
Scalable and Robust Multi-agent Planning with
Approximated DCOP

Antońın Komenda1, Robert N. Lass2, Peter Novák3, William C. Regli2 and
Michal Pěchouček1

1 Agent Technology Center, Czech Technical University, Prague, Czech Republic
2 Department of Computer Science, Drexel University, Philadelphia, PA, USA

3 Dept. of Software and Computer Technology, Delft University of Technology, NL
antonin.komenda@agents.fel.cvut.cz, urlass@cs.drexel.edu,

P.Novak@tudelft.nl, regli@cs.drexel.edu,

michal.pechoucek@agents.fel.cvut.cz

Abstract. Distributed multi-agent planning presents several challenges
as yet not addressed by existing techniques. First, the complexity of plan-
ning scales non-linearly as a function of the number of agents. Second,
most multi-agent planning approaches assume perfect and reliable com-
munications are available to coordinate actions across the distributed
agents. Third, even given reliable communications, agents may not be
able to converge on a reliable overall plan for the group without resort-
ing to computationally expensive (and communication intensive) prob-
lem centralization. This paper develops a formalization of the multi-
agent planning problem and a novel three-phase approach which gener-
ates plans, solves them using the approximate, robust Max-Sum DCOP
algorithm and then uses plan repair to address these three points. We
provide sketches of the proofs of these claims as well as empirical results,
for a restricted version of the Crane-Robot domain, of better scalabil-
ity than existing approaches, and robust performance with up to 90%
message loss.

1 Introduction

Recent research has produced a general framework for distributed multi-agent
planning [1], one in which the planning problem is represented as a constraint
satisfaction problem (CSP). Once encoded as a CSP, distributed agents then
solve the planning problem using optimal distributed constraint satisfaction al-
gorithms. This approach, while quite general, has to date employed complete dis-
tributed constraint satisfaction algorithms (e.g., Asynchronous Forward Check-
ing (AFC)). The result is that there remain challenges of scalability and ro-
bustness. Scalability because, as the number of agents and/or size of the plans
grow, the search space for CSP-type algorithms grows exponentially. Robustness
is a problem because most distributed coordination algorithms and constraint
solvers assume perfect and reliable communications among distributed agents—
a property that simply does not hold true in the real world. Even given reliable

communications, nearly all existing techniques require computationally expen-
sive (and communication intensive) problem centralization in order to converge
on a complete solution.

This paper develops a formalization of the multi-agent planning problem that
builds on classical planning representations [2] and recent work on CSP-based
planning [1]. Based on this formalization, we present an efficient method to gen-
erate valid action sequences—one that prunes those containing actions that are
not part of feasible plans. We then show how to map these sequences, generative
action graphs, that capture sets of feasible plans, into the domains for solving
by an approximate Distributed Constraint Optimization (DCOP) algorithm. By
using a DCOP, rather than a CSP, we offer a novel approach that is robust to
message loss (the Max-Sum algorithm [3]). Using constraint optimization rather
than satisfaction also allows us to compute “best effort” plans that maximize the
number of goals agents reach, rather than only looking for plans that meet all of
the goals. Hence the price of the robustness and scalability afforded by the DCOP
is paid in optimality—the approximation technique may return infeasible plans.
Therefore, the last step in our approach is to employ plan repairing techniques
to transform any infeasible plans into feasible ones. We conclude by providing a
sketch of some theoretical properties of this approach and an empirical analysis
using a restricted Crane-Robot domain.

1.1 Example Domain: Box-Movers

To motivate this problems, we introduce an restricted instance of the Crane-
Robot domain problem which we call Box-Movers. In Box-Movers, there are k
mover agents (representing a robot and crane as one entity), which can each move
in a w×h grid and b distinguishable boxes each of which has one target position.
The boxes cannot be laid upon each other. Each grid point can be accessed by
only one mover with the exception of s points, which can be accessed by two
neighboring agents (hand-over points). Each mover can carry only one box at a
time.

The initial state defines points where the movers start and where the boxes
lie, or if a box is initially carried by a mover. The movers has three possible
actions (i) move, (ii) load, and (iii) unload. A mover can move in its accessible
grid by one cell horizontally, vertically, and diagonally (including the hand-over
points) whether or not it is carrying a box. A mover can load a box, if it is at
the same point as the box. A mover can unload a box if it is carrying it, and
there is not another box in the unload position.

Each box has a target point. A solution of the problem is a plan of actions
for each mover which relocates the boxes from their initial points to their target
points.

An example instance of the domain is depicted in Figure 1, where k = 2, w =
10, h = 5, b = 2, and s = 1.

The size of the domain can be expressed as the number of possible states:

|S| ∼= (wh)ks(b− 1)(2 + s)b−2,

(a) (b) (c)

Fig. 1. The example domain, where circles represent movers and squares represent the
boxes. (a) The initial configuration. (b) Box1 is being handed from Mover1 to Mover2.
(c) The goal position.

For the example instance of the domain the size is ∼ 20000.
The rest of this paper is organized as follows. First, we provide some back-

ground on the previous Planning as CSP framework. Next, we formally describe
our solution. Then, we theoretically and empirically analyze our approach. We
conclude with a summary and future work.

2 Proposed Solution

The solution is based on the Multi-agent Planner presented in [1]. The planner
consists of two phases of planning. In the first phase, a multi-agent plan is formed
(with help of the DCOP solver). This plan contains only public actions. A public
action is an action which can affect other agents’ actions. In the second phase,
the plans are locally completed using the private actions, which ensure transition
from one public action to the next one for each agent.

Using distributed constraint reasoning (DCR) to solve the planning problem
shifts the complexity from the planner to the DCR solving algorithm, and these
algorithms cannot scale to large problem sizes. The scalability of these algorithms
is especially relevant in planning, where the domains grow exponentially with δ,
the length of allowable action sequences.

We propose using an approximation algorithm for solving the constraint rea-
soning representation of the planning problem, and then using plan repair to
remove infeasible parts of the plan. In our empirical results, we use the Max-Sum
algorithm [?], which has the property that solution quality gracefully degrades
with message are loss. Max-Sum also produces complete solutions for acyclic
constraint graphs.

The outline of the approach can be summarized as:

– formulation and definition of the planning problem
– generation of candidate public action sequences (separately by each agent)
– selection of appropriate sequences (distributedly by the agents)
– reparation of invalid sequences (distributedly by the agents)

– private planning of local plans based on the public sequences (separately by
each agent)

The following sections describe and analyze these phases.

2.1 Planning Problem Formalization

A planning problem is defined as a tuple Π = 〈ϕ, S, sinit, Sgoal〉 where ϕ is a set
of n agents (defined using their actions a, consisting of preconditions pre, add
effects, and delete effects del):

ϕ = (A1, . . . , An) ,

Ai = {a|pre(a) ⊆ L, add(a) ⊆ L, del(a) ⊆ L} ∪ {ε} ,
ε : pre(ε) = ∅, add(ε) = ∅, del(ε) = ∅,

where ε is an empty action and the language L is defined as a set of propositions.
Each proposition in L represents a fact which can hold in a state. The set of all
possible states S is defined using the language as S = 2L. The initial state and
the goal state(s) are defined as sinit ∈ S and Sgoal ⊆ L.

The definition of the actions respect classical STRIPS language as proposed
in [2]. We base the agent definition and the relation between an agent and its
actions on the MA-STRIPS language as defined in [1].

Private actions are those that an agent can take that will not affect other
agents’ variables. Public actions are those that will affect other agents’ variables.
Sets of public and private actions, respectively, are defined for agent Ai as:

Apub
i = {a|vars(a) ∩

⋃
∀a′:a′∈A,A∈ϕ\Ai

vars(a′) 6= ∅},

Apriv
i = Ai \Apub

i ,

where vars(a) = pre(a) ∪ del(a) ∪ add(a).
A parameterized action denoted as a(p1, . . . , pk) can be represented using the

proposed definition of an action such that the set of actions is extended by the
Cartesian product of all possible combinations of values from the domains of the
action parameters (i.e.: grounded actions).

The input to the planner is a problem, Π, and the output of the planner is
a multi-agent plan MA-plan. A MA-plan P is defined as a set of personal plans
Pi:

P = (P1, . . . , Pn) ,where

Pi = a1, . . . , am, s.t. a ∈ Pi ⇒ a ∈ Ai.

All the personal plans have the same length m according to the longest one
(the others are padded with ε). A personal plan consists of actions a for agentA.

The plan is considered sound if the global states, s, as the system evolves are
induced by the MA-plan actions of all agents {P1(k), . . . , Pn(k)} for each step
k ≤ m:

∃s0, . . . , sm : sk ∈ S :

sk+1 = sk ⊕ {P1(k), . . . , Pn(k)},

where ⊕ is defined as removing the delete propositions of all actions in one
step and adding the addition propositions into the next state, provided the
preconditions are satisfied:

s′ = s⊕ {a1, . . . , ak} ≡
(∀j : 1 ≤ j ≤ k : pre(aj) ⊆ s) =⇒

s′ = s \
k⋃
j=1

del(aj) ∪
k⋃
j=1

add(aj).

In each step k the actions of all agents must be consistent, i.e.: add and del
sets have to be exclusive:

∀k : 1 ≤ k ≤ m :
n⋃
j=1

add(Pj(k)) ∩
n⋃
j=1

del(Pj(k)) = ∅

The initial and goal states have to be taken into account:

s0 = sinit, Sgoal ⊆ sm.

A sequence of public actions can be derived from a personal plan Pi by
replacing of all private actions from Apriv

i by the empty action ε.

2.2 Public Action Sequence Generator

The plan for each agent is built upon a sequence of public actions. These se-
quences are generated and passed to the DCOP solver for selection of appropriate
sequence tuples, which are then used for personal planning.

The complexity of the generation process is crucial, since the number of pos-
sible sequences grows exponentially with the number of variables parameterizing
the actions. As the variables, we consider (i) what action a (ii) is used at what
time t (a tuple (a, t) described in [1]), and (iii) with what parameters. All the
values of the variables form a variable value set V . The number of possible combi-
nations of values can be expressed as

∏
v∈V |vD|, where vD denotes the domain of

variable v. Using information about a particular planning domain, we can prune
the number of combinations. By pruning in this context, we mean generating

only sound sequences of public actions (i.e.: such which can be completed by the
private actions resulting in sound multiagent plans).

Our approach uses a generative graph representation of the (public) planning
domain such that all possible flows in the graph represent all possible public
action sequences considering the planning domain constraints (i.e.: the pruned
set of all possible sequences). In other words such a graph prescribes all possible
public plans in a compact form. Obviously, this approach does not change the
worst case complexity of generating all possible public plans, however it helps
with a successive requests for valid public plans.

The representation uses a directed acyclic graph G, where:

G = (V ′, E, η),

V ′ = V ∪ {b, e},

where the vertices V ′ represent the values of the action and parameter variables.
The edges E represents possible sequencing of the actions and their parameters
represented by their values. The function η defines the direction of the edges (if
η(e) = (u, v), then u is the tail and v is the head of the edge e). Between the
beginning vertex b and ending vertex e, there are δ layers L1, ..., Lδ of vertices
representing timing of the actions within them (possibly with their parameter
values):

Li ⊆ V,
L1 ∪ · · · ∪ Lδ = V,

∀i, j : i 6= j : Li ∩ Lj = ∅.

The number of the layers reflects the required length of the resulting action
sequence.

The edges can be separated into two groups: (i) extra-layer edges Ee and (ii)
intra-layer edges Ei:

Ee ⊆ E,Ei ⊂ E,
Ee ∪ Ei = E,Ee ∩ Ei = ∅.

The extra-layer edges are oriented only from a layer of a lower index towards a
layer of higher index, only between neighboring layers and represent an applica-
tion of two consecutive actions:

∀e : e ∈ Ee, η(e) = (u, v), u ∈ Li, v ∈ Li+1,

pre(v) ⊆ sinit ⊕ · · · ⊕
⋃

∀f :f∈Ee,η(f)=(w,u)

{w} ⊕ {u}.

Additionally, each vertex (excluding b and e) has to have at least one incom-
ing and one outgoing edge. The intra-layer edges represent possible combinations
of the parameter values if required by the related action.

An action sequence is encoded in a generative graph as a subset of vertices,
which lie in one flow through the graph beginning at the node b and ending
at the node e. Since the variables V represent both the action types and the
parameters of the actions, a sequence (va, vp1 , . . . , vpka) represents an action
a(p1, . . . , pka), where ka is number of the parameters of action a. A sequence of
actions (a1(p11, . . . , p

1
k1

), . . . , aδ(pδ1, . . . , p
δ
kδ

)) of length δ is then a simple concate-
nation of the particular actions and their parameters.

To successively extract such flows from a generative graph, we firstly mark
in the graph one of the outgoing edges from each vertex. We denote such edge
as a current edge of the vertex. Note that there can be only one current edge
going from each vertex. Following a path prescribed only by the current edges
generates one particular flow through the graph.

To generate next flow, we have to change at least one current edge. By
changing a current edge, another edge going out from the vertex gets marked.
Provided that all possible combinations of the current edges are used consecu-
tively, we consecutively generate all possible flows, therefore all possible public
plans.

An algorithm which changes the current edges to a next marking combination
and ensures generation of all possible combinations can be represented as a
recursive function next(G, v) :

Require: G = (V ′, E, η) is the generative graph,
v ∈ V ′ is a vertex in that graph

Ensure: True if the current edge of the vertex v was changed
Ensure: False if the current edge of the vertex v was changed to its initial

setting
1: if ∃u s.t. e = (v, u) ∈ E then
2: u := curr(v)
3: if next(G, u) then
4: return True
5: else
6: if curr(v) = lastEdge(v) then
7: curr∗(v, firstEdge(v))
8: return False
9: else

10: curr∗(v, nextEdge(v, u))
11: return True
12: end if
13: end if
14: else
15: return False
16: end if

The function curr(v) returns the current edge of a vertex v and the function
curr∗(v, e) changes the current edge of a vertex v to an edge e. The functions
lastEdge(v), firstEdge(v), and nextEdge(v, u) return respective outgoing edges
from vertex v which are totally ordered.

To generate all the marking combinations, we can repetitively call next(G, b),
where b is the beginning vertex until it returns False meaning that all the com-
binations were walked through. After each call, we extract the flow based on the
marked current edges, effectively generating a next sequence of action/parameter
variables.

Finally, we need a function which will transform a sequence of variables into
an action sequence:

t : Q(V)→ Q(A),

where Q(β) denotes all possible sequences composed of elements of β. Since each
action type coded by va has a known number ka of parameters vp1 , . . . , vpka ,
the function t can transform a sequence of variables into a sequence of actions
unambiguously. The output of the function t is later used by the DCOP part of
the planner.

2.3 Mapping Target Domain to the Seq. Generator

An example of the public action sequence generative graph for the target do-
main is depicted in Figure 2. In the example domain, Apub

i = {load, unload}, as
only these actions can affect other agents by changing the position of the boxes.
The private actions are Apriv

i = {move}, therefore they are not present in the
graph. Following all the possible flows through the example graph, we can gen-
erate all the sequences of public actions of length 6, e.g. (load, unload, ε, ε, ε, ε),
(load, unload, ε, ε, load, unload), and so on. However we cannot generate infea-
sible sequence, e.g. (load, load, ε, ε, ε, ε), since there is no corresponding flow
through the graph.

If the nodes of the graph are replaced by sub-graphs representing action pa-
rameters, the graph produces all possible sequences including the parameterized
actions. For an instance, load nodes denoted in the figure as L can be replaced
by a sub-graph with nodes Lbox1 and Lbox2, so that the flows generate sequences
such as (load(box1), unload, load(box2), unload, ε, ε).

b

L

U

U

L

L

U

U

L

L

U

U

L
e

ε ε ε ε ε εε

ε ε ε ε ε εε

Fig. 2. Example of the generative graph for the example instance and for δ = 6. Each
vertex represents a sub-graph with parameters of the actions load (L) and unload (U).

2.4 Action Sequences to Plans via DCOP

The solver takes the set of action sequences generated in the previous section as
input, and outputs a set of actions for each agent. As the solver is actually try-
ing to minimize the number of unsatisfied constraints rather than finding only a
satisfying assignment, we represent the problem as a Distributed Constraint Op-
timization problem (DCOP). We will formally define a DCOP here, describe the
specific algorithm used, and then describe our mapping of the example domain
(Section 1.1) to a DCOP.

A DCOP is represented as tuple 〈A, V,D, f, α, σ〉, where:
ϕ is a set of agents (as in the planning definition), {A1, A2, . . . , A|ϕ|};
V is a set of variables, {ν1, ν2, . . . , ν|V|};
D is a set of domains, {D1, D2, . . . , D|V|}, where each Di ∈ D is a finite set

containing the values to which its associated variable may be assigned,
{di,1, di,2, . . . , di,|Di|};

f is a function
f :

⋃
S∈℘(V)

∏
νi∈S

({νi} ×Di)→ N ∪ {∞}

mapping every possible variable assignment to a cost. This function defines
constraints between variables;

α is a function α : V → A mapping variables to their associated agent.
α(νi) 7→ Aj implies that it is agent Aj ’s responsibility to assign the value
of variable νi. Note that it is not necessarily true that α is either an injection
or surjection;

λ is a function, λ : V → {νi}, mapping a variable to its neighboring variables
in the constraint graph (variables it shares a constraint with).

The goal of a DCOP algorithm is generally to find the value assignment for
all variables that minimizes f4.

The algorithm used in this work is the Max-Sum algorithm [4]. This algorithm
is only complete on acyclic graphs. It provides bounded approximation on all
graphs, although actual bounds are specific to a problem instance. Empirically,
the algorithm performs well on many cyclic graphs. Another advantage of using
Max-Sum is that it is robust to message loss, one of the few algorithms in this
category.

A brief description of the algorithm follows, please see the original paper for
more details. The problem is represented as a factor graph, where each agent
creates one variable node for the variable it controls, and one function node that
is linked to all of the constraint graph neighbors of the variable. There are two
kinds of messages: Q-messages which variable nodes send to function nodes, and
R-messages which function nodes send to variable nodes.

A Q-message sent from the variable node of agent i to the function node of
agent j will aggregate R-messages that agent i has received so far for domain

4 Or maximizes f , if it represents utility rather than cost.

Mover1 Mover2

Fig. 3. Factor graph for our example domain, with boxes representing function nodes,
and circles representing variable nodes. R-messages travel along the dotted lines and
q-messages travel along the solid lines.

value di,k. Formally, it is defined as:

Qi→j(di,k) = αij +
∑

j′∈λ(i)\j

Rj′→i(di,k)

where αij is a normalizing scalar, chosen such that:∑
di

Qi→j(di,k) = 0

An R-message sent from the function node of agent j to the variable node of
agent i informs agent i of the utility of the best configuration that the group of
agents aggregated by the function node of agent j can achieve if variable i chooses
the domain value di,k. This includes both the utility for the chosen configuration
(given by Uj below) and the Q-message values for that configuration. Formally:

Rj→i(di,k) = max
dj,k\i

Uj(dj,k) +
∑

n′∈N(m)\n

Qn′→m(xn′)


Each agent, an, locally calculates the utility for each value in its domain as:

Zi(di,k) =
∑
j∈λ(i)

Rj→i(di,k)

and selects the value with the highest utility.
One important optimization when calculating R-messages is that once a so-

lution that achieves the maximum utility possible for the local problem over the
function node is found, it stops searching. This allows us to reduce the search
space by taking advantage of variable ordering in many cases. We plan to exploit
of this in future work.

2.5 Mapping Target Domain to a DCOP

In general, any planning problem can mapped to a DCOP as described in [?]. In
our example, the sequences generated by the public action sequence generator
are converted to a DisCSP as follows:

– One agent, ai, is generated for each mover in the problem.
– Each agent is assigned one variable, vi, representing their plan.
– Each domain, Di is assigned to be the set of action sequences defined as t

above.
– The function, f , is used as a utility function, which the algorithm maximizes.

The following are illegal actions which incur a penalty (negative value):
• A box is picked up from someplace other than where it is.
• A box is unloaded on top of another box.
• A mover loads or unloads a box outside of its movement area.
• A box is not in its goal state after all of the actions are taken.

and a utility (positive value) is incurred when a box is placed in the goal
position.

– α is a trivial function that maps each agent to its variable.
– The neighbor function, λ, maps a variable, vi to the set of variables whose

movement area is adjacent to it.

2.6 Repairing Resulting Plans

To ensure soundness of the overall multi-agent planning process, the plan re-
pair phase solves potential infeasible plans returned by the approximate DCOP
algorithm.

A plan repairing problem Σ is defined using a planning problem Π, resulting
in a MA-plan P, a failed (unanticipated) state sfail, and a step k in which the
failure occurred. The input of the repairing algorithm is Σ. The output is a
repaired sound MA-plan.

Since an inconsistency in the plan can, in general, happen with any action,
more precisely preconditions of such action would not be satisfied due to the
failure, the plan repairing approach has to be general enough to handle failures
by means of both private and public actions. We use a plan repairing algorithm
based on the Back-on-Track principle proposed in [5] which (i) ensures soundness
of the resulting plan, (ii) it is complete, therefore it can repair any inconsistency
in the plan generated by approximated DCOP and (iii) it preserves as largest
suffix of the original plan as possible. Note that the completeness is ensured by
the fact that the repairing approach uses replanning from scratch as a last resort
technique, which is sound and complete as the planner is sound and complete.

The key idea of the Back-on-Track repair is to utilize a multiagent planner,
in this case, using DisCSP to ensure soundness of the repair. The planner is
used to generate a repairing plan from the failed state sfail to one of states which
could be passed using the original plan without a failure. The failed state is the
first possible inconsistency in the plan caused by the approximated DCOP.

The definition of the algorithm follows:

1: scurr := simulate(P, sinit, k)
2: while Sgoal 6⊆ scurr do
3: P ′ := plan((A1, . . . , An), S, sfail, scurr)
4: if P ′ 6= ∅ then
5: return headplan(P, k − 1) · P ′ · tailplan(P, k)

6: else
7: k := k + 1
8: scurr := simulate(P, sinit, k)
9: end if

10: end while
11: return Fail

The function simulate(P, s, k) returns a new state induced by the k-th action
of plan P from state s. The function plan(ϕ, S, sinit, Sgoal) runs the planner and
the functions headplan(P, k) and tailplan(P, k) cuts the beginning and rest of
the plan P at the k-th action respectively.

The algorithm iteratively shortens the preserved part of the original plan
(lines 7 and 8). If a repairing plan P ′ can be found, it returns the fixed plan
reusing the prefix and suffix of the original plan (line 5). The algorithm iterates
over all inconsistencies until they are all repaired. The principle of the algorithm
is to add newly generated repairing plan parts P ′ into all discontinuities in the
plan resulting from the approximate planning process.

The generative graph of the planner can be preserved from the planning phase
for the plan repairing phase, which implies, the process reuses a data structure
from the planning phase and exploits it for more efficient plan repairing similarly
to [6]. Since the planning problem in the plan repairing phase is simpler, we can
use optimal DisCSP to ensure soundness of the repaired plan.

2.7 Mapping Target Domain to the Plan Repairing

An example of a non-valid plan returned by the DCOP solver can require a
pickup of a box1 at a hand-over point at step 3, but the box is not located there
as the mover has to simultaneously move box1 and box2 in steps 1 and 2 (which
is not possible).

The plan repairing problem contains sfail before the infeasible load action
of box1 and with initial scurr, where both boxes are at the hand-over points.
Invoking of the optimal planner with such an input, results in a repairing plan
relocating the box1 from its initial position to the anticipated hand-over point.
After this repair the plan continues by moving of both boxes to the target points.

3 Analysis

3.1 Theoretical

There are three main differences in performance between the previous approach
using optimal DisCSP algorithms and our approach. They involve scalability,
robustness and optimality. We will address each of them in turn.

Max-Sum scales better than a complete algorithm. As constraint reasoning
is NP-Complete, solving it with an optimal algorithm is intractable for all but
very small problems. The most expensive operation in our domain is comput-
ing r-messages. Assuming the agents all have the same size domain, he asymp-
totic runtime of Max-Sum is O(|n(ai)||D|) where ai is the agent with the most

neighbors. If they have different domain sizes, the runtime should be asymptot-
ically bounded by the product of the size of all of the neighboring domains of
ai,i.e.:

∏
k∈n(ai) |Dk|. The size of the messages grows linearly with the size of the

domains, and the number of messages grows linearly with the number of agents.

Completeness and soundness proof sketch To give an outline of the soundness
and completeness of our approach, we must consider all four phases. The genera-
tion of candidate action sequences enumerates all valid action sequences, because
the generative graph edges Ee are build upon a recursive chaining of all possible
combinations of public actions. As the approximate DCOP does not ensure the
soundness of the plans, we have to ensure it in the last step – the plan repairing.
Since the plan repairing could, in the worst case, plan the entire problem with
optimal DisCSP, the approach is sound and complete, as proved in [1].

3.2 Empirical

Most DCR algorithms are not robust to failures of agents, or message loss [7]. One
of the advantages of using Max-Sum is that the algorithm degrades gracefully
as message loss occurs. The empirical results from [3] show that even with 80%
message loss, the Max-Sum performs nearly as well as with no loss. Our results
were similar, with Max-Sum creating plans that achieve the same number of
goals with up to 90% message loss as with 0% message loss on problems with
four agents.

These advantages are being traded off for a loss of optimality. Max-Sum is
always able to return a plan, because at any iteration the best plan can be
determined simply by each agent locally choosing the plan with the maximum
Zi value. However, it does not guarantee an optimal solution in cyclic constraint
graphs. Max-Sum does provide a bounded approximation for cyclic constraint
graphs, but the bound is a function of the graph’s structure. Empirically, this
has been shown to be about a 1.23-approximation algorithm [3].

For experimental purposes, a prototype of the plan repairing algorithm was
implemented. As a planner, the state-of-the-art technique [1] was used. The par-
ticular planning problem implemented in the prototype is the example domain
from the Introduction.

3.3 Results

Once δ is big enough to reach any of the goals, a plan is produced which does
so. We wish to emphasize, that this is one of the key differences between our
approach and a constraint satisfaction algorithm. For example, the results of our
framework in the example domain with two agents for δ = 1 . . . 3 was a set of ε
for each agent. For δ = 4 . . . 5 it produces a plan that moves one of the boxes to
the goal. For δ ≥ 6 it produces a plan that meet both goals.

When the number of agents was increased to four, which resulted in cyclic
constraint graph, Max-Sum failed to construct an optimal plan. At this point,
plan repair was used to construct the optimal plan. The search space (i.e.: the

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 2 3 4 5 6 7 8

S
e
a
rc

h
 s

p
a
ce

Agents

BF
MS

MS+R

Fig. 4. Growth of the search space for δ = 6 as the number of agents increases for
brute-force (BF), Max-Sum (MS), and Max-Sum with plan repairing (MS+R).

number of public plan combinations need to be evaluated) is shown in Figure 4.
The complexity of plan repair was the same for any number of agents, because
δ was fixed at 6.

4 Background

In 2010, the first paper appeared proposing a General, Fully Distributed Multi-
Agent Planning Algorithm [1]. This approach integrates planning with DisCSP
to coordinate plans between agents. The paper presents heuristics that take
advantage of the structure of planning problems to construct an advantageous
variable ordering in the DisCSP problem and to potentially reduce the size of
the variables’ domains.

One of the first works on plan repairing was published in 1995 [8] and gave
a theoretical analysis formally investigating the complexity of planners reusing
parts of the old plans. The results of the paper states it is not possible to achieve
a provable efficiency gain of [plan] reuse over [plan] generation and that, as-
suming conservative plan modification, plan reuse can be strictly more complex
than plan generation from scratch. An alternative approach by [6] uses a prin-
ciple called derivational Al analogy. Derivational analogy takes into an account
not only the goal of the process, but also the history of problem solution(s).
The important result of the paper is that plan adaptation (repair) by deriva-
tional analogy is more efficient then planning from scratch (in special cases,
plan repairing by analogy has logarithmic complexity and planning from scratch
is PSPACE-complete). This result is consistent with the conclusions previous
paper, because they were restricted to conservative plan changes.

5 Conclusions and Future Work

This work proposes an extension of a state-of-the-art multi-agent planning tech-
nique with a focus on improvements in scalability, robustness and “best effort”
planning. The theoretical background is built on a proposed extension of STRIPS
and MA-STRIPS planning languages. The improvement in scalability is due to
the replacement of an optimal DisCSP solver by an approximated DCOP solver
and from a newly designed public plan generating algorithm. The potential sub-
optimality is resolved by a plan repairing technique. The improvement in ro-
bustness is provided by a Max-Sum DCOP solver. This approach was analyzed
theoretically, and empirically on an instance of a classical multi-agent planning
problem. The main areas for future work include (i) heuristic extension of the
action generator, (ii) tighter integration of the DCOP solver and the action gen-
erator, (iii) usage of plan repairing technique tailored for the problem, and (iv)
exploring mappings of planning problems to optimization problems (this being
less straightforward than mapping to satisfaction problems).

References

1. Nissim, R., Brafman, R.I., Domshlak, C.: A general, fully distributed multi-agent
planning algorithm. In: Autonomous Agents and Multiagent Systems. (2010) 1323–
1330

2. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem
proving to problem solving. In: International Joint Conference on Artificial intelli-
gence. (1971) 608–620

3. Farinelli, A., Rogers, A., Jennings, N.R.: Bounded Approximate Decentralised Co-
ordination using the Max-Sum Algorithm. In: Distributed Constraint Reasoning
2009

4. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In: Proceedings of the
7th international joint conference on Autonomous agents and multiagent systems-
Volume 2, International Foundation for Autonomous Agents and Multiagent Sys-
tems (2008) 639–646

5. Komenda, A., Novák, P., Pěchouček, M.: Domain-independent multi-agent
plan repair. Journal of Network and Computer Applications (2013) DOI:
10.1016/j.jnca.2012.12.011.

6. Au, T.C., Muñoz-Avila, H., Nau, D.S.: On the complexity of plan adaptation by
derivational analogy in a universal classical planning framework. Advances in Case-
Based Reasoning (2002) 199–206

7. Lass, R.N., Sultanik, E.A., Greenstadt, R., Regli, W.C.: Robust Distributed Con-
straint Reasoning. In: Distributed Constraint Reasoning. (2009) 75

8. Nebel, B., Koehler, J.: Plan reuse versus plan generation: a theoretical and empirical
analysis. Artificial Intelligence 76(1-2) (1995) 427–454

