 1

end if
s = execute-fail(s,P[step])
step = step + 1

until step > |P|

the plan execution and later result in a strong failure. Upon detection, a strong
failure is handled by one of the plan repairing algorithms.

An action failure is simulated by not-executing some of the individual agent
actions from the actual plan step. The individual action is chosen according to
a uniformly distributed probability. The individual action is removed from the
joint action and the current state is updated by the modified joint action.

The other simulated failure type, state perturbation, is parametrized by a
positive non-zero integer c, which determines the number of state terms, which
are removed from the current state, as well as the number of terms which are
added to it. The terms to be added or removed are selected also randomly from
the domain language according to a uniform distribution.

The experimental setup was implemented as a centralized simulator of the
environment integrating a decentralized multi-agent domain-independent plan-
ner MA-Plan. The individual agents are initialized by a planning domain, to-
gether with a particular planning problem instance. Each agent runs in its
own thread and they deliberate asynchronously. The agents send peer-to-peer
messages among themselves. Message passing is mediated by the centralized
simulator as well. The messages are sent in the DisCSP phase by the integrated
solver, which is a part of the MA-Plan planner.

The experiments were performed on Phenom Quad Core 9950 processor at
2.6GHz with Java Virtual Machine limited to 2.5GB of RAM. The individual
measurements were parametrized by the plan failure probability P and each
problem instance was executed 6–10 with various value samples. The resulting
data are, in the figures, presented with natural distribution. The candlestick
charts depict the difference between the minimal and the maximal measure-
ments, together with the standard deviation.

4.2 Test Problems, Algorithms and Metrics
The experiments were conducted on three planning domains. The domains
originate in the standard benchmark single-agent ICP planning domains pub-

14

lished at [1]. Similarly to [11], we chose domains, which are straightforwardly
modifiable to multi-agent planning problems: logistics (3 agents), rovers (3
agents), and satellites (2–5 agents).

The logistics domain is a tightly coordinated in that it requires relatively
frequent coordination among the involved agents: airplanes and trucks need to
wait for each other to load or unload the transported packages. The rovers
domain is loosely coordinated in that it requires coordination only at the end of
plans: there is a single shared communication channel between one of the rovers
and the receiving station. Finally, the satellites domain is uncoordinated in
that it does not need any coordination between the satellites acquiring images
individually.

To evaluate validity of Hypothesis 1, the multi-agent planning problems were
tested on the experimental setup against a plan repair algorithm implementing
replanning from scratch and two of the repair algorithms Back-on-Track-Repair
(Algorithm 2) and Repeated-Lazy-Repair (Algorithm 4) introduced in Section 3.

Efficiency problems of the MA-Plan implementation limited the experiments
to plans with maximally two landmarks (coordination points). The measure-
ments of Back-on-Track-Repair algorithm runs were negatively influenced by
sensitivity of the planner implementation to the number of terms in the goal
state. Additionally, the Back-on-Track-Repair algorithm could not leverage dis-
junctive goal form (cf. Definition 5) and this was emulated by iterative process
testing all term conjunctions in a sequence and thus resulting in multiple runs
of the DisCSP solver instead of a single run with disjunctive goal.

We used three metrics to evaluate the measurements:

execution length is the overall number of joint actions the experimental setup
executed.

planning time is the measured cumulative time consumed by the underlying
MA-Plan planner used for generating initial and repairing plans; and finally

communication is measuring the number of messages passed between the
agents during the planning or plan repair process. That is messages gen-
erated by the DisCSP solver in the MA-Plan planner.

4.3 Results and Discussion
The first batch of experiments directly targets validation of Hypothesis 1: multi-
agent plan repair is expected to generate lower communication overhead in tightly
coordinated domains. We used logistics as a tightly coordinated domain and
dynamics of the simulated environment modeled as action failures. Figure 1
depicts the results of the experiment. The communication overhead generated
by the Back-on-Track-Repair algorithm is on average only 59% (36% at best) of
that generated by the replanning approach. Furthermore, the Repeated-Lazy-
Repair algorithm performed even better and on average produced only 43% (11%
at best) of the communication overhead generated by the replanning algorithm.
In result, the experiments strongly support our hypothesis.

15

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

[-
]

Failure probability, P [-]

Communication

Replaning
BoT repair

RL repair

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
v
s

R
e
p
la

n
n
in

g

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
u
m
u
la
te
d
d
u
ra
ti
o
n
[m

s]

Failure probability, P [-]

Planning time

Replanning
BoT repair
RL repair

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
v
s
R
e
p
la
n
n
in
g

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m
b
e
r
o
f
st
a
te
s

[-
]

Failure probability, P [-]

Execution length

Replanning
BoT repair
RL repair

30

40

50

60

70

80

90

100

110

120

130

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
v
s
R
e
p
la
n
n
in
g

Figure 1: Experimental results for logistics domain with 3 agents and action
failures.

16

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

[-
]

Failure probability, P [-]

Communication

Replanning
RL repair

70

75

80

85

90

95

100

105

110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
v
s

R
e
p
la

n
n
in

g

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

[-
]

Failure probability, P [-]

Communication

Replanning
RL repair

70

75

80

85

90

95

100

105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
v
s

R
e
p
la

n
n
in

g

Figure 2: Experimental results for rovers domain with 3 agents and action
failures (top). Experimental results for logistics domain with 3 agents and
state perturbations with c = 1 (bottom).

17

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

[-
]

Failure probability, P [-]

Communication

Replanning
RL repair

70

75

80

85

90

95

100

105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
%

v
s

R
e
p
la

n
n
in

g

Figure 3: Experimental results for logistics domain with 3 agents and state
perturbations with c = 1.

Additionally, the overall time spent in the planning phase (used by the MA-
Plan algorithm) by the plan repair algorithms was 54% (34% at best) and 51%
(12% at best) for Back-on-Track-Repair and Repeated-Lazy-Repair respectively.
The execution length was lower in comparison the replanning approach as well
being in average 96% (72% at best, 130% at worst) by Back-on-Track-Repair and
lower being 81% (34% at best, 132% at worst) for Repeated-Lazy-Repair.

The second batch of experiments focused on boundaries of validity of the
positive result presented above. In particular, we validated the condition on
the coordination tightness and feasibility of failures. The auxiliary hypothesis
we validated states: with decreasing coordination tightness of the domain, the
communication efficiency gains of repairing techniques should decrease. For
loosely coordinated domains the communication efficiency of plan repair should
be on-par with that of the replanning approach.

To validate the auxiliary hypothesis we ran experiments with the rovers
as a loosely coordinated domain. Figure 3 (top) presents the results supporting
the hypothesis.

The third batch of experiments targeted the perturbation magnitude of the
plan failures. The second auxiliary hypothesis we validated states: communica-
tion efficiency gain of plan repairing in contrast to replanning should decrease
as the difference between a nominal and related failed state increases. The un-
derlying intuition is that, in the case the dynamic environment generates only
relatively small state perturbations and the failed states are “not far” from the
actual state, the plan repair should perform relatively well. On the other hand,
if the state essentially “teleports” the agents to completely different states, re-
planning tends to generate more efficient solutions than plan repair.

To answer this hypothesis, we have prepared another logistics experiment

18

employing state perturbations as the model of the environment dynamics. Fig-
ure 3 (bottom) depicts results of the experiment for c = 1. The perturbed state
for c = 1 is produced by removing one term from the actual state and adding
another one. As the chart shows, under random perturbations the plan repairing
technique lost its improvement against replanning. For stronger perturbations
with c = 2, 3, 4, the ratio between plan repairing and replanning remained on
average the same. The trend of the absolute numbers of messages, planning time
and execution length was slightly decreasing, as the probability of opportunistic
effects increased.

Finally, we conducted a series of experiments with a non-coordinated sat-
telites domain. The results depicted in Figure 3 show the anticipated lower
plan repair communication efficiency in contrast to replanning.

5 Final remarks
In the presented paper, we formally introduced the problem of multi-agent plan
repair, proposed three algorithms for solving it and experimentally validated
the hypothesis stating that under certain conditions, multi-agent plan repair
approach tends to be more efficient in terms of the communication overhead
it generates in comparison to the replanning approach. Our results well sup-
port the core hypothesis of the paper and we additionally performed a series of
experiments validating its boundary conditions.

The line of research underlying this paper well correlates with recent works
on classical single-agent planning sub-domains, such as partial ordered plan
monitoring and repairing [9], conformant and contingency planning, plan re-
use and plan adaptation. Environment dynamics is also handled by approaches
based on Markov decision processes. The main difference to our approach is
that the state perturbations utilized in our experiments have a priori unknown
probabilities. Our own recent approach to the problem of multi-agent plan repair
in [7] can be seen only as a precursor to the formal and rigorous treatment of
the problem in this paper. Therein, we described the first steps towards formal
treatment of the problem, as well as proposed two specific incomplete algorithms
for solving the problem, very distinct from the ones presented here.

There are several open challenges resulting from the presented work. Firstly,
the multi-agent planning framework (MA-Strips) is not expressive enough to
describe certain aspects of concurrent actions and should be extended to this
end, what, we suspect, will also influence the multi-agent planning complexity
analysis. In particular, there is no way to account for joint actions which have
effects strictly different than the unity of the individual actions involved. An-
other issue is that there is no way to enforce or forbid concurrent execution of
certain individual actions. Secondly, the framework is not able to describe con-
current resource consumption, which is not an issue in single-agent Strips [4]
planning, but in the multi-agent extension two individual concurrently executed
actions might “consume” the same precondition, even though it is undesirable
in the domain. Thirdly, there is a need for more efficient implementations of

19

multi-agent planners with more features as the gap between the state-of-the-
art classical planners and multi-agent planners is enormous. Fourthly, there
is a lack of standardized planning benchmarks for multi-agent planning, espe-
cially considering tightly coordinated planning problems. Such are needed to
further evaluate the hypotheses presented in this paper. Finally, we leave out
the work towards resolving the validity of Hypothesis 2 aiming at investigation
of complexity issues of multi-agent plan repair to future work.

References
[1] The international planning competition, ICAPS, http://ipc.informatik.uni-

freiburg.de/.

[2] T. C. Au and H. Munoz-Avila. On the complexity of plan adaptation by
derivational analogy in a universal classical planning framework. Advances
in Case-Based Reasoning, pages 13–27, 2002.

[3] Ronen I. Brafman and Carmel Domshlak. From one to many: Planning
for loosely coupled multi-agent systems. In Proc. of ICAPS, pages 28–35,
2008.

[4] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. In Proc. of the 2nd International Joint
Conference on Artificial Intelligence, pages 608–620, 1971.

[5] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability:
Replanning versus plan repair. In Proc. of ICAPS, 2006.

[6] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence Re-
search, 14:253–302, 2001.

[7] Antońın Komenda and Peter Novák. Multi-agent plan repairing. In Christo-
pher Amato, Emma Brunskill, Guy Shani, and Matthijs Spaan, editors,
Proceedings of Decision Making in Partially Observable, Uncertain Worlds:
Exploring Insights from Multiple Communities, DMPOUW 2011, IJCAI’11
collocated workshop, 2011.

[8] Roman van der Krogt and Mathijs de Weerdt. Self-interested planning
agents using plan repair. In Proceedings of the ICAPS 2005 Workshop on
Multiagent Planning and Scheduling, pages 36–44, 2005.

[9] Christian Muise, Sheila A McIlraith, and J Christopher Beck. Monitor-
ing the execution of partial-order plans via regression. In Proc. of 22nd
International Joint Conference on Artificial Intelligence, pages 1975–1982,
2011.

[10] B. Nebel and Koehler J. Plan reuse versus plan generation: a theoretical
and empirical analysis. Artificial Intelligence, 76(1-2):427–454, July 1995.

20

[11] Raz Nissim, Ronen I. Brafman, and Carmel Domshlak. A general, fully
distributed multi-agent planning algorithm. In Proc. of AAMAS, pages
1323–1330, 2010.

21

