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Quest for a practical agent programming system

m clear semantics (insight into theoretical properties ~»
verification?)
m standard software engineering support
m modularity (code re-use, structural decomposition)
m expressive syntax (should be as simple as possible!)
B easy integration with external systems (environment, legacy
subsystems, middleware, sensors/actuators)
m design freedom:
m choice of KR techniques (“different programming languages are
good for different KR tasks”)
m deliberation cycle control - integrated and powerful
B bad design - freedom to implement software in a “wrong” way
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What makes a BDI agent program today?

Class of systems with a clear semantics (3APL, AgentSpeak(lL), ...):

m 3 modules (knowledge bases) < enforce fixed KR technique!
m “reasoning” rules (goals-2-actions decomposition) <
constrain system interactions!

B agent’s actions specification < foreign programming
language!

m deliberation cycle customization < associated language, not
an integral part of the agent program!

Do we know how to use our agent programming languagues?
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Can we do better? (our attempt)

abstract agent architecture =» programming language.

Abstract architecture - generalize, generalize, generalize!:

m separate KR issues and system dynamics
m component based design (basic set of BDI-inspired
components)

Programming language - one agent = one program:
m structural decomposition support
m simple, yet powerful deliberation cycle control ~ integral
part of the agent program
m IDE, middleware, interaction, ... < not a primary concern of a
programming language!
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Modular BDI Architecture

Knowledge Representation:

m encapsulate BDI modules allowing only query/update
interface

m KR techniques and programming languages ~
programmer’s decision

m treat agent’s capabilities as just another BDI component

Agent System Dynamics:

m interaction between BDI modules ~~ interaction rules
m application of an interaction rule ~~ atomic system transition
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Beliefs (Prolog) Desires (set of Prolog atoms)

ready :— cup_present, make_espresso.
cup_empty,
not error.

Capabilities (C)

| A

Intentions (stack - Lisp)
void mill_start();

(define push ...) void mill_stop ();
(define pop ...) int stand_empty ();
(define top? ...) int cup_empty();

4

Qc (Istand_empty() && cup_empty()) — Up(assert(cup_present))

Q@ p(ready) A Qp(make_espresso) — Ur((push (grind boil pour clean)))
Q1 ((top? grind)) — Ug(mill_start()) o Ur((pop))
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So what? What is it good for?

Advantages:
m abstract meta-framework for building agent programming
languages
m allows to implement various models of rationality

m AgentSpeak, 3/2APL & Co. can be seen as instances of this
framework

m the least common ground for APLs? (Koen'’s talk)
Shortcomings:

m extremely abstract way of thinking about agent program

m if we forget about the purpose of the particular module, the
whole thing falls apart < programer’s concern!
m the same for constraints on rule types allowed

m too poor common ground? (Koen'’s talk)
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Basic statement:
when query <module> [{...}] then update <module> [{...}];

when
query desires [{ make_espresso }] and query beliefs [{ ready }]
then
update intentions [{ (push (grind boil pour clean) }];

Modules declaration:

declare module beliefs [{
include(myfile.cpp);

10
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Jazyk - Adding variables

Adding variables:

when
query desires(Type) [{ make(Type) }] and
query intentions [{grind}] and
query beliefs(Type,Amount) [{ receipt(Type,Amount) }]
then
update capabilities(Amount) [{ grind(Amount) }];

Semantics similar to Prolog-style free variable binding - evaluated
from left to right!

Peter Novak, Jurgen Dix - Computational Intelligence Group Clausthal University of Technology June 27th, 2006, Dagstuhl 10/17



ﬁu{} TU Clausthal Jazyk - The Language

Clausthal Uni of Technology

Jazyk - Adding structure decomposition

Nested rules:

when
query beliefs [{ needsCleaning }]
then {
when query beliefs [{ not standEmpty }]
then update capabilities [{ displayMessage('remove the cup!’) }];

when query beliefs [{ not error }] {
update capabilities [{ rinse }];
update beliefs [{ assert(rinsing) }];

}
Translation to a basic statement:

when <Query1> then {
when <Query2> when <Query1> and <Query2>
then <Update2>; then <Update2>;
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Deliberation cycle
Nested rules induce a tree structure:

depth-first backtrack interpretation!

Q p/needsCleaning

alse/else

Q p/not standEmpty nop

U /displayMessage

tru \wue

alse/else
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Interpreter cycle control

Prolog-style deliberation cycle control constructs: cut, break,
(try-catch?)

\%Ise

alse/else

\
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Jazyk - Enhancing modularity

Source code level modularity support: define, apply

define CleanMachine : when
query beliefs [{ needsCleaning }]
then {
when query beliefs [{ not standEmpty }]
then update capabilities [{ displayMessage('remove the cup!’) }];

when query beliefs [{ not error }] {

update capabilities [{ rinse }];
update beliefs [{ assert(rinsing) }];

}

when query beliefs [{ isldle }] then apply CleanMachine;
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Jazyk - Reflective features

Large subtrees ~ roles/behaviors!
Ordering of roles dynamically changes during agent’s execution.

Role1

Role1

/ \ Role3

& @
@

Role2
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On-going and future work

m full fledged interpreter

m modules for Prolog and Lisp

m module for Smodels - Answer Set Programming support
integration

m experiments, case study ~~ polishing the language
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Questions?

Thanks for your attention.
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