
Domain-independent Multi-agent Plan Repair

Antonín Komenda
Department of Computer Science and Engineering

Faculty of Electrical Engineering
Czech Technical University in Prague

Czech Republic

Peter Novák
Department of Software and Computer Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

The Netherlands

Michal Pěchouček
Department of Computer Science and Engineering

Faculty of Electrical Engineering
Czech Technical University in Prague

Czech Republic

Abstract

Achieving joint objectives in distributed domain-independent planning prob-

lems by teams of cooperative agents requires significant coordination and

communication efforts. For systems facing a plan failure in a dynamic envi-

ronment, arguably, attempts to repair the failed plan in general, and espe-

cially in the worst-case scenarios, do not straightforwardly bring any benefit

in terms of time complexity. However, in multi-agent settings, the commu-

nication complexity might be of a much higher importance, possibly a high

Email addresses: antonin.komenda@agents.fel.cvut.cz (Antonín Komenda),
P.Novak@tudelft.nl (Peter Novák), michal.pechoucek@agents.fel.cvut.cz (Michal
Pěchouček)

Preprint submitted to Journal of Network and Computer Applications September 29, 2012

communication overhead might be even prohibitive in certain domains. We

hypothesize that in decentralized systems, where frequent coordination is re-

quired to achieve joint objectives, attempts to repair failed multi-agent plans

should lead to lower communication overhead than replanning from scratch.

Here, we formally introduce themulti-agent plan repair problem. Building

upon the formal treatment, we present the core hypothesis underlying our

work and subsequently describe three algorithms for multi-agent plan repair

reducing the problem to specialized instances of the multi-agent planning

problem. Finally, we present an experimental validation, results of which

confirm the core hypothesis of the paper. Our rigorous treatment of the

problem and experimental results pave the way for both further analytical,

as well algorithmic investigations of the problem.

Keywords: Multi-agent plan repair, Decentralized multi-agent planning,

Communication complexity, Experimental evaluation

2

Domain-independent Multi-agent Plan Repair

Antonín Komenda
Department of Computer Science and Engineering

Faculty of Electrical Engineering
Czech Technical University in Prague

Czech Republic

Peter Novák
Department of Software and Computer Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

The Netherlands

Michal Pěchouček
Department of Computer Science and Engineering

Faculty of Electrical Engineering
Czech Technical University in Prague

Czech Republic

1. Motivation

Multi-agent planning based on classical planning is an approach to con-

structing control mechanisms for a team of possibly heterogeneous autonomous

agents which compute and subsequently execute plans for the individual

agents so as to achieve some joint team objective in the environment. When

an agent is situated in a dynamic environment, occurrence of various unex-

pected events in the environment might lead to invalidation of the plan, a

Email addresses: antonin.komenda@agents.fel.cvut.cz (Antonín Komenda),
P.Novak@tudelft.nl (Peter Novák), michal.pechoucek@agents.fel.cvut.cz (Michal
Pěchouček)

Preprint submitted to Journal of Network and Computer Applications September 29, 2012

failure. A straightforward solution to this problem is to invoke a planning

algorithm and compute a new plan from the state the failure occurred in to

a state conforming with its original objective.

In general, replanning in the case of a failure occurrence is a costly pro-

cedure, especially in terms of its time complexity. In many cases, however, a

relatively minor fix to the original plan would resolve the failure possibly at

a lower cost. Because it is not clear what exactly are the planning domains

and types of dynamic environments which would benefit from such a repair

approach, it can be argued that non-informed plan repair attempts can in

many cases even raise the overall complexity of the approach in comparison

to replanning. This would be due to futile attempts to repair the failed plan

before inevitably falling back to replanning.

Plan repair can be seen as planning with re-use of fragments of the old

plan. Even though there is a number of works, empirically demonstrating

that plan repair in some domains performs better than replanning (e.g., [1, 2,

3]), Nebel and Koehler in [4] theoretically analyzed plan re-use (plan repair),

and concluded that in general it does not bring any benefit over replanning

in terms of computational time complexity. Taking into an account the

performance of modern classical planners on modern hardware, the benefit of

repairing failed plans would often be relatively low from the time-complexity

perspective.

In situated multi-agent systems, however, the time complexity is often not

of the primary importance. Consider application domains, such as e.g., un-

dersea operations by teams of coordinated autonomous underwater vehicles.

While the state-of-the-art technology allows to employ relatively powerful

4

computers on board of such robots, the communication links are extremely

constrained and expensive; wireless networks cannot be deployed and commu-

nication is performed mostly using acoustic signaling. In such applications,

it is the communication complexity of the distributed planning algorithms

which matters more than the time complexity. Consequently, employment

of multi-agent plain repair techniques can provide a tangible benefit over

replanning for a team of robots whose multi-agent plan fails.

Study of multi-agent planning system in previous literature [5, 6, 7] reveal

a fact that local planning for individual agents has usually lower computa-

tional complexity than solving the global coordination problem. Therefore,

at least intuitively, plan re-use techniques, which effectively simplify the co-

ordination part of the problem, should improve the time complexity and, as

the communication complexity is often tightly related to the time complexity,

consequently lower the communication complexity as well.

The motivation for our research is the intuition that multi-agent plan re-

pair, even though not always the fastest approach, should under specific con-

ditions generate lower communication overhead in comparison to replanning.

The conditions correspond to the amount and frequency of minimal required

coordination and the types of failures the environment generates. While the

hypothesis is rather intuitive, investigation of the particular types of domains

and the corresponding suitable repair algorithms deserves a deeper attention.

The contribution of the presented paper is threefold. Firstly, after in-

troducing the general problem of multi-agent planning stemming from the

formulation in [6], we give a rigorous treatment to the problem of multi-

agent plan repair and formulate a notion of relative coordination frequency

5

of a multi-agent planning problem. In turn, this formal approach allows

us to state the core hypothesis of the presented research in a more formal

and precise manner. Secondly, we propose three decentralized algorithms for

multi-agent plan repair reducing the problem to specialized instances of the

multi-agent planning problem including proofs of their correctness. Finally,

we present experimental validation confirming the core hypothesis of the pa-

per. The paper concludes with final remarks regarding the shortcomings of

our approach and future outlooks in the here described line of research.

2. Multi-agent Planning

We treat the problem of multi-agent planning as an extension of the clas-

sical single-agent planning in the manner adapted from MA-Strips planning

in [6]. We consider a number of cooperative and coordinated actors featuring

distinct sets of capabilities (actions), which concurrently plan and subse-

quently execute their local plans so as to achieve a joint goal. An instance

of a multi-agent planning problem is defined by i) an environment character-

ized by a state space, ii) a finite set of agents, each characterized by a set of

primitive actions (or capabilities) it can execute in the environment, iii) an

initial state the agents start their activities in and iv) a characterization of

the desired goal states. The following formal restatement of the MA-Strips

problem and our adaptations thereof constitute the preliminaries enabling

us to state the core hypotheses of the paper in a formal manner, as well as

provide the necessary background for the algorithms and their proofs intro-

duced later in Section 3. The formal preliminaries build upon the original

algorithm for the MA-Strips problem proposed by Brafman and Domshlak

6

in [6].

A state s ⊆ L is a set of atoms from a finite set of propositions L =

{p1, . . . , pm}. Given p ∈ s, we say that p holds in s, otherwise p does not hold

in s. In that sense, states are complete, i.e., it cannot happen that there is a

p ∈ L, such that p’s validity in s is unknown. S = 2L ∪ {χ} denotes the set

of all states together with a distinguished state χ ∈ S denoting an undefined

state.

A primitive action (action) an agent can perform in an environment

is a tuple a = 〈pre(a), add(a), del(a)〉, where a is a unique action label and

pre(a), add(a), del(a) respectively denote the sets of preconditions, add effects

and delete effects of a taken from some L = {p1, . . . , pm}. Act denotes the

set of all actions and we furthermore assume there is a distinguished empty

action ε = 〈∅, ∅, ∅〉 ∈ Act with no preconditions and no effects. Whenever

pre(a), add(a), del(a) ⊆ L, we say that a is defined over L.

We say that an action a is applicable in a state s iff pre(a) ⊆ s. An

application of a is defined by the state transformation operator ⊕ : S×Act →

S so that s ⊕ a = (s ∪ add(a)) \ del(a) iff a is applicable in s. In the case

a is not applicable in s, s ⊕ a results in a distinguished undefined state χ.

Note, we do not require that add(a) ∩ del(a) = ∅, rather we simply assume

that the effects negate each other strictly according to the definition of ⊕.

Furthermore, ⊕ is left-associative, hence we can write s⊕ a1 ⊕ · · · ⊕ an.

An agent α = {a1, . . . , an} is characterized precisely by its capabilities, a

finite repertoire of actions ai ∈ Act it can preform in the environment.

Definition 1 (MA-Strips). A multi-agent planning problem is a tuple Π =

(L,A, s0, Sg), where

7

1. L is a finite set of atoms;

2. A is a set of agents α1, . . . , αn with actions defined over L, featuring,

besides the empty action ε, otherwise mutually disjoint sets of actions.

I.e., αi ∩ αj = {ε}, whenever i 6= j;

3. s0 ∈ S is an initial state; and finally

4. Sg ⊆ S is a set of goal states.

From now on, given a set of agents A as defined above, Act =
⋃n
i=1 αi denotes

the set of all actions which can be performed among the agents of the team

A, the team capabilities.

The definition of a MA-Strips multi-agent planning problem is adapted

from the original formulation in [6]. Before formally defining the notion of

a solution to a multi-agent planning problem, we first introduce a sequel of

auxiliary notions.

Given an agent α, a single-agent plan P is a sequence of actions a1, . . . , ak,

s.t., ai ∈ α for every i. P [i] denotes the i-th action in P , or P [i] = ε in the

case i is larger than the length of P , which in turn will be denoted |P |.

A team of agents A = α1, . . . , αn can act in the environment concurrently.

A joint action a = 〈pre(a), add(a), del(a)〉 of the team is specified by a =

(a1, . . . , an) a tuple of actions corresponding to the individual agents, i.e.,

ai ∈ αi for each i, its preconditions pre(a) =
⋃n
i=1 pre(ai) and its effects

add(a) =
⋃n
i=1 add(ai) and del(a) =

⋃n
i=1 del(ai). a[k] denotes the k-th action

of a. The notions of action applicability in a state s, as well as application

of a to s straightforwardly extend from the definitions for primitive actions,

hence we can write s ⊕ a. Note, as we are building on top of the MA-

Strips formalism, at this point we do not rule out, nor specifically handle

8

joint actions in which the effects of individual agents’ actions cancel out each

other. In general, however, such considerations need to be tackled. Later on

in this section, we comment on such joint actions in more detail.

Definition 2 (multi-agent plan). Let Π = (L,A, s0, Sg) be a multi-agent

planning problem with A = α1, . . . , αn. A synchronous multi-agent plan

P = {P1, . . . , Pn}, consisting of single agent plans P1, . . . , Pn respectively

constructed from actions of the agents α1, . . . , αn is a solution to Π if the

plan P satisfies the following:

1. P is well-formed, i.e., |Pi| = |Pj| for all i, j ≤ n. Additionally, |P| =

|Pk| for every k ≤ n, denotes the length of the multi-agent plan P ;

2. P is feasible, i.e., there exists a sequel of states s1, . . . , sm, s.t. m = |P|

and si+1 = si ⊕ ai with ai = (P1[i], . . . , Pn[i]) for all i < m; and finally

3. P reaches the goal Sg, i.e., sm ∈ Sg.

We also say that P solves the problem Π. Finally, Plans(Π) denotes the

set of plans which are solutions to a given multi-agent planning problem Π.

Additionally, P [k] denotes the joint action of the team in the step k and

P [k, i] denotes the primitive action of the agent i in the step k.

This notation allows us to introduce the following plan-matrix notation

for a multi-agent plan P , with aij = P [i, j], providing a more visual under-

standing of multi-agent plans

P =


a11 a21 · · · am1

a12 a22 am2

...

a1n a2n · · · amn


9

We say that two multi-agent plans P1, P2 are equal (P1 = P2) iff they have

the same length (|P1| = |P2|) and for all i and j we have P1[i, j] = P2[i, j].

A concatenation of two multi-agent plans P1 and P2 over the same agents

α1, . . . , αn is defined as a plan P = P1 · P2, where for each i and j we

have P [i, j] = P1[i, j] if i ≤ |P1| and P [i, j] = P2[i − |P1|, j] for i > |P1|.

Note, concatenation of multi-agent plans is left-, as well as right- associative

operation, so we can write P = P1 · P2 · · · · · Pn.

Given a multi-agent plan P , P [i..j] denotes a fragment of P from the step

i to the step j. More precisely, P [i..j] is a fragment of P iff there exist multi-

agent plans Pprefix and Psuffix , such that Pprefix · P [i..j] · Psuffix = P . Finally,

P [i..∞] denotes the i-th suffix of the plan P , i.e., P [i..∞] = P [i..|P|]. P1 ·P2

is said to be a decomposition of a multi-agent plan P iff P = P1 · P2.

Given two multi-agent plans P1 and P2 we can define how different they

are. diff (P1,P2) denotes the difference between P1 and P2, that is the over-

all number of primitive actions in P1, which do not correlate with the cor-

responding primitive actions in P2 and vice versa. diff (P1,P2) corresponds

to Levensthein distance [8], in literature also referred to as edit-distance, be-

tween two strings corresponding to the sequences of actions of the individual

plans. Adaptation of the notion of Levensthein distance between two multi-

agent plans corresponds to the number of atomic edits, that is insertion of

an empty joint action, empty joint action deletion and individual action re-

placement, needed to transform one plan into the other. The cost of the

atomic edits is assumed to be equal. This model of plan difference is also

closely related to the MODDELINS modification problem for single-agent

plans described in [4].

10

To introduce the MA-Plan algorithm for solving MA-Strips problems

as formulated in [6], we finally need to distinguish between the public and

private actions of individual agents. An action is public whenever its pre-

conditions or effects involve atoms occurring in preconditions or effects of an

action belonging to another agent of the team. The private actions are those,

which are not affected by actions of the other agents.

Let atoms(a) = pre(a) ∪ add(a) ∪ del(a) and similarly atoms(α) be the

sets of atoms required or affected by the action a and the agent α respec-

tively. Given a multi-agent team A = α1, . . . , αn with actions defined over

the set of atoms L, the set of public actions is defined as Actpub = {a | a ∈

αi and atoms(a) ⊆ L \ atoms(αi)}. Consequently, the set of private actions

is defined as Actpriv = Act \ Actpub .

The distinction of actions to private and public turns out to be an im-

portant one. Since private actions do not depend, nor are dependencies of

other actions performable by the team, planning of sequences of private ac-

tions can be implemented strictly locally by the agent the actions belongs to.

In effect, the public actions become points of coordination among the multi-

agent team members. The algorithm MA-Plan for solving a planning problem

Π can be thought of in two interleaving stages until a suitable multi-agent

plan is found: i) computation of a plan consisting exclusively of suitable

coordination points of the agent team, and subsequently ii) computation of

sequences of private actions filling the gaps between the public actions of

each individual agent. While the second stage can be computed in a local

manner by each individual agent without interactions with its peers, a truly

decentralized multi-agent algorithm for the first stage requires a non-trivial

11

amount of interaction between the agents.

One of the main contributions of the Brafman and Domshlak’s paper [6]

lies in the observation that the MA-Plan algorithm can be implemented by

reduction of the first stage to a constraint satisfaction problem (CSP) (cf. e.g.,

[9]). In the CSP, each agent is represented by a single variable ranging over

possible plans of the individual agent and two types of constraints:

coordination constraint: a sequence of joint actions P (candidate multi-

agent plan) corresponding to a multi-agent planning problem Π =

(L,A, s0, Sg) satisfies the coordination constraint iff for every action

a = P [k, i] performed by the agent αi in the step k we have, that if a

is a public action, then

• for every p ∈ pre(a), there must exist ap = P [kp, ip], such that

p ∈ add(ap) and 0 < kp < k (there is some previous action which

causes p to hold), or p ∈ s0 in which case we set kp = 1; and

• for no k′, s.t., kp ≤ k′ ≤ k there exists a′ = P [k′, i′], such that

p ∈ del(a′) (p won’t be invalidated between causing it in the step

kp and execution of a in the step k).

The constraint ensures that the dependencies of all the public actions

occurring in the overall multi-agent plan are satisfied, possibly by ac-

tions performed in advance by other team members.

internal planning constraint: a sequence of joint actions P correspond-

ing to a multi-agent planning problem Π = (L,A, s0, Sg) satisfies the in-

ternal planning constraint iff for every agent, the corresponding single-

agent planning problem with landmarks {a | a = P [k, i] ∈ Actpub} is

12

Algorithm 1 MA-Plan(Π):
Input: A multi-agent planning problem Π = (L,A, s0, Sg).

Output: A multi-agent plan P solving Π, if such exists.

δ = 1

loop

construct CSPΠ;A

if solve-csp(CSPΠ;δ) then

reconstruct a plan P from a solution for CSPΠ;δ

return P

else

δ = δ + 1

end if

end loop

solvable, i.e., a single-agent planning algorithm is able to fill in the gaps

between the public actions in the candidate multi-agent plan. The con-

straints ensure that each individual plan is locally executable by the

particular agent.

Note, the formulation of the coordination constraint renders joint actions

with add(a) ∩ del(a) 6= ∅ invalid. It is the non-strict inequalities in the

condition 2 of the coordination constraint, together with the definition of

public actions, which ensure the local consistency of joint actions.

Algorithm 1 lists the original multi-agent planning algorithm MA-Plan

by Brafman and Domshlak in [6]. The algorithm iterates through CSP for-

mulations of the planning problem according to δ, informally the number

13

of coordination points between the agents in the multi-agent team. I.e., δ

determines the number of joint actions in a candidate multi-agent plan con-

taining public actions. Filling the gaps between the individual single-agent

public actions, if possible, then gives rise to the overall multi-agent plan.

In the case such a plan completion does not exist, the process continues by

testing longer candidate plans, possibly not terminating in the case where no

solution to the given multi-agent planning problem exists.

The original multi-agent planning algorithm assumes a centralized plan-

ning architecture, i.e., it is a centralized planning algorithm computing multi-

agent plans for a team of agents which are supposed to be subsequently exe-

cuted in a decentralized fashion. Our motivation is however a decentralized

planning/plan repair algorithm followed by a decentralized plan execution.

In [10], Nissim and Brafman adapted the original blueprint algorithm

from [6] to a distributed setting. The adaptation rests on formulating the

multi-agent planning problem as a distributed constraint satisfaction prob-

lem instance (DisCSP) and subsequently utilizing a state-of-the-art DisCSP

solver for solving it, plus managing the overhead involved in the resulting

distributed algorithm. From now on, whenever we speak about the imple-

mentation of the multi-agent planning algorithm, we refer to its decentralized

version as described in [10].

As mentioned in previous sections, the multi-agent planner from Nissim

and Brafman [10] is built on a DisCSP solver and a centralized single-agent

heuristic search planner. The algorithm used as the DisCSP solver is a cus-

tomized Asynchronous Backtracking (ABT) solver [11] with Asynchronous

Forward Checking [12] heuristics. In the planner, the best-first-search algo-

14

rithm is employed with helpful action and landmark heuristics. The planner

is a part of the FastForward planning suite [13]. The planning process

passes four separate phases: i) centralized preparation of the DisCSP in-

stance, ii) initialization of the solving process for the DisCSP in a special

agent representing the goal requirements, iii) decentralized solving of the

DisCSP problem and iv) decentralized finalization of the DisCSP solving pro-

cess.

In the final decentralized phase the agents already know their local plans,

given a multi-agent solution exists, and execute them in a distributed manner.

3. Multi-agent Plan Repair

Consider a multi-agent planning problem Π = (L,A, s0, Sg) and a plan

P solving Π. Furthermore, consider an environment in which, apart from

the actions performed by the agents of the team A, no other exogenous

events occur. We say that such an environment is ideal, or non-dynamic.

The execution of P in such an environment is failure-free and is uniquely

determined by the set of states s0, . . . , sm, such that si+1 = si⊕P [i] (cf. also

Definition 2).

In dynamic environments, however, it can occur that in the course of

execution of P , the environment interferes and the execution of some action

P [i] from the plan P does not result in precisely the state si+1 as defined

above. We could say that at step i an unexpected event occurred in the

environment. For simplicity, we consider only unexpected events happening

exclusively in the course of execution of some action (as if it took a non-

zero time), not such which could occur while the agent is deliberating the

15

execution (i.e., as if the deliberation was instantaneous).

Note that not all unexpected events in dynamic environments necessarily

lead to problems with execution of the plan P . However, there are at least

two cases of such events, which can be considered a plan execution failure.

A weak failure of execution of the plan P at step i w.r.t. the multi-agent

planning problem Π is such, when the state sf resulting from an attempt to

perform the action a = P [i] does not satisfy some of the postconditions of a,

i.e., add(a) 6⊆ sf .

A strong failure of execution of the plan P at step i w.r.t. the planning

problem Π occurs whenever the i-th action of P cannot be executed due to

its inapplicability. I.e., the execution of the plan up to the step i resulted in

states s0, s1 . . . , si, possibly with some weak failures occurring in the course

of execution of the plan fragment and P [i] is not applicable in si.

The weak and the strong plan execution failures are, however, just two

examples of a plan failure. There certainly are application domains in which

weak failures can be tolerated as far as the goal state is reached after execu-

tion of the multi-agent plan. In practice, it makes the most sense to monitor

for strong failures in system’s evolution. Most weak failures either lead to a

strong failure later on in the plan execution, or were irrelevant. Of course,

except for the case when a weak failure leads to a future failure to reach a

goal state, i.e., when some atom supposed to be included in a goal state fails

to be effected by an action in the plan. There also might be domains in which

other types of plan execution failures can occur, e.g., any change of the state

not caused by the involved agents can be considered a failure as well. Thus,

monitoring for weak, strong, or even other types of plan execution failures

16

can strongly depend on the target application. To account for the range of

various types failures, from now on, we only require that a plan execution

monitoring process determines some plan execution failure at a step i which

results in some failed state sf .

Definition 3 (multi-agent plan repair). Let Π = (L,A, s0, Sg) be a multi-

agent planning problem. A multi-agent plan repair problem is a tuple Σ =

(Π,P , sf , k), where P is a multi-agent plan solving the planning problem Π, k

is the step of P in which its execution failed and sf ∈ S is the corresponding

failed state.

A solution to the plan repair problem Σ is a multi-agent plan P ′, such

that P ′ is a solution to the planning problem Π′ = (L,A, sf , Sg). We say

that P ′ repairs P in sf . In the case Plans(Π′) = ∅, we say that the plan is

irreparable given the failure occurring at the state sf .

Given two multi-agent plans P1 and P2 both repairing a multi-agent plan

P for a problem Π in a state sf , we say that P1 is preserving P more than

P2 iff diff (P1,P) ≤ diff (P2,P) and denote the relation by P1 � P2. The

minimal repair of the multi-agent plan P is such a plan Pmin ∈ Plans(Π′),

which is minimal w.r.t. the mutual differences between the plans solving Π′.

That is,

Pmin ∈ arg min
P ′∈Plans(Π′)

diff (P ,P ′)

Note, there might be several distinct minimal repairs of a given multi-

agent plan.

In general, the multi-agent plan repair problem can be reduced to solving

a modified multi-agent planning problem and thus gives rise to a straight-

forward plan repair algorithm based on replanning in two steps: i) construct

17

the multi-agent replanning problem Π′ as prescribed in Definition 3, and

subsequently ii) utilize the MA-Plan algorithm to solve the problem Π′.

While the notion of minimal repair of multi-agent plans is based on the

number of changes the repaired plan contains w.r.t. the original plan, also

other metrics selecting distinguished plan repairs could be considered. We

will discuss examples of such later in the paper.

The original motivation underlying this paper was the hypothesis that

attempts to repair failed multi-agent plans lead to lower communication over-

head than replanning. Clearly, not all planning problems could benefit from

such a mechanism. Since we focus on multi-agent planning problems, which

in a sense enforce coordination among the members of a multi-agent team,

we need to provide an indication of which planning problems tend to ben-

efit from the plan repairing approach. The following notion of coordination

frequency formalizes the idea.

Definition 4 (coordination frequency). Let Π = (L,A, s0, Sg) be a multi-

agent planning problem with a solution P . We say that P is δ-coordinated

iff it contains at δ coordination points, i.e., joint actions including at least

one public actions of some individual agents. In the case δ = 0, that is P

does not contain any public action, we say that P is uncoordinated.

Relative coordination frequency cf (P) of a δ-coordinated plan P denotes

the frequency of coordination point occurrence per single step in the plan

and is defined as

cf (P) =
δ

|P|

18

Relative coordination frequency cf (Π) of a multi-agent planning problem

Π denotes the minimal coordination frequency required to solve Π and is

defined as

cf (Π) = min
P∈Plans(Π)

cf (P)

The notion of relative coordination frequency of plans relates to the frac-

tional amount of coordination corresponding to a single step in a plan exe-

cution. It straightforwardly extends to planning problems viewed as sets of

plans solving them. We simply look for solutions requiring minimal relative

amount of coordination required to solve the problem. The notion of relative

coordination frequency allows for comparison and ordering of multi-agent

planning problems according to the amount of coordination they minimally

require for solving them. Informally, we will call problems with relatively

low cf (Π) loosely coordinated and those with cf (Π) closer to 1 tightly coordi-

nated. Note that a problem with cf (Π) = 0.5 is still tightly coordinated, as

for each coordination step, there is only one uncoordinated step. Multi-agent

planning problems with cf (Π) = 0 will be called uncoordinated.

Note, it still might be the case that even though a multi-agent planning

problem can be solved without any coordination, i.e., cf (Π) = 0, there still

can exist coordinated plans in Plans(Π), which are more efficient, e.g., shorter

than the uncoordinated ones. For instance, consider a domain where the

objective is that an agent A reaches a destination d. The agent A could

move from its starting position to d on its own, albeit slowly and resulting

in a relatively long plan. Alternatively, A could be transported quickly to

d by another agent B. The latter plan would be shorter in terms of overall

number of steps, but would require coordination. In result, repair of such

19

a plan would be costlier in terms of communication overhead it incurs than

the uncoordinated one, our main concern here.

The core hypothesis of the paper can be now stated more formally.

Hypothesis 1. Multi-agent plan repair approaches producing more preserv-

ing repairs than replanning tend to generate lower communication overhead

for tightly coordinated multi-agent problems.

A crisper, though perhaps a more challenging version of the hypothesis

would express the communication overhead in terms of the average commu-

nication complexity.

Hypothesis 2. When applied to tightly coordinated planning problems, multi-

agent plan repair algorithms producing more preserving repairs than replan-

ning should feature a lower average communication complexity than replan-

ning.

As shown in [6], δ turns out to play an important role in time-complexity

analysis of the MA-Strips problem (cf. also Algorithm 1). Above, we hy-

pothesize that it is the relative frequency of coordination points along the

plans, which turns out to play a role in the communication complexity of

plan repair. Plan repair for problems which require some coordination quite

often along the plans should lead to re-use of fragments including relatively

large number of coordination points, which do not have to be planned for

again and thus leads to reduction of required communication in the repair

process.

In the remainder of this paper, we approach resolution of Hypothesis 1.

Treatment of Hypothesis 2 is beyond the scope of this paper and is left for

20

future work.

In the following subsections, we describe three plan repairing algorithms.

Sketches of ideas behind these algorithms were initially proposed in [14], in

the following we provide novel descriptions and formalizations of the algo-

rithms in full details.

3.1. Back-on-track Repair

Unexpected event occurring in an environment can cause a failure in

execution of a plan performed by a multi-agent team in that environment.

The result would be that the overall state of the system won’t be the one

expected by an undisturbed plan execution at the particular time step. A

straightforward idea to fix the problem is to utilize a multi-agent planner

to produce a plan from the failed state to the originally expected state and

subsequently follow the rest of the original multi-agent plan from the step in

which the failure occurred. The following multi-agent plan repair approach,

coined back-on-track (BoT) repair, is inspired by this idea, in fact a slight

generalization of it.

Definition 5 (back-on-track repair). Let Σ = (Π,P , sf , k) be a multi-agent

plan repair problem and Π′ = (L,A, sf , Sg) being the corresponding modified

multi-agent replanning problem.

We say that a plan P ′ ∈ Plans(Π′) is a back-on-track repair of P iff there

is a decomposition of P ′, such that P ′ = Pback · P [i..∞] for some i ≤ |P|.

P ′ = Pback ·P [i..∞] is said to be a proper back-on-track repair iff |P [i..∞]| >

0. I.e., P ′ preserves some non-empty suffix of P .

Informally, the back-on-track approach tries to preserve a suffix of the

21

Algorithm 2 Back-on-Track-Repair(Σ)
Input: A multi-agent plan repair problem Σ = (Π,P , sf , k), with

Π = (L,A, s0, Sg) and a sequence of states s0, . . . , sm, a failure-free execu-

tion of P would generate.

Output: A multi-agent plan P ′ solving Σ, if a solution exists.

construct Πback = (L,A, sf , {s0, . . . , sm} ∪ Sg)

if MA-Plan(Πback) returns a solution Pback then

retrieve the state sj of P to which Pback returns

return P ′ = Pback · P [j . . .∞]

else

return P ′ = χ

end if

original plan, prefix it with a newly computed plan Pback starting in sf and

leading to some state along the execution of P in the ideal environment.

Note, all plans from Plans(Π′) are back-on-track repairs of the original plan.

The length of the preserved suffix of the original plan provides a handle

on ordering of the plans according to the quality of repair. The longer the

preserved suffix, the more preserving the plan is. On the other hand, even

when the plan repair problem Σ is indeed solvable, there might not be any

valid proper back-on-track repair of the original planning problem.

Algorithm 2 realizes a multi-agent plan repair procedure according to the

back-on-track plan repair principle. Since the MA-Plan algorithm searches

for the shortest plan from the initial state to a goal state, the Back-on-Track-

Repair computes plans which return back to the original one in the shortest

22

possible way. The length of the overall repaired plan, however, depends

also on the selection of a particular goal state sg ∈ {s0, . . . , sm} ∪ Sg of the

planning problem Πback . If the planning algorithm selects sg according to an

ordering from sm to s0 and later on the remaining states from Sg for the same

lengths of possible Pback plans, the overall repaired resulting plan would also

be the shortest, under a condition the result is a proper back-on-track repair.

The algorithm rests on invocation of the underlying multi-agent planner,

hence its correctness relies on the correctness of the underlying planner. The

following lemma states the soundness of Algorithm 2.

Lemma 6 (Back-on-Track-Repair soundness). Let Π = (L,A, s0, Sg) be a

multi-agent planning problem with agents situated in a dynamic environment

in which the environment can interfere with the plan execution and let P

be a solution to Π. Let also sf be a state resulting from an interference

of the environment, a plan failure, at a step k of execution of the plan P.

Σ = (Π,P , sf , k) denotes the corresponding multi-agent plan repair problem.

Unless the execution of Back-on-Track-Repair(Σ) finishes with the unde-

fined plan χ, a failure-free execution of the resulting plan P ′ leads to some

goal state of the original multi-agent planning problem Π.

Proof. Follows straightforwardly from the construction of Πback and that P

is a solution to Π. Either Pback leads to some state along the ideal execution

trace of the original plan P and then the remainder of P leading to the final

state sm ∈ Sg is reused, or a failure-free execution of Pback would lead directly

to some final state send ∈ Sg without reusing a part of P .

Furthermore, upon a failure of a plan execution, if there exists a plan from

23

the failed state to a final state of the original multi-agent planning problem,

the back-on-track algorithm is able to find a solution to the corresponding

multi-agent plan repair problem.

Lemma 7 (Back-on-Track-Repair completeness). Let Π = (L,A, s0, Sg), P,

sf , k and consequently Σ be as assumed in Lemma 6.

If there exists a solution to the modified multi-agent planning problem

Π′ = (L,A, sf , Sg), then the execution of Back-on-Track-Repair(Σ) algorithm

finishes and finds P ′ 6= χ, a solution repair of P.

Proof. Again, follows straightforwardly from construction of Πback in the

algorithm. Observe that if there is a solution plan to the problem Π =

(L,A, sf , Sg), then there also must exist at least the same solution to the

modified planning problem Πback = (L,A, sf , {s0, . . . , sm} ∪ Sg). That is,

in the worst case, the back-on-track approach resorts to re-planning from

scratch.

The lemmas 6 and 7 establish how the back-on-track plan repair approach

inherits its correctness from the underlying multi-agent planner. Note how-

ever, the algorithm is only partially complete, because in cases when there

is no solution to a given multi-agent planning problem, it is not ensured

that the algorithm MA-Plan terminates. Provided a totally complete multi-

agent planning algorithm, directly replacing MA-Plan, total completeness of

the Back-on-Track-Repair algorithm could be straightforwardly established by

the lemmas above.

24

3.2. Simple Lazy Repair

The back-on-track multi-agent plan repair approach seeks to compute a

new prefix to some suffix of the original plan and repair the failure by their

concatenation. An alternative approach, coined lazy, attempts to preserve

the remainder of the original multi-agent plan and close the gap between the

state resulting from the failed plan execution and a goal state of the original

planning problem.

Let sf be the state resulting from a failure in execution of a multi-agent

plan P in a step k. We say that a sequence of joint actions P ′ is an executable

remainder of P from the step k and the state sf iff there exists a sequence

of states sk, . . . , s|P|, such that sk = sf , si+1 = si⊕P ′[i−k+ 1] and for every

step i and every agent j, we have that P ′[i − k + 1, j] = P [i, j] in the case

P [i, j] is applicable in the state si and P ′[i − k + 1, j] = ε otherwise. The

following definition provides a formal definition of the lazy approach.

Definition 8 (simple lazy repair). Let Σ = (Π,P , sf , k) be a multi-agent

plan repair problem and Π′ = (L,A, sf , Sg) be the corresponding modified

multi-agent replanning problem.

We say that a plan P ′ ∈ Plans(Π′) is a lazy repair of P iff there is

a decomposition of P ′, such that P ′ = P[k..∞] · Plazy , where P[k..∞] is the

executable remainder of P from the step k, execution of which, starting from

sf , results in the state slazy , and Plazy is a solution to the multi-agent planning

problem Πlazy = (L,A, slazy , Sg).

Algorithm 3 realizes multi-agent plan repair based on the lazy repair

approach described above.

25

Algorithm 3 Lazy-Repair(Σ)
Input: A multi-agent plan repair problem Σ = (Π,P , sf , k), with Π =

(L,A, s0, Sg).

Output: A multi-agent plan P ′ solving the problem Σ, if a solution exists.

construct P[k..∞], the executable remainder of P [k..∞] from the state sf

simulate execution of P[k..∞] from sf on, resulting in a final state slazy

construct Πlazy = (L,A, slazy , Sg)

Plazy = MA-Plan(Πlazy)

return P[k..∞] · Plazy , unless Plazy = χ in which case return χ

Similarly to the back-on-track algorithm, Algorithm 3 inherits its correct-

ness from the underlying multi-agent planner invoked internally.

Lemma 9 (Lazy-Repair soundness). Let Π = (L,A, s0, Sg), P, sf , k and Σ

be as assumed in the Lemma 6.

Unless the execution of Lazy-Repair(Σ) finishes with the undefined plan

χ, a failure-free execution of the resulting plan P ′ leads to some goal state of

the original multi-agent planning problem Π.

Proof. In whichever state slazy a failure-free execution of the executable re-

mainder of P ends up, if existing, the solution plan to the problem Πlazy will

take the system from there to some final state corresponding to the original

multi-agent planning problem Π. The executable remainder of P from the

state in which the failure occurred will get reused in the resulting plan.

Unlike the back-on-track algorithm, the lazy approach is in general incom-

plete, as it might happen that the execution of the executable remainder of

26

the original plan diverges to a state from which no plan to a goal state exists.

The notion of the algorithm completeness has to be weakened to domains in

which the agent team is at least capable to revert its own actions.

Definition 10 (connected multi-agent planning domain). Let Π = (L,A, s0, Sg)

be a multi-agent planning problem. Let also Act = α1 × · · · × αn, with

α1, . . . , αn ∈ A, and S = 2L. We say that the planning problem induces

a connected planning domain iff for every state s ∈ S and a joint action

a ∈ Act , there exists a solution to the multi-agent planning problem Π′ =

(L,A, s⊕a, s), i.e, a plan P = a1, . . . , ak, such that s = s⊕a⊕a1⊕· · ·⊕ak.

In essence, the definition of connected multi-agent planning domain states

that it is in the scope of capabilities of the multi-agent team A to “undo”,

or “revert”, effects of any of its own actions. Note, a single-agent version of

the definition (with an omnipotent agent α =
⋃
αi∈A αi) would also suffice,

since we require that ε ∈ α for every α ∈ A and in a consequence any joint

action of the team can be transformed into a corresponding multi-agent plan

of length n with only a single agent acting in any given step of the plan.

The following lemma states that the Lazy-Repair algorithm is complete in

connected planning domains.

Lemma 11 (Lazy-Repair completeness). Let Π = (L,A, s0, Sg) inducing a

connected multi-agent planning domain and we assume P, sf , k, as well as

Σ are as in the Lemma 6. Let also slazy correspond to the state to which

a failure-free execution of an executable remainder P[k..∞] of P [k..∞] would

lead.

If there exists a solution plan P ′ to the multi-agent planning problem

27

Π′ = (L,A, sf , Sg), then the execution of Lazy-Repair(Σ) algorithm finishes

and finds a plan P∗ 6= χ , a solution repair of P.

Proof. Let P[k..∞] = ak+1, . . . , am be the executable remainder of P [k..∞]

and let sk+1, . . . , sm be the states resulting from a failure-free execution of

P[k..∞], i.e., sj+1 = sj ⊕ aj for k + 1 < j < m. Since the agent team acts

in a connected planning domain, any of its actions is reversible, that is, its

effects can be undone. Therefore for execution of each action aj above, there

must exist a sequence of plans P←aj
, each being a solution to the planning

problem Π←aj
= (L,A, sj+1, sj). Since we assume that there exists a plan P ′

solution to the problem Π′ = (L,A, sf , Sg), the plan P∗ = P[k..∞] · P←am−1
·

· · · · P←ak+1
· P ′ is a solution for the plan repairing problem Σ = (Π,P , sf , k).

That is, the solution plan first executes P[k..∞], the executable remainder of

the original plan P from the point of failure (as defined by the algorithm),

then “undoes/reverts” effects of all the performed actions in P[k..∞] and thus

returns to the state sf , and finally executes the plan P ′, existence of which

we assume.

The corollary of the line of reasoning leading to the proof of completeness

of the lazy repair approach is that despite non-existence of irreversible envi-

ronment interferences in some domains, it is the agent team whose actions

can break the system evolution beyond repair. For illustration, even though

it is not in the ability of the physical environment to push a robot over a

cliff, it is indeed in its own powers to jump from it during execution of an

executable remainder of some, otherwise harmless plan, which failed shortly

before. In such domains, the lazy approach has to be employed with caution.

To conclude, similarly to the back-on-track approach, Lemma 11 states

28

only partial completeness of the Lazy-Repair algorithm the underlying multi-

agent planner does not ensure termination.

3.3. Repeated Lazy Repair

In a dynamic environment, plan failures occur repeatedly, i.e., even after

a repair of a failed plan, it is possible for the repaired plan to fail again. In

this situation both the back-on-track, as well as the lazy multi-agent plan

repair algorithms lead to prolonging the really executed plan. In the case

of the back-on-track approach, this is inevitable, since upon the repair, the

subsequent plan execution process immediately processes the newly added

plan fragment. In the case of the lazy repair, however, upon occurrence of

another failure during execution of an already repaired plan, it is not always

necessary to prolong the overall multi-agent plan. In the case a second failure

occurs while still executing the plan fragment from the original plan preserved

by the first repair, the suffix appended by the first repair can be discarded

and replaced by a new plan suffix repairing the second failure, should it be

necessary.

The following definition formally introduces repeated lazy (RLazy) plan

repair, an extension of the lazy multi-agent plan repair approach introduced

in Definition 8. For clarity, from now on, we refer to the lazy multi-agent

plan repair introduced in the previous subsection as simple lazy repair.

Definition 12 (repeated lazy repair). Let Σ = (Π,P , sf , k) be a multi-agent

plan repairing problem. Let also Π = (L,A, s0, Sg) be the corresponding

multi-agent planning problem with a solution of the form P = P ′ · Pfix . In

the case this is the first failure encountered during execution of P , we have

29

|Pfix | = 0 and thus P = P ′. Otherwise, P is a simple lazy repair solution of

some (previously solved) plain repair problem Σp = (Π,Pp , sfp , kp) composed

of an executable remainder of Pp (represented as P ′) and a repair suffix Pfix .

We say that P ′′ is a repeated lazy repair of P iff

1. P ′′ is a simple lazy repair solution to Σ′ = (Π,P ′, sfp , k) in the case k ≤

|P ′[kp..∞]| (the failure occurred still within the executable remainder

of Pp[kp..∞]); or otherwise

2. P ′′ is a simple lazy repair solution to Σ′ = (Π,P , sfp , k).

The repeated lazy repair leads to a straightforward extension of the simple

lazy plan repair algorithm listed in Algorithm 3. The intuitive benefit of the

straightforward application of the repeated lazy repair approach is that it

should lead to shorter executed plans than would result from usage of the

simple lazy repair. Consider a plan execution failure at step k1 of a plan P .

Simple lazy repair approach would fix it by appending a suffix P1 resulting

in the plan P[k1..∞] · P1. Simple lazy repair of a second failure at a step k2

occurring still somewhere in the fragment P[k1..∞] would result in a solution

P[k2..∞] · P1 · P2 with a suffix P2, the solution to the second plan repair

problem. Unlike that, upon occurrence of the second failure the repeated

lazy repair discards the previously computed suffix P1 and replaces it with a

new suffix P ′2, resulting in a repair solution P[k2..∞] · P ′2. The idea is that in

many domains P ′2 should be shorter than the length of the combined suffix

P1 · P2. This could be especially beneficial in domains in which subsequent

failures can even revert, or otherwise fix the ones occurring previously.

As with the previous two plan repairing approaches, we conclude the

discourse with proofs of repeated lazy repair approach correctness.

30

Algorithm 4 Repeated-Lazy-Repair(Σ)
Input: A multi-agent plan repairing problem Σ = (Π,P , sf , k) with Π =

(L,A, s0, Sg) and its solution P . In the case P is a lazy repair solution of

a (previously solved) plain repair problem Σp = (Π,Pp , sfp , kp), it takes

the form P = P ′ · Pfix . Otherwise, in the case this is the first failure

encountered, |Pfix | = 0.

Output: A multi-agent plan solving Σ = (Π,P , sf , k).

if k ≤ |P ′[kp..∞]| then

return Lazy-Repair((Π,P ′, sf , k))

else

return Lazy-Repair((Π,P , sf , k))

end if

Lemma 13 (Repeated-Lazy-Repair soundness). Let Π = (L,A, s0, Sg), P, sf ,

k and Σ be as assumed in the Lemma 6.

Unless the execution of Repeated-Lazy-Repair(Σ) finishes with the unde-

fined plan χ, a failure-free execution of the resulting plan P ′ leads to some

goal state of the original multi-agent planning problem Π.

Proof. Follows immediately from the soundness of the simple lazy repair

approach in Lemma 9.

Lemma 14 (Repeated-Lazy-Repair completeness). Let Π = (L,A, s0, Sg) in-

ducing a connected multi-agent planning domain and we assume P, sf , k, as

well as Σ are as in the Lemma 6.

If there exists a solution plan to the multi-agent planning problem Π′ =

(L,A, sf , Sg), then the execution of Repeated-Lazy-Repair(Σ) algorithm fin-

31

ishes and finds a plan P ′ 6= χ , a solution repair of P.

Proof. Again, follows straightforwardly from the proof of completeness of the

simple lazy repair algorithm. Note, the proof of Lemma 11 is independent

of how exactly does the final state to which the executable remainder of

the original plan leads to looks like, it can be arbitrary. Therefore, when

we arbitrarily modify the executable remainder of the original plan, as in

Algorithm 4, the proof still holds. That is, if there exists a plan P ′′ from sf to

some state in Sg, then in connected domains, there must exist at least the plan

firstly executing the executable remainder of the original plan, subsequently

a plan reverting its effects back to sf and than finally performing the steps

of P ′′.

4. Multi-agent Plan Repairing Process

The multi-agent planning, executing, monitoring and repairing process

has two phases. In the first phase, for a given domain a multi-agent plan is

constructed using the MA-Plan algorithm. In the second phase, the plan is

executed by the agents acting in a shared environment. In the course of the

execution, the dynamics of the environment can interfere, possibly resulting

in a failure of the executed plan. Since the plan execution is monitored by the

multi-agent team, or a centralized observer, upon a failure detection a plan

repair algorithm is invoked. In turn, to find particular repairing plans, the

MA-Plan algorithm is invoked as specified by the plan repairing algorithms

introduced in the previous section.

Scheme listed in Algorithm 5 shows the pseudo-code of the process. Since

we assume complete information there is no difference between a decentral-

32

ized and a centralized monitoring, hence for clarity, the algorithm instantiates

the centralized version. As a consequence of the information completeness

assumption, also the execution of the centralized initialization of the MA-

Plan algorithm does not negatively affect the amount of communication in

the system.

Before execution of each plan step, the algorithm checks whether a failure

occurred and if so, invokes a plan repair algorithm. We do not explicitly

articulate what a failure amounts to, since this can be application specific.

Plausible options include checking for weak, or strong failures, i.e, validity of

effects of the previously executed action, or validity of preconditions of the

action to be executed next. Alternatively, in some applications it might be

useful to check for any exogenous change of the current state not caused by

the involved agents.

Finally, the algorithm accounts for the possibility that the plan repairing

process can result in finding no solution to the failure. If that is the case, the

algorithm finishes with the final plan equal to the undefined plan χ. Note

however, that Algorithm 5 does not necessarily terminate. Termination of of

the scheme relies on two factors. Firstly, it is the termination property of the

underlying multi-agent planner invoked by the plan repair algorithms dis-

cussed in Section 3. Secondly, unless no repair to the occurred failure can be

found, the algorithm terminates when it is capable to fully execute the com-

puted plan. In environments where failures can occur relatively frequently, it

can however happen that the plan execution, monitoring and repair process

would continually repair recurring failures sooner than the previous repair

was fully executed. In a consequence, this would lead to a gradual prolonga-

33

Algorithm 5 Plan execution and monitoring scheme.
Input: An initial multi-agent planning problem Π = (L,A, s0, Sg).

P = MA-Plan(Π)

if P = χ then return fail

k = 1

repeat

agents perform P [k]

if failure detected then

retrieve the current state s from the environment

P = Repair((Π,P , s, k))

k = 1

else

k = k + 1

end if

until P = χ or k > |P|

tion of the executed plan so that it will never reach the end of its execution.

Informally, for such domains, we could state that the Algorithm 5 terminates

when the plan repair process generates sharply shorter repaired plans than

is the time horizon in which the failures in the environment tend to occur.

Results in [15] discuss steps towards a formal analysis of such a planning

horizon and classification of various planning domains with respect to the

frequency of failures occurring in an environment and the likelihood that an

agent completes its plans without an interruption.

34

Instantiation of the execution, monitoring and repair scheme with the re-

peated lazy repair algorithm allows for an alternative plan execution model.

The planning process invocation in the repair algorithm could be delayed

until the execution of the preserved fragment of the original plan finishes.

Such an approach could preserve significantly longer fragments of the orig-

inal plan than instantiation of the original scheme in Algorithm 5 with the

Repeated-Lazy-Repair algorithm. That is, upon a failure, instead of trying to

repair the failed plan right away, as both the back-on-track and simple lazy

plan repair algorithms invoked from the listed plan execution scheme would

do, the system can simply proceed with execution of the remainder of the

original plan and only after it finishes, the lazy plan repair is triggered. The

approach simply ignores the plan failures during execution and postpones

the repair the very end of the process, hence the “ lazy” label for the two

algorithms. In some domains, such an approach could significantly decrease

the number of multi-agent planner invocations and in a consequence save a

large amount of communication overhead.

5. Experimental Validation

To verify the Hypothesis 1, we conducted a series of experiments with

implementations of the multi-agent plan repair algorithms described in the

previous section. Below, firstly, we describe the experimental setup used for

the experiments, then we interpret the data collected and finally, we revisit

Hypothesis 1.

35

5.1. Experimental Setup

The experiments were based on a presented two-stage plan repairing al-

gorithm, where we distinguish two types of plan failures: action failures and

state perturbations. Both failure types are parametrized by an uniformly dis-

tributed probability P , which determines whether a simulation step fails, or

not (a failure is generated only if there exists a plan to a goal, which obvi-

ate problems with irreversible actions). Both failure types are weak failures.

That is, they are not handled immediately, but can preclude the plan execu-

tion and later result in a strong failure. Upon detection, a strong failure is

handled by one of the plan repairing algorithms.

An action failure is simulated by not-execution of some of the individual

agent actions from the actual plan step. The individual action is chosen

according to a uniform probability distribution over the positions within a

joint action. The individual failed action is then removed from the joint

action and the current state is updated by the modified joint action.

The other simulated failure type, state perturbation, is parametrized by

a positive non-zero integer c, which determines the number of state terms,

which are removed from the current state, as well as the number of terms

which are added to it. The terms to be added or removed are selected also

randomly from the domain language according to a uniform distribution.

We implemented the experimental setup as a centralized simulator of the

environment integrating the multi-agent domain-independent planner MA-

Plan. The individual agents are initialized by the planner initialization pro-

cess, together with a given planning problem instance. Each agent runs in its

own thread and they deliberate asynchronously. The agents send peer-to-peer

36

messages between themselves via a centralized simulator as well. The mes-

sages are sent by the integrated MA-Plan planner exclusively in the DisCSP

phase.

The experiments were performed on FX-8150 8-core processor at 3.6GHz

with Java Virtual Machine limited to 2.5GB of RAM. The individual mea-

surements were parametrized by the plan failure probability P and each

problem instance was executed 10 times with various value samples. The

resulting data are, in the figures, presented with the natural distribution.

The candlestick charts depict the differences between the minimal and the

maximal measurements, together with the standard deviation. The accom-

panying charts represent the percentage ratio between the measured variable

for the particular repairing method and replanning from scratch (normalized

at the 100% level). Since we are using the planner MA-Plan as a black-

box algorithm, the relative proportion to the replanning approach bear a

higher significance than the particular absolute numbers. The values pre-

sented in the result table are average values from the measurements of the

same parametrization.

5.2. Test Problems, Algorithms and Metrics

The experiments were conducted on four planning domains. Three of

the domains originate in the standard single-agent IPC planning bench-

marks [16]. Similarly to the evaluation of the MA-Plan implementation in [10],

we chose domains, which are straightforwardly modifiable to the multi-agent

setting: logistics (2–6 agents), rovers (2–4 agents), and satellites (2–

6 agents). Additionally, we have extended the set of IPC-based domains by a

well known coordination domain cooperative pathfinding (2–4 agents).

37

Instances of logistics problems are about transporting packages be-

tween locations by a fleet of heterogeneous transport vehicles. A representa-

tive example of a logistics problem Πlog3—used as one of the experiments—

contains three agents controlling two trucks T1 and T2 and one airplane A.

There are two cities, each with one storage depot (d1 and d2) and one airport

(a1 and a2). The trucks can move m(from, to) only within their cities, i.e.,

between one depot and one airport. The airplane can fly f(from, to) among

all airports in the environment, but cannot land at the depots. All vehicles

can load l(package, location) and unload u(package, location) a package at a

location. Initially, there is one package p at one of the depots and the goal

is to transport it to the other depot in the other city. The trucks start at

the depots and the airplane starts at one of the airports. A multi-agent plan

solving this particular instance is P log3 =

A :

T1 :

T2 :


ε ε ε l(p, a1) f(a1, a2) u(p, a2) ε ε ε

l(p, d1) m(d1, a1) u(p, a1) ε ε ε ε ε ε

m(d2, a2) ε ε ε ε ε l(p, a2) m(a2, d2) u(p, d2)

 ,

the coordination frequency for such problem is cf (Πlog3) = 4
9

= 0.4̄, because

δ = 4 and length of the plan |P log3| = 9 and the presented plan P log3 is

minimal from the perspective of the coordination points. For the context of

the experiments, the logistics domain is tightly coordinated in that it re-

quires relatively frequent coordination among the involved agents: airplanes

and trucks need to wait for each other to load or unload the transported

packages. The parallel version of the logistics domain (par) for 5 and 6

agents involves two parallel logistics sub-problems.

Problems of the rovers domain describe space exploration missions car-

ried out by autonomous rovers equipped for three types of tasks: soil analysis

38

s, rock analysis r and imaging i. The resulting data from the tasks has to

be communicated c(s, r, i) back to the Earth in one data package over a com-

munication channel available only for one of the rovers at a time. The data

can be communicated only if they are prepared p(s/r/i). The rock and soil

analysis can be executed provided that the rover is at suitable position and

has empty analytical store. The store can be emptied, if required. The rovers

can move among predefined waypoints with a known information about the

samples. Images can be taken only from suitable positions and with a camera

calibrated and in a correct mode. An example problem Πrov3 used as one of

the experiments has three fully equipped rovers R1, R2 and R3. A solution

Prov3 =

R1 :

R2 :

R3 :


· · · p(r1) · · · p(i1) · · · p(s1) ε c(s1, r1, i1) ε

· · · p(r2) · · · p(i2) · · · p(s2) ε ε c(s2, r2, i2)

· · · p(r3) · · · p(i3) · · · p(s3) c(s3, r3, i3) ε ε


︸ ︷︷ ︸

10 private actions

has coordination frequency cf (Πrov3) = 3
13

.
= 0.23 following the same pro-

cedure as presented in previous paragraph with logistics. Therefore, for

the context of the experiments, the rovers domain is loosely coordinated

in that it requires coordination only at the end of plans.

The satellites domains describe planning for a set of independent satel-

lites providing various types of deep space imagery i from the orbit. Each

imaging instrument on board of a satellite has to be firstly turned to point at

one of predefined target directions. Secondly, each imaging instrument has

to be powered, switched on and calibrated before it can take an image t(i)

in one of predefined modes. A solution of one of the experimental instance

Πsat3 using three satellites S1, S2 and S3 is Psat3 =

39

S1 :

S2 :

S3 :


· · · i(i1)

· · · i(i2)

· · · i(i3)

 .

︸ ︷︷ ︸
3 private actions

In this case the coordination frequency cf (Πsat3) = 0
3

= 0, as there is no

public action in an optimal plan. Therefore the domain is uncoordinated

in that it does not need any coordination between the satellites acquiring

images individually.

Finally, in the cooperative pathfinding domain, a team of robots

move on a 3×3 grid (positions x1y1 to x3y3), where only a single robot can

occupy one cell. The goal for the robots is to move m(from, to) to initial

positions occupied by the other robots in the initial state. A representative

problem Πcp3 contains three robots R1, R2 and R3 and a solution plan Pcp3

is

R1 :

R2 :

R3 :


m(x1y2, x1y1) m(x1y1, x2y1)

m(x2y1, x3y1) m(x3y1, x3y2)

m(x3y2, x2y2) m(x2y2, x1y2)

 ,

consequently the coordination frequency cf (Πcp3) = 2
2

= 1 as each action in

an optimal plan is public and therefore the domain represent a fully coordi-

nated problems.

To evaluate validity of Hypothesis 1, the multi-agent planning problems

were tested on the experimental setup against a plan repair algorithm im-

plementing replanning from scratch and two of the repair algorithms Back-

on-Track-Repair (BoT repair, Algorithm 2) and Repeated-Lazy-Repair (RLazy

40

repair, Algorithm 4) introduced in the previous section.

Efficiency problems of the original MA-Plan implementation (in [10]) lim-

ited the experiments to plans with maximally six landmarks, coordination

points, per agent. Additionally, the Back-on-Track-Repair algorithm could

not leverage disjunctive goal form (cf. construction of Πback in Algorithm 2)

and this was emulated by an iterative process testing all term conjunctions

in a sequence and thus resulting in multiple runs of the DisCSP solver instead

of a single run with disjunctive goal.

We used four metrics to evaluate the measurements:

execution length is the overall number of joint actions the experimental

setup executed,

planning time was the measured cumulative time consumed by the under-

lying MA-Plan planner used for generating initial and repairing plans,

repairing time is the overall time spent in MA-Plan invocations minus the

first planning process of the initial plan; and finally,

communication corresponds to the number of messages and communica-

tion volume in bytes passed between the agents during the planning or

plan repair process. That is messages generated by the DisCSP solver

in the MA-Plan planner.

5.3. Results and Discussion

The first batch of experiments directly targets validation of Hypothesis 1:

Multi-agent plan repair is expected to generate lower commu-

nication overhead in tightly coordinated domains.

41

D
om

ai
n

A
ge

nt
s

R
ep

ai
ri

ng
ti

m
e

[m
s]

N
o.

of
m

es
sa

ge
s

[-]
C

om
m

un
ic

at
io

n
[k

B
]

E
xe

c.
le

ng
th

[-]

B
oT

R
La

zy
R

ep
la

n
B

oT
R

La
zy

R
ep

la
n

B
oT

R
La

zy
R

ep
la

n
B

oT
R

La
zy

R
ep

la
n

lo
g
is

ti
cs

2
11

5.
3

11
6.

1
14

5.
6

13
.9

8.
2

10
.9

2.
0

1.
7

2.
3

8.
8

14
.3

10
.7

3
17

8.
0

14
9.

6
25

7.
2

33
.7

18
.0

59
.5

5.
0

3.
6

6.
2

13
.2

18
.7

15
.9

4
26

6.
2

16
2.

1
47

9.
3

89
.5

29
.1

11
4.

7
13

.3
6.

6
26

.5
15

.5
21

.5
18

.1

lo
g
is

ti
cs

(p
a
r
)

5
73

.7
74

.0
81

.3
23

.2
21

.8
22

.5
4.

4
4.

4
5.

0
13

.5
14

.6
14

.9

6
12

6.
0

84
.1

11
0.

7
49

.6
32

.5
60

.9
9.

3
6.

8
9.

6
11

.4
12

.4
12

.0

co
o
p.

pa
th

fi
n
d
in

g

2
23

.9
11

5.
6

93
.2

2.
4

2.
2

2.
2

0.
6

0.
6

0.
6

2.
8

3.
2

2.
6

3
28

.1
26

1.
5

37
4.

6
12

.9
20

.0
12

.7
0.

7
4.

5
3.

4
2.

4
3.

1
3.

4

4
29

.4
19

56
8.

6
65

29
.8

20
.0

14
k

19
.1

0.
9

30
02

.0
5.

1
2.

3
4.

0
3.

3

ro
v
er

s

2
38

1.
3

17
9.

8
24

9.
8

13
.0

7.
4

10
.0

2.
7

1.
9

2.
7

14
.7

20
.3

14
.5

3
37

4.
5

30
0.

6
48

9.
9

15
13

.6
22

.4
3.

3
3.

6
6.

3
12

.5
19

.5
14

.5

4
79

8.
3

63
4.

4
65

0.
5

42
.5

30
.0

29
.1

7.
6

8.
3

8.
9

15
.3

22
.1

13
.6

sa
te

ll
it

es

2
80

.3
67

.5
67

.5
6.

2
4.

9
3.

8
1.

3
1.

1
0.

9
5.

8
7.

5
5.

1

3
12

6.
9

81
.9

13
9.

9
15

.8
7.

6
15

.3
2.

9
1.

8
3.

7
6.

9
7.

0
6.

5

4
13

9.
2

14
4.

4
17

6.
5

21
.8

14
.5

18
.2

3.
8

3.
6

4.
7

6.
7

6.
9

5.
6

5
15

4.
5

23
2.

9
22

2.
3

30
.0

17
.7

25
.9

5.
6

4.
8

7.
3

5.
7

6.
7

5.
5

6
14

52
.8

48
09

3.
9

23
02

7.
7

57
.3

32
.5

38
.2

11
.6

9.
4

11
.7

6.
9

7.
1

5.
7

T
ab

le
1:

R
es

ul
ts

of
ex

pe
ri

m
en

ts
fo

r
al

l
do

m
ai

ns
w

it
h

pr
ob

ab
ili

ty
P

=
0
.3

an
d

ac
ti

on
fa

ilu
re

s.
T

he
hi

gh
lig

ht
ed

ce
lls

ar
e

th
e

be
st

re
su

lt
s

fo
r

a
pa

rt
ic

ul
ar

do
m

ai
n

an
d

a
pa

rt
ic

ul
ar

m
et

ri
cs

.
T

he
bo

ld
ed

re
su

lt
s

di
st

in
ct

iv
el

y
su

pp
or

t
th

e
co

re
hy

po
th

es
is

of

th
e

pa
pe

r.

42

logistics and cooperative pathfinding, as tightly and fully coordi-

nated domains with dynamics of the simulated environment modeled as ac-

tion failures, are suitable experiments to provide required insight. Table 1

shows results for a fixed failure probability P = 0.3 and Figures 1, 2 and

3 depict the results of the experiment for 3 agents logistics with variable

probability P .

The highlighted results for 4-agent logistics in the table shows that the

communication overhead generated by the Repeated-Lazy-Repair (RLazy) al-

gorithm is at 25% of that generated by the replanning (Replan) approach.

For 4-agent cooperative pathfinding, the communication overhead gen-

erated by the Back-on-Track-Repair (BoT) is at 18% of that generated by the

replanning. Additionally, the communication overhead decreases with the in-

creasing number of agents in the problems. I.e., the plan repairing algorithms

scale better than replanning from scratch. The trends in Figures 1, 2 and 3

for logistics domain show, that the results are also valid for higher values

of P . Furthermore the overhead decreases with increasing failure probabili-

ties. The communication overhead generated in the experiment for various

probabilities P by the Back-on-Track-Repair algorithm is, over all the mea-

sured probabilities, on an average at 59% (36% at best) of that generated

by the replanning approach. The Repeated-Lazy-Repair algorithm performed

even better and on average produced only 43% (11% at best) of the commu-

nication overhead generated by the replanning algorithm. In a consequence,

the experiments strongly support our hypothesis.

The overall time spent in the planning phase (used by the MA-Plan algo-

rithm) by the plan repair algorithms echoes the results for the communication

43

Figure 1: Experimental results of the communication metrics for logistics domain with

3 agents and action failures.

44

Figure 2: Experimental results of the planning time metrics for logistics domain with 3

agents and action failures.

45

Figure 3: Experimental results of the execution length metrics for logistics domain with

3 agents and action failures.

46

overhead. Plan repairing scales better with higher numbers of agents in both

logistics and cooperative pathfinding. On average, over all the mea-

sured probabilities P in 3-agent logistics, the computational efficiency was

at 54% (34% at best) and at 51% (12% at best) for Back-on-Track-Repair

and Repeated-Lazy-Repair respectively in comparison to replanning. Figure 1

depicts these results.

The second batch of experiments focused on boundaries of validity of the

positive result presented above. In particular, we validated the condition on

the coordination tightness and feasibility of failures. The auxiliary hypothesis

we validated states:

With decreasing coordination frequency of the planning do-

main, the communication efficiency gains of repairing techniques

should decrease. For loosely coordinated domains the communi-

cation efficiency of plan repair should be on-par with that of the

replanning approach.

To validate the auxiliary hypothesis we ran experiments with rovers as a

loosely coordinated and satellites as an uncoordinated planning problem.

The results in Table 1 shows that the plan repairing algorithms are only

slightly better (maximally 10%) in terms of the generated communication

overhead than replanning, regardless of the number of agents. The trend

in Figure 4 shows similar results for various failure probabilities P . The

presented results support the auxiliary hypothesis.

47

Figure 4: Experimental results for rovers domain with 3 agents and action failures.

48

Figure 5: Experimental results for logistics domain with 3 agents and state perturbations

with c = 1.

49

The third batch of experiments targeted the perturbation magnitude of

the plan failures. The second auxiliary hypothesis we validated states:

Communication efficiency gain of plan repairing in contrast to

replanning should decrease as the difference between the nominal

and the corresponding failed states increases.

The underlying intuition is that, in the case the dynamic environment gen-

erates only relatively small state perturbations and the failed states are “not

far” from the actual state, the plan repair should perform relatively well. On

the other hand, if the state essentially “teleports” the agents to completely

different states, replanning tends to generate more efficient solutions than

plan repair.

To tackle this hypothesis, we modified the logistics experiment to simu-

late state perturbations as the model of the environment dynamics. Figure 5

depicts results of the experiment for c = 1. The perturbed state for c = 1

is produced by removing one term from the actual state and adding another

one. As the chart shows, under random perturbations the plan repairing tech-

nique lost its improvement against replanning. For stronger perturbations

with c = 2, 3, 4 (not showed in the figure), the ratio between plan repairing

and replanning remained on average the same. The trend of the absolute

numbers of messages, planning time and execution length was slightly de-

creasing, as the probability of opportunistic effects increased.

Beside supporting the presented hypotheses the results also show the dif-

ferences between the two plan repairing algorithms. Table 1 highlights the

best results for communication volume and planning time. In most cases

the Repeated-Lazy-Repair algorithm is more efficient in communication than

50

the Back-on-Track-Repair algorithm. The exceptions are the cooperative

pathfinding and rovers domains with higher numbers of agents. These

problems share high combinatorial complexity (cooperative pathfind-

ing in coordination and rovers in local planning) and therefore more plan

preserving techniques, as Back-on-Track-Repair, benefit.

6. Final Remarks

In the presented paper, we i) formally introduced the problem of multi-

agent plan repair, ii) formulated a notion of relative coordination frequency of

a planning problem based on Brafman and Domshlak’s number of coordina-

tion points, iii) proposed three algorithms for solving the repair problem and

proved their correctness, and finally iv) formulated, as well as experimentally

validated the hypothesis stating that under certain conditions, multi-agent

plan repair approaches tend to be more efficient in terms of the communica-

tion overhead they generate in comparison to replanning from scratch. Our

results well support the core hypothesis of the paper and we additionally per-

formed a series of experiments validating its boundary conditions articulated

by the series of auxilliary hypotheses in Section 5.

The line of research underlying this paper well correlates with recent

works on classical single-agent planning sub-domains, such as partial ordered

plan monitoring and repairing [17], conformant [18] and contingency plan-

ning [19], plan re-use [3] and plan adaptation [20]. Environment dynamics is

also handled by approaches based on Markov decision processes. The main

difference to our approach is that the state perturbations utilized in our ex-

periments have a priori unknown probabilities. Our own recent approach to

51

the problem of multi-agent plan repair in [21] can be seen only as a precursor

to the formal and rigorous treatment of the problem in this paper. Therein,

we described the first steps towards a formal treatment of the problem, as

well as proposed two specific incomplete algorithms for solving the problem,

very distinct from the ones presented here. A sketch of the ideas behind

the three plan repairing algorithms were additionally published in our recent

work [14], however without a formal description in full details and exhaustive

evaluation. Those are presented herein.

There are several open challenges resulting from the presented work.

Firstly, the multi-agent planning framework (MA-Strips) is not expres-

sive enough to describe certain aspects of concurrent actions and should be

extended to this end. This, we suspect, will also influence the multi-agent

planning complexity analysis. In particular, there is no way to account for

joint actions which have effects strictly different than the unity of the in-

dividual actions involved. Another issue is that there is no way to enforce

or forbid concurrent execution of certain individual actions. Secondly, the

framework is not powerful enough to capture subtleties in situations, such as

concurrent resource consumption. This is not an issue in single-agent Strips

[22] planning, but in the multi-agent extension two individual concurrently

executed actions might “consume” the same precondition, even though it is

undesirable in the domain. Consider e.g., two trucks loading the same box at

the same time, or two robots entering a narrow door simultaneously. Thirdly,

there is a need for more efficient and feature-full implementations of multi-

agent planners, as the gap between the state-of-the-art classical planners and

multi-agent planners is still enormous. Fourthly, there is a lack of standard-

52

ized planning benchmarks for multi-agent planning, especially considering

tightly coordinated planning problems. Exploration of such is needed to fur-

ther evaluate the hypotheses presented in this paper. Finally, we left out

the work towards resolving the validity of Hypothesis 2 aiming at analytical

investigation of complexity properties of multi-agent plan repair to future

work.

[1] R. v. d. Krogt, M. d. Weerdt, Self-interested planning agents using plan

repair, in: Proceedings of the ICAPS 2005 Workshop on Multiagent

Planning and Scheduling, 2005, pp. 36–44.

[2] T. C. Au, H. Munoz-Avila, On the complexity of plan adaptation by

derivational analogy in a universal classical planning framework, Ad-

vances in Case-Based Reasoning (2002) 13–27.

[3] M. Fox, A. Gerevini, D. Long, I. Serina, Plan stability: Replanning

versus plan repair, in: Proceedings of ICAPS, 2006, pp. 212–221.

[4] B. Nebel, J. Koehler, Plan reuse versus plan generation: a theoretical

and empirical analysis, Artificial Intelligence 76 (1-2) (1995) 427–454.

[5] J. S. Cox, E. H. Durfee, An efficient algorithm for multiagent plan coor-

dination, in: Proceedings of the Fourth International Joint Conference

on Autonomous Agents and Multiagent Systems, AAMAS ’05, ACM,

New York, NY, USA, 2005, pp. 828–835.

[6] R. I. Brafman, C. Domshlak, From one to many: Planning for loosely

coupled multi-agent systems, in: Proceedings of ICAPS, 2008, pp. 28–

35.

53

[7] A. Jonsson, M. Rovatsos, Scaling up multiagent planning: A best-

response approach, in: F. Bacchus, C. Domshlak, S. Edelkamp,

M. Helmert (Eds.), Proceedings of ICAPS, AAAI, 2011.

[8] V. I. Levenshtein, Binary Codes Capable of Correcting Deletions, Inser-

tions and Reversals, Soviet Physics Doklady 10 (1966) 707.

[9] R. Dechter, Constraint processing, Elsevier Morgan Kaufmann, 2003.

[10] R. Nissim, R. I. Brafman, C. Domshlak, A general, fully distributed

multi-agent planning algorithm, in: Proceedings of AAMAS, 2010, pp.

1323–1330.

[11] P. Prosser, Hybrid algorithms for the constraint satisfaction problem,

Computational Intelligence 12 (3) (1993) 268–299.

[12] R. Zivan, A. Meisels, Asynchronous forward-checking for DisCSPs, Con-

straints 12 (2007) 131–150.

[13] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation

through heuristic search, Journal of Artificial Intelligence Research 14

(2001) 253–302.

[14] A. Komenda, P. Novák, M. Pěchouček, Decentralized multi-agent plan

repair in dynamic environments (Extended Abstract), in: Proceedings

of AAMAS, 2012, pp. 1239–1240.

[15] P. Novák, W. Jamroga, Agents, Actions and Goals in Dynamic Environ-

ments, in: T. Walsh (Ed.), IJCAI 2011, Proceedings of the 22nd Interna-

54

tional Joint Conference on Artificial Intelligence, Barcelona, Catalonia,

Spain, July 16-22, 2011, IJCAI/AAAI, 2011, pp. 313–318.

[16] IPC, The international planning competition, ICAPS,

http://ipc.informatik.uni-freiburg.de/.

[17] C. Muise, S. A. McIlraith, J. C. Beck, Monitoring the execution of

partial-order plans via regression, in: Proceedings of 22nd International

Joint Conference on Artificial Intelligence, 2011, pp. 1975–1982.

[18] A. Albore, H. Palacios, H. Geffner, Compiling uncertainty away in

non-deterministic conformant planning, in: H. Coelho, R. Studer,

M. Wooldridge (Eds.), ECAI, Vol. 215 of Frontiers in Artificial Intel-

ligence and Applications, IOS Press, 2010, pp. 465–470.

[19] A. Albore, H. Palacios, H. Geffner, A translation-based approach to

contingent planning, in: C. Boutilier (Ed.), IJCAI, 2009, pp. 1623–1628.

[20] H. Muñoz-Avila, M. T. Cox, Case-based plan adaptation: An analysis

and review, IEEE Intelligent Systems 23 (4) (2008) 75–81.

[21] A. Komenda, P. Novák, Multi-agent plan repairing, in: Proceedings of

Decision Making in Partially Observable, Uncertain Worlds: Exploring

Insights from Multiple Communities IJCAI-DMPOUW Workshop, pp.

1–6.

[22] R. Fikes, N. Nilsson, STRIPS: A new approach to the application of

theorem proving to problem solving, in: Proceedings of the 2nd Inter-

national Joint Conference on Artificial Intelligence, 1971, pp. 608–620.

55

