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Abstract. Recently, we introduced Behavioural State Machines (BSM ),
a novel programming framework for development of cognitive agents with
Jazzyk, its associated programming language and interpreter. The Jazzyk
BSM framework draws a strict distinction between knowledge represen-
tation and behavioural aspects of an agent program. Jazzyk BSM thus
enables synergistic exploitation of heterogeneous knowledge representa-
tion technologies in a single agent, as well as offers a transparent way
for embedding cognitive agents in various simulated or physical environ-
ments. This makes it a particularly suitable platform for development
of simulated, as well as physically embodied cognitive agents, such as
virtual agents, or non-player characters for computer games.
In this paper we report on Jazzbot and Urbibot projects, two case-studies
we developed using the Jazzyk BSM framework in simulated environ-
ments provided by a first person shooter computer game and a physical
reality simulator for mobile robotics respectively. We describe the un-
derlying technological infrastructure of the two agent applications and
provide a brief account of experiences and lessons we learned during the
development.

1 Introduction

One of the long-term aims of Artificial Intelligence is to enable development of
intelligent cognitive agents. I.e. such which internally model their environment,
their own mental attitudes, reason about them and subsequently base their deci-
sions regarding their future actions upon these models. Even though AI research
provides a plethora of approaches for solving partial problems on the way to-
wards this aim, we only rarely encounter approaches enabling integration of the
various developed technologies. The field of agent oriented programming, and
in consequence multi-agent systems programming, offers a sound theoretical ba-
sis allowing synergistic exploitation of heterogeneous AI technologies in a single
agent system.

Therefore in our recent work, we introduced the theoretical framework of
Behavioural State Machines with its associated agent oriented programming
language Jazzyk [11,12]. Jazzyk BSM provides a simple, theoretically sound lan-
guage for modular agent programming based on a generic computational model
for reactive systems. It draws a strict distinction between the knowledge repre-
sentation (KR) and behavioural aspects of an agent program and thus enables
exploiting heterogeneous KR technologies in a single agent system.



To provide a proof-of-concept, as well as to further nurture our research
towards a methodology of development with Jazzyk BSM (cf. [14] and [13]), we
developed two case study applications Jazzbot and Urbibot . Jazzbot is a virtual
bot in the simulated 3D environment of an open source first person shooter
computer game Nexuiz. Its task is to explore a virtual building, search for certain
objects in it and subsequently deliver them to the base. At the same time, Jazzbot
is supposed to differentiate between other players present in the building and seek
safety upon being attacked by an enemy player. When the danger disappears, it
should return back to the activity interrupted by the attack.

Urbibot , on the other hand, was developed as a step towards programming
mobile robots. It is an agent program steering a model of customized e-Puck,
a small two-wheeled mobile robot in an environment provided by the physical
robotic simulator Webots. Similarly to Jazzbot , Urbibot explores its environment
in order to find red poles present in it. It tries to bump into each of them,
while trying to avoid patrol robots policing the environment. Upon encounter
with such a patrol robot, Urbibot runs away to finally return to the previously
interrupted activity when safe again.

Both agents feature a BDI inspired architecture. While interacting with two
different types of virtual bodies, a character in the game and an interface to
robot hardware sensors and actuators respectively, both implementations exploit
the power of non-monotonic reasoning for representation and reasoning about
their beliefs and goals. We employ an interpreted object oriented programming
language to enable efficient representation of and reasoning about topological
structure of the environment.

After a brief introduction to the framework of Behavioural State Machines
and its associated programming language Jazzyk in Section 2, Sections 3 and 4
describe respectively Jazzbot and Urbibot agents in a closer detail. Subsequently,
Section 5 provides a description of the underlying technological infrastructure
used in the implemented agents. Finally, a discussion of our experiences and
lessons learned from the development of Jazzbot and Urbibot agents, together
with an outlook to the ongoing and future work wraps up the paper in Section 6.

2 Jazzyk BSM

In [12] we introduced the framework of Behavioural State Machines (BSM ).
BSM framework draws a clear distinction between the knowledge representation
and behavioural layers within an agent. It thus provides a programming system
that clearly separates the programming concerns of how to represent an agent’s
knowledge about, for example, its environment and how to encode its behaviours.
In the core of the framework is a generic reactive computational model inspired
by Gurevich’s Abstract State Machines [3], enabling for efficient structuring of
the program code. This section briefly introduces the BSM framework. For the
complete formal description of the BSM framework, see [12].



2.1 Syntax

BSM agents are collections of one or more so-called knowledge representation
modules (KR modules), typically denoted by M, each representing a part of
the agent’s knowledge base. KR modules may be used to represent and maintain
various mental attitudes of an agent, such as knowledge about its environment, or
its goals, intentions, obligations, etc. Transitions between states of a BSM result
from applying so-called mental state transformers (mst), typically denoted by
τ . Various types of mst’s determine the behaviour that an agent can generate.
A BSM agent consists of a set of KR modules M1, . . . ,Mn and a mental state
transformer P, i.e. A = (M1, . . . , Mn,P); the mst P is also called an agent
program.

The notion of a KR module is an abstraction of a partial knowledge base
of an agent. In turn, its states are to be treated as theories (i.e. sets of sen-
tences) expressed in the KR language of the module. Formally, a KR module
Mi = (Si,Li,Qi,Ui) is characterized by a knowledge representation language
Li, a set of states Si ⊆ 2Li , a set of query operators Qi and a set of update
operators Ui. A query operator ��� ∈ Qi is a mapping ��� : Si × Li → {>,⊥}.
Similarly an update operator ⊕ ∈ Ui is a mapping ⊕ : Si × Li → Si.

Queries, typically denoted by ϕ, can be seen as operators of type ��� : Si →
{>,⊥}. A primitive query ϕ = (���φ) consists of a query operator ��� ∈ Qi and a
formula φ ∈ Li of the same KR module Mi. Complex queries can be composed
by means of conjunction ∧, disjunction ∨ and negation ¬.

Mental state transformers enable transitions from one state to another. A
primitive mst �ψ, typically denoted by ρ and constructed from an update op-
erator � ∈ Ui and a formula ψ ∈ Li, refers to an update on the state of the
corresponding KR module. Conditional mst’s are of the form ϕ −→ τ , where
ϕ is a query and τ is a mst. Such a conditional mst makes the application of
τ depend on the evaluation of ϕ. Syntactic constructs for combining mst’s are:
non-deterministic choice | and sequence ◦.
Definition 1 (mental state transformer). Let M1, . . . ,Mn be KR modules
of the formMi = (Si,Li,Qi,Ui). The set of mental state transformers is defined
as below:

– skip is a primitive mst,
– if � ∈ Ui and ψ ∈ Li, then �ψ is a primitive mst,
– if ϕ is a query, and τ is a mst, then ϕ −→ τ is a conditional mst,
– if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s ( choice, and sequence

respectively).

Even though it is a vital feature of the BSM theoretical framework, for simplicity
we omit the treatment of variables in the definitions of query and update formulae
above. For a full fledged description of the BSM framework consult [12].

2.2 Semantics

The yields calculus, summarised below after [12], specifies an update associated
with executing a mental state transformer in a single step of the language inter-



preter. It formally defines the meaning of the state transformation induced by
executing an mst in a state, i.e. a mental state transition.

Formally, a mental state σ of a BSM A = (M1, . . . ,Mn, τ) is a tuple
σ = 〈σ1, . . . , σn〉 of KR module states σ1 ∈ S1, . . . , σn ∈ Sn, corresponding
to M1, . . . ,Mn respectively. S = S1 × · · · × Sn denotes the space of all mental
states over A. A mental state can be modified by applying primitive mst’s on
it and query formulae can be evaluated against it. The semantic notion of truth
of a query is defined through the satisfaction relation |=. A primitive query ���φ
holds in a mental state σ = 〈σ1, . . . , σn〉 (written σ |= (���φ)) iff ���(φ, σi), oth-
erwise we have σ 6|= (���φ). Given the usual meaning of Boolean operators, it is
straightforward to extend the query evaluation to compound query formulae.
Note that evaluation of a query does not change the mental state σ.

For an mst �ψ, we use (�, ψ) to denote its semantic counterpart, i.e., the
corresponding update (state transformation). Sequential application of updates
is denoted by •, i.e. ρ1 •ρ2 is an update resulting from applying ρ1 first and then
applying ρ2. The application of an update to a mental state is defined formally
below.

Definition 2 (applying an update). The result of applying an update
ρ = (�, ψ) to a state σ = 〈σ1, . . . , σn〉 of a BSM A = (M1, . . . ,Mn,P), denoted
by s

⊕
ρ, is a new state σ′ = 〈σ1, . . . , σ

′
i, . . . , σn〉, where σ′i = σi � ψ and σi,

�, and ψ correspond to one and the same Mi of A. Applying the empty update
skip on the state σ does not change the state, i.e. σ

⊕
skip = σ.

Inductively, the result of applying a sequence of updates ρ1 •ρ2 is a new state
σ′′ = σ′

⊕
ρ2, where σ′ = σ

⊕
ρ1. σ

ρ1•ρ2→ σ′′ = σ
ρ1→ σ′

ρ2→ σ′′ denotes the
corresponding compound transition.

The meaning of a mental state transformer in state σ, formally defined by the
yields predicate below, is the update set it yields in that mental state.

Definition 3 (yields calculus). A mental state transformer τ yields an up-
date ρ in a state σ, iff yields(τ, σ, ρ) is derivable in the following calculus:

>
yields(skip,σ,skip)

>
yields(�ψ,σ,(�,ψ)) (primitive)

yields(τ,σ,ρ), σ|=φ
yields(φ−→τ,σ,ρ)

yields(τ,σ,ρ), σ 6|=φ
yields(φ−→τ,σ,skip) (conditional)

yields(τ1,σ,ρ1), yields(τ2,σ,ρ2)
yields(τ1|τ2,σ,ρ1), yields(τ1|τ2,σ,ρ2) (choice)

yields(τ1,σ,ρ1), yields(τ2,σ
L
ρ1,ρ2)

yields(τ1◦τ2,σ,ρ1•ρ2) (sequence)

We say that τ yields an update set ν in a state σ iff ν = {ρ|yields(τ, σ, ρ)}.

The mst skip yields the update skip. Similarly, a primitive update mst �ψ yields
the corresponding update (�, ψ). In the case the condition φ of a conditional mst
φ −→ τ is satisfied in the current mental state, the calculus yields one of the
updates corresponding to the right hand side mst τ , otherwise the no-operation



skip update is yielded. A non-deterministic choice mst yields an update corre-
sponding to either of its members and finally a sequential mst yields a sequence
of updates corresponding to the first mst of the sequence and an update yielded
by the second member of the sequence in a state resulting from application of
the first update to the current mental state.

The following definition articulates the denotational semantics of the notion
of mental state transformer as an encoding of a function mapping mental states
of a BSM to updates, i.e. transitions between them.

Definition 4 (mst functional semantics). Let M1, . . . ,Mn be KR modules.
A mental state transformer τ encodes a function fτ : σ 7→ {ρ|yields(τ, σ, ρ)} over
the space of mental states σ = 〈σ1, . . . , σn〉 ∈ S1 × · · ·Sn.

Subsequently, the semantics of a BSM agent is defined as a set of traces in the
induced transition system enabled by the BSM agent program.

Definition 5 (BSM semantics). A BSM A = (M1, . . . ,Mn,P) can make a
step from state σ to a state σ′, iff σ′ = σ

⊕
ρ, s.t. ρ ∈ fP(σ). We also say, that

A induces a (possibly compound) transition σ
ρ→ σ′.

A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSM A, iff for
each i ≥ 1, A induces a transition σi → σi+1.

The semantics of an agent system characterized by a BSM A, is a set of all
runs of A.

Additionally, we require the non-deterministic choice of a BSM interpreter to
fulfil the weak fairness condition, similar to that in [9], for all the induced runs.

Condition 1 (weak fairness condition) A computation run is weakly fair iff
it is not the case that an update is always yielded from some point in time on
but is never selected for execution.

2.3 Jazzyk

Jazzyk is an interpreter of the Jazzyk programming language implementing the
computational model of the BSM framework. The syntax of the Jazzyk language
is an instantiation of the abstract mathematical syntax of the BSM theoretical
framework. when φ then τ construct encodes a conditional mst φ −→ τ . Symbols
; and , stand for choice | and sequence ◦ operators respectively. To facilitate
operator precedence, mental state transformers can be grouped into compound
structures, blocks, using curly braces {. . .}.

To better support source code modularity and re-usability, Jazzyk interpreter
integrates GNU M41, a state-of-the-art macro preprocessor. Macros are a power-
ful tool for structuring and modularizing and encapsulating the source code and
writing code templates. Before feeding the Jazzyk agent program to the language
interpreter, first all the macros are expanded. Listing 1 depicts a Jazzyk code
snippet. For further details on the Jazzyk programming language and the macro
preprocessor integration with Jazzyk interpreter, consult [12].
1 http://www.gnu.org/software/m4/



Fig. 1. Screenshots of the Jazzbot and Urbibot agents.

3 Jazzbot

Jazzbot is a virtual agent embodied in a simulated 3D environment of the first-
person shooter computer game Nexuiz 2. It is a goal-driven BDI inspired cogni-
tive agent developed with the Jazzyk language. The Nexuiz death-match game
takes place in a virtual building containing various objects (e.g. weapons, flags
or armor kits), is capable of simulating diverse terrains like solid floor, or liquid
and provides a basic means for inter-player interaction. Because of its accessi-
bility (Nexuiz is published under the open source GNU GPL licence), we chose
the Nexuiz game server as the simulator for Jazzbot case-study, the first larger
proof-of-concept application for the Jazzyk BSM framework. Figure 1 left de-
picts a screenshot of the Jazzbot agent acting in the simulated environment.
Demonstration videos and source code can be found on the project website3.

Jazzbot ’s behaviour is implemented as a Jazzyk program. In the experimen-
tal scenario, the bot searches for a particular item in the environment, which it
then picks up and delivers to the base point. While during the search phase the
agent tries to always move to unexplored segments of the environment, when it
tries to deliver the item, it exploits a path planning algorithm to compute the
shortest path to the base point. Hence, during the search phase, in every step
the bot randomly selects a direction to move to a previously unexplored part of
the building and in the case there is none such, it returns to the nearest way-
point from which an unexplored direction exists. The behaviour for environment
exploration is interrupted, whenever Jazzbot feels under attack, i.e. an enemy
player attempts to shoot at it. Upon that it triggers emergency behaviours, such
as running away from the danger. After the sense of emergency fades away, it
returns back to its previously performed goals of item search, or delivery.

The Jazzbot ’s control cycle consists of three steps that are executed sequen-
tially. Firstly, the bot reads its sensors (perception), then if necessary it deliber-
ates about its goals, (goal commitment strategies implementation) and finally it

2 http://www.alientrap.org/nexuiz/
3 http://jazzyk.sourceforge.net/



Listing 1 Code snippet from the Jazzbot agent.

define(‘ACT’,‘{
/∗ The bot searches for an item, only when it does not have it ∗/
when |=goals [{ task(search(X)) }] and not |=beliefs [{ hold(X) }] then SEARCH(‘X’);
/∗ When a searched item is found, it picks it ∗/
when |=goals [{ task(pick(X)) }] and |=beliefs [{ see(X) }] then PICK(‘X’) ;
/∗ When the bot finally holds the item, it deliver it ∗/
when |=goals [{ task(deliver(X)) }] and |=beliefs [{ hold(X) }] then DELIVER(‘X’) ;
/∗ Simple behaviour triggers without guard conditions ∗/
when |=goals [{ task(wander) }] then WALK ;
when |=goals [{ task(safety) }] then RUN AWAY ;
when |=goals [{ task(communicate) }] then SOCIALIZE

}’)

selects an action according to its actual goals and beliefs (act). Listing 1 provides
an example code implementing selection of goal oriented behaviours, realized as
parametrized macros, triggered by Jazzbot ’s goals. While the bot simply triggers
behaviours for walking around, danger aversion and social behaviour, execution
of behaviours finally leading to getting an item are guarded by belief conditions.

The Figure 2 provides an overview of the Jazzbot ’s architecture. The agent
features a belief base consisting of two KR modules for representation of agent’s
actual beliefs and storing the map of the environment, a goal base encoding inter-
relationships between various agent’s declarative, performance and maintenance
goals and finally the module interfacing the bot with the simulated environment.

JzNexuiz KR module (cf. Subsection 5.4), the Jazzbot ’s interface to the en-
vironment, the body, provides the bot with capabilities for sensing and acting in
the virtual world. The bot can move forward, backward, it can turn, or shoot. Ad-
ditionally, the Jazzbot is equiped with several sensors: GPS, sonar, 3D compass
and an object recognition sensor. The module communicates over the network
with the Nexuiz game server and thus provides an interface of a pure client side
Nexuiz bot, i.e. the bot can access only a subset of the perceptual information
a human player would have available.

The Jazzbot ’s belief base is composed of two modules: JzASP (cf. Subsec-
tion 5.1) and JzRuby (cf. Subsection 5.2). While the first one integrates an
Answer Set Programming [2] (ASP) solver Smodels [18] and contains a logic
program reflecting agent’s beliefs about itself, the environment, objects in it and
other players, the second, based on an interpreted object oriented programming
language Ruby, stores the map of the agent’s environment.

The Jazzbot ’s goal base is again an ASP logic program representing agent’s
current goals and their interdependencies. Goals can be either of a declarative
(goals-to-be), or performative nature (goals-to-do, or tasks). In Jazzbot agent
implementation, each goal-to-do activates one, or more tasks, which in turn trig-
ger, one or more corresponding behaviours the agent is supposed to execute. On
the ground of holding certain beliefs, the agent is also allowed to adopt new,
or drop goals which are either satisfied, irrelevant, or subjectively recognized as
impossible to achieve. The agent thus implements goal commitment strategies.
We explore the details of the programming methodology employed in the Jazzbot



Fig. 2. Internal architecture of Jazzbot and Urbibot agents.

project in [14]. The Section 5 below provides details on the implementation of
the Jazzbot ’s KR modules.

4 Urbibot

Urbibot [4] is the second case-study developed as a step towards applications
of the Jazzyk BSM framework in the mobile robotics domain. It is a robot
exploring a maze where it searches for red poles and then tries to kick them down
while at the same time avoiding patrols policing the space. Urbibot is embodied
as an e-Puck4, a small educational mobile robot simulated in Webots5 [10], a
robotics oriented physical world simulator. The robot is steered using URBI 6,
a highly flexible and modular robotic programming platform based on event-
based programming model. The main motivation for using URBI is the direct
transferability of the developed agent program from simulator to the real robot.

Similarly to the Jazzbot , the overall agent design is inspired by the BDI
architecture and reuses parts of the code developed for Jazzbot . In turn, except
for using JzASP KR module to represent agent’s beliefs about itself, Urbibot
features similar agent architecture as the one depicted in the Figure 2 for the
Jazzbot agent. Urbibot ’s beliefs comprise exclusively information about the map.
The interface with the simulator environment is provided by the JzUrbi KR
module (see Subsection 5.3).

As already noted above, Urbibot ’s behaviour is similar to that of Jazzbot
agent. However instead of controlling the agent’s body with rather discrete com-
mands, such as move forward, or turn left, Urbibot ’s URBI allows a more
sophisticated control by directly accessing the robot’s actuators, which in the
case of the e-Puck robot, are only it’s two wheels. The robot features a mounted
4 http://www.e-puck.org/
5 http://www.cyberbotics.com/
6 http://www.gostai.com/



Fig. 3. Urbibot exploring the simulated environment. The lower right corner provides
the current snapshot of the Urbibot ’s camera perception.

camera, a directional distance sensor and an additional GPS sensor (our cus-
tomization of the original e-Puck robot). In the JzRuby module, the robot ana-
lyzes the camera image stream and by joining it with the output of the distance
and GPS sensors it constructs a 2D map of the environment. Upon encountering
a patrol robot, Urbibot calculates an approximation of the space the patrol robot
can see, and subsequently tries to navigate out of this area as quickly as possible.
Again, the details on the implementation of the Urbibot ’s KR modules can be
found later in the Section 5. Figures 1 (right) and 3 depicts a screenshot of the
Urbibot agent and the maze environment with the Urbibot acting in it. Further-
more, demonstration videos and source code are provided in the corresponding
section of the Jazzyk project website3.

5 Modules

The Jazzyk Software Development Kit (Jazzyk SDK) provides a C++ interface
from which each KR module plug-in has to be derived. Basically, the class defines
five methods: initialize, finalize, cycle, query and update. It is possible
to define multiple query and update methods corresponding to KR module’s
query and update operators. These methods then define the plug-in’s interface
to the Jazzyk interpreter. While initialize, finalize and cycle are mainly used for
initialization, shutdown and maintenance of the module the query and update
provide means for modification of the stored knowledge base.

Below we describe KR module’s we employed in development of the Jazzbot
and Urbibot case studies. We introduce two modules facilitating agent’s knowl-
edge representation JzASP and JzRuby followed by description of two modules,
JzUrbi and JzNexuiz , interfacing the agents with their respective environments.



5.1 JzASP

In [5] we presented the JzASP module. It integrates Lparse [17] and Smodels
[18], an Answer Set Programming grounder and solver respectively. The stored
knowledge base thus consists of a logic program in the syntax of AnsProlog∗ [2]
(Prolog style syntax) and can be accessed by two query methods sure believes and
poss believes and two update methods add and del allowing for retrieval and mod-
ification of the stored knowledge base. Internally, the JzASP module processes
the program by passing it to the Lparse library and subsequently let’s Smodels
solver to compute the program’s answer sets.

The two query methods sure believes and poss believes check whether the query
formula, an AnsProlog∗ term, is contained in all the computed answer sets, or
there exists at least a single answer set containing it respectively. Before the
query formula is processed by the module, all the free variables occurring in it
are substituted by their valuations and subsequently, the query method attempts
matching the remaining free variables with a term from a computed answer set.

The update interface methods add and del provide a means to assert, or retract
a clause (a fact, or a rule) to/from the stored knowledge base. The variable
substitution treatment is similar to that in processing query formulae.

While the Jazzbot agent employs the JzASP for both, reasoning about its
beliefs regarding its environment, other agents and its own body state, as well as
to represent and reason about its goals, the Urbibot agent employs the module
only to treat its goal base. Using the power of non-monotonic reasoning, in
particular the default negation, to reason about agent’s goals turned out to be
advantageous and led to an elegant encoding of interrelations between various
goals. We elaborate more on the technique used in [14].

5.2 JzRuby

The JzRuby module, detailed description in [4], integrates the interpreted ob-
ject oriented scripting language Ruby7. The KR module interface methods for
initialization and finalization as well as the query and update routines are able
to process plain Ruby programs as argument formulae (query/update). Jazzyk
variables are treated as global variables in the Ruby interpreter’s memory space.
Query invocations of the single query method return the truth value of the code
invocation within the Ruby interpreter, i.e. provided the code execution yields a
value other than 0, the KR module returns > and ⊥ otherwise. The single update

method of the KR module simply executes the provided update formula, a plain
Ruby code chunk.

To represent the Jazzbot ’s information about the topology of its environment,
the agent uses a circle-based waypoint graph (CWG) [16] to generate the map of
its environment. CWG ’s are an improved version of waypoint graphs, extended
with a radius for each waypoint. The radius is determined by the distance be-
tween the avatar and the nearest obstacle. This technique ensures, especially in

7 http://www.ruby-lang.org/
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Fig. 4. Environment maps representation in Jazzbot and Urbibot .

big rooms or open spaces, a smaller number of nodes and connections within the
graph what in turn speeds up the path search algorithm. Figure 4 (left) shows
a graphical representation of the CWG for a sample walk of the Jazzbot agent
from the spawn point to the point marked by the arrow.

Additionally, each waypoint stores a list of objects present within its range
as well as about walls touching it and information about unexplored directions,
i.e. such in which there’s no connection to another waypoint, nor a wall. By
employing a breadth-first graph search algorithm, the agent can compute the
shortest path to a particular object, or a position.

The CWG graph is constructed by the agent so that in each step it determines
whether its current absolute position corresponds to some known waypoint, and
if not, it turns around in 60◦ steps and by checking its distance sensor, it de-
termines the nearest obstacle around. Subsequently, the newly added waypoint
is incorporated into the CWG by connecting it to all the other waypoints with
which it overlaps and all the perceived objects together with all the directions
in which the agent can see a wall are stored with it.

While similarly to the Jazzbot , the Urbibot uses the JzRuby KR module
for representing its environment too, the map representation approach differs.
Urbibot represents the map of its environment as a 2D grid, where in each cell it
stores an information about its content, such as unknown, free, wall, patrol,
avoid or pole. A new row or column is added to the grid when the robot
reaches the edge of the known region. While the agent continuously adds new
information to cells, the map becomes more and more precise. Furthermore, the
Urbibot employs the A∗ path planning algorithm to compute the shortest path
between the current position and a position to go, be it an unexplored cell, the
nearest safe cell a patrol robot cannot see, or a cell containing a pole which it
tries to kick down. Also, the Urbibot uses the JzRuby module to algorithmically
process the sensory input from its mounted camera and the distance sensors.



5.3 JzUrbi

In order to interface a Jazzyk program with the robot’s body, the JzUrbi KR
module [4] integrates the URBI programming language interpreter. It connects
over TCP/IP to an URBI server on the simulator’s side, or with the URBI robot
controller that controls the robot’s body.

The single query method query provide the agent program with the sensor
information from the body. Jazzyk variables are treated the same way as in
JzRuby , i.e. as global variables of the underlying URBI interpreter. Similarly,
the single update method update simply sends the provided update formula, an
URBI program, to the URBI server.

The Urbibot connects over the JzUrbi module with the URBI server running
in the Webots simulator and thereby steers the e-Puck robot, extended with a
GPS sensor. In the particular case of the Urbibot , the sensory input accesses the
following sensors: camera, distance sensor, GPS, touch-sensor and a light-sensor.
Together with the update interface steering the Urbibot ’s two wheels, these two
methods provide the basic interface for e-Puck ’s control.

5.4 JzNexuiz

Finally, the JzNexuiz KR module, invented in [8], facilitates Jazzbot ’s interaction
with the Nexuiz game environment. By the means of a single query interface
method sense and a single update method act, it enables control of the Jazzbot ’s
avatar body in the virtual building. The query method provides access to several
sensors of GPS, sonar, 3D compass and object recognition. The update method
allows issuing commands to the avatar’s body, such as move, turn, jump, use,
attack or say.

Technically, the module connects over TCP/IP with a Nexuiz server and
thus provides an interface of a pure client side Nexuiz bot. The consequence of
this setup is that the Jazzbot agent can access only a strict subset of the per-
ceptual information a human player would have. The Jazzbot plug-in integrates
a stripped down and customized Nexuiz client. In turn, the bot’s actions are
implemented as the corresponding key strokes of a virtual player.

Figure 5 depicts the syntax accepted by the plug-in’s query and update in-
terface methods sense and act. Each query formula starts with the name of the
accessed virtual sensor device followed by the corresponding arguments being
either constants, or variables facilitating retrieval of information from the envi-
ronment. Similarly, the update formulas consist of the action to be executed by
the avatar followed by a list of arguments specifying the command parameters.

The truth values of query formula evaluation depends on the sensory input
retrieved from the environment. In the case the query evaluates to true (>), the
additional information about e.g. the distance of an obstacle, or the reading of
the body health sensor, is stored in provided free variables.



nex_query ::= sensor (constant | variable)+

nex_update ::= action (constant | variable)+

sensor ::= sen_const | variable

sen_const ::= ‘body’ | ‘liquid’ | ‘ground’ | ‘gps’ | ‘compass’ |

‘sonar’ | ‘map’ | ‘eye’ | ‘listen’

action ::= act_const | variable

act_const ::= ‘move’ | ‘turn’ | ‘jump’ | ‘use’ | ‘attack’ | ‘say’

Fig. 5. JzNexuiz EBNF.

6 Experiences and Conclusion

The two case-studies described in this paper served us most importantly as a
vehicle to nurture and pragmatically drive our research towards a methodol-
ogy for using an agent oriented programming language exploiting strengths of
heterogeneous KR technologies in a single cognitive agent system. For further
details concerning the methodology consult [14]. As an important side effect, we
collected experiences with programming BDI inspired virtual cognitive agents
for computer games and simulated environments, as well.

As in the long run we aim at development of autonomous robots, in both cases
the virtual agents had to be running autonomously and independently from the
simulator of the environment. This choice had a strong impact on the design
of the agents w.r.t. the action execution model and the model of perception. In
both described applications, the agents are remotely connecting to the simulated
environment in which they execute actions in an asynchronous manner, i.e. they
can only indirectly observe the effects (success/failure) of their actions through
later perceptions. As far as the model of perception is concerned, unlike other
game bots, Jazzbot is a pure client side bot, i.e. the amount of information it can
perceive is a strict subset of the information provided to the game client used by
human players. Hence, the Jazzbot agent cannot take advantage of additional in-
formation, such as the global topology of the environment, or information about
objects in distant parts of the environment, which are accessible to the majority
of other bots available for first-person shooter games. In the case of Urbibot , the
simulator provides only perceptions accessible to the models of robot’s sensors.
In our case these are most importantly a camera, a directional distance sensor
and global positioning, hence the available information is, similarly to Jazzbot ,
only local, incomplete and noisy.

As both implemented agents are running independently from the simulation
engine and execute their actions in an asynchronous manner, their efficiency is
only loosely coupled to the simulation platform speed. In our experiments, the
speed of agent’s reactions was reasonable w.r.t. task the bots were supposed to
execute. However, especially in the case of Jazzbot , due to deficiencies on the side
of sensors, such as missing camera rendering the complete scene the bot can see,
Jazzbot in its present incarnation cannot match the reaction speed of advanced
human players in a peer-2-peer match.



Since, the agents store their internal state in the application domain specific
KR modules, the control model of Jazzyk BSM framework results in agents which
can instantly change the focus of their attention w.r.t. an observed change of the
context in the environment. The goal orientedness of agent’s behaviours emerges
from the coupling between behaviour triggers and agent’s attitudes modeled in
its components [14]. This turned out to be of a particular advantage when a quick
reaction to interruptions, such as an encounter of an enemy agent, or a patrol,
was needed. On the other hand, because of the open plug-in architecture of the
Jazzyk BSM framework, we were able to quickly prototype and experiment with
various approaches to knowledge representation and reasoning, as well as various
models of interaction with the environment.

Our research project follows the spirit of [7], where Laird and van Lent argue
that approaches for programming intelligent agents should be tested in realistic
and sophisticated environments of modern computer games. Jazzbot project thus
follows in footsteps of their SOAR QuakeBot [6].

Another relevant project, Gamebots [1], provides a general purpose interface
to a first-person shooter game Unreal Tournament8. Gamebots’ approach is how-
ever server side, i.e. the virtual agent is provided with much more information
than a human player has, what was not in the spirit of our aim to emulate mobile
robots in a virtual environment. Why we did not pick the Gamebots framework
for our project was also the fact, that it is specific to the commercially avail-
able game Unreal Tournament and since 2002, the project does not seem to be
further maintained.

To our knowledge, our work on the Jazzbot and Urbibot case-studies is novel
in the sense that it seems to be the first efficient application of non-monotonic
reasoning framework of ASP in a highly dynamic domain of simulated robotics,
or a first-person shooter computer game. Even though, to our knowledge the
first attempt by Provetti et al. [15] uses ASP for planning and action selection
in the context of the Quake 3 Arena9 game, authors note that their bot could
not recalculate its plans rapidly enough since each computation required up to
7 seconds in a standard setup [15]. Thus, in comparison to Jazzbot or Urbibot ,
their agent was capable to react to events occurring in the environment only to
a lesser extend, because both their action selection and planning was in ASP.

Similarly, to our knowledge, the transparent integration of various KR tech-
nologies such as a declarative, logic based technology for representing agent’s
beliefs and goals, an object oriented language for storing the topological infor-
mation about the environment together with a generic reactive control model
of the agent program in the Jazzyk BSM framework is unique. In consequence,
the Jazzyk BSM framework shows a lot of potential for further experimentation
with synergies of exploiting various AI technologies in cognitive agent systems,
especially in the attractive domain of virtual agents and autonomous non-player
characters, for computer games. Yet, we believe, more experimentation is needed

8 http://www.unrealtournament3.com/
9 http://www.idsoftware.com/



to explore the limits and deficiencies of our approach in the domain of simulated,
as well as physical reality embodied robotics.
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