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Abstract— In this paper, the multi-robot motion coordina-
tion planning problem is addressed. Although a centralized
prioritized planning strategy can be used to solve the problem,
we rather consider a decentralized variant, which is a more
suitable for a robotic system of cooperating unmanned aerial
vehicles (UAVs) due to communication limitations, privacy
concerns, and a better exploitation of computational resources
distributed among the individual robots. However, the existing
decentralized prioritized planning algorithm contains synchro-
nization points that all the agents must be able to pass syn-
chronously, which is impractical and inefficient for a real-world
deployment of the robotic systems. Therefore, we introduce a
new asynchronous decentralized prioritized planning algorithm
and show that the method can converge faster than both the
synchronous decentralized and centralized algorithms. Further,
we demonstrate the applicability of the proposed method as a
coordination mechanism within a complex mission planning for
a real robotic system consisting of several autonomous UAVs.

I. INTRODUCTION

When a team of mobile robots operates in a given
workspace, one of the fundamental problems is to prevent
collisions among the individual team members. The problem
can be addressed by the motion coordination planning that is
able to provide mutually collision-free trajectories. Although
the problem is straightforward to formulate as a planning
problem in the Cartesian product of the state spaces of
individual robots, such a problem is difficult to solve because
the size of such a state space grows exponentially with the
number of robots. The problem is even more challenging, if
the prior knowledge about the situation, robots’ goals and
operational environment is only an initial estimation, and
thus new updates have to be considered and fast replanning
has to be performed whenever new update is available in
order to prevent a collision. These additional requirements
arise from a practical deployment of a multi-robot system for
patrolling and surveillance missions [12], which is a subject
of our research.

Regarding the practical difficulties, more pragmatical
methods have been proposed to provide a fast response
even though the global completeness has been sacrificed
in favor of reduced computational complexity. Examples of
such methods are decentralized reactive planners such as the
DRCA [9] or ORCA [16]. However, due to their reactive
nature only local collision-free motions can be guaranteed;
hence, it may happen that a reactive technique will lead
robots to a deadlock.

Multi-robot motion planners take into consideration the
goal of each robot and plan trajectories that are globally
conflict-free. If the robots execute the resulting joint plan
precisely (or within some given tolerance), it is guaranteed

that the robots will reach their goals without any collision.
The multi-robot planners are typically based either on the
coupled heuristic search in the joint state space of all
robots or on decoupled planning. The former class of the
methods is able to find optimal solutions [14], [15], but
the computational complexity does not scale well with the
increasing number of conflicting robots.

On the other hand, decoupled approaches can be fast
enough for real-time applications. Such methods are in-
complete similarly to the reactive methods, however, if a
decoupled planner finds a solution, it represents a globally
conflict-free plan that guarantees each robot will reach its
goal if the robots will follow the planned trajectories. If a
decoupled method is able to compute solutions sufficiently
fast, then it can be used in a reactive manner to provide fast
response to sudden changes in a form of globally conflict-
free trajectories.

A widely used decoupled scheme for the multi-robot
motion planning that has been shown to be effective in
practice [4] is prioritized planning [3]. Recently, Velagapudi
et al. presented a decentralized version of prioritized planning
technique for teams of mobile robots [19], which is able to
utilize the distributed computational resources of each robot
and thus decreases the time tot find a solution.

However, the formulation of the decentralized algorithm
is based on the assumption that the robots have a “dis-
tributed synchronization mechanism allowing them to wait
for all team mates to reach a certain point in algorithm
execution” [19]. Unfortunately, such mechanisms (known as
distributed termination detection algorithms) are rather non-
trivial to implement [10]. With unreliable communication
channels, the synchronization is in general impossible to
achieve, as was shown in the famous Two Generals’ prob-
lem. Moreover, since the algorithm proceeds in globally-
synchronized rounds, faster-computing robots have to wait
at the end of each round for the longest-computing robot
and thus the distributed computational power is not used ef-
ficiently. Besides, the synchronized algorithm was evaluated
only in a simulated 2-d grid, and therefore, it is not clear if
the algorithm is applicable to real-world robotic systems.

In this paper, we address the aforementioned issues of
the synchronized decentralized prioritized planning (SDPP)
and we propose a novel algorithm coined asynchronous
decentralized prioritized planning (ADPP), which removes
the need for the synchronization between the robots. The
benefit of ADPP is its simplicity and the ability to exploit the
available distributed computational power in a more efficient
way than the SDPP and thus to provide a solution of the



conflict situation in a shorter time. The results presented in
Section V show that the proposed asynchronous algorithm is
able to provide solutions faster than its synchronized variant.
Moreover, we experimentally verified the ADPP’s behavior
in a practical deployment of a multi-UAV robotic system
with real communication constraints, where the proposed
approach exposes ability to deal with unreliable communi-
cation.

The rest of the paper is organized as follows: The problem
is defined in the next section while an overview of prioritized
planning approaches is presented in Section III. The main
contribution of the paper, the ADPP algorithm, is described
in Section IV and its evaluation results together with a
comparison with the previous approaches is presented in
Section V. A report on the practical deployment is dedicated
to Section VI. Finally, concluding remarks are in Section VII.

II. PROBLEM

Consider n robots r1, . . . , rn operating in a subregion W
of 2-d or 3-d Euclidean space. Each robot ri is characterized
by its starting and goal positions si ∈ W, gi ∈ W , respec-
tively. The task is to find a set of space-time trajectories
P = {p1, . . . , pn}, such that pi : R≥0 → W is a mapping
from time to positions in W , pi(0) = si, pi(ti) = gi
and the trajectories are mutually collision free, i.e., ∀i, j :
i 6= j ⇒ ¬C(pi, pj), where C(pi, pj) denotes a space-time
mutual collision relation between pi and pj . Informally, two
trajectories collide (are in a conflict) when the bodies of two
robots touch, or intersect at some time tcol.

We assume that each robot is equipped with a wireless
communication device allowing to broadcast messages. Each
of these messages will be eventually received by every other
team member. Further, we assume that the communication
channel preserves the ordering of messages that were sent
in. However, in a practical verification of the proposed
method using a real-robotic system, the message delivery is
not guaranteed. Moreover the number of robots can change
during the mission.

III. PRIORITIZED PLANNING

Prioritized planning [3], [17], [1] represents a pragmatic
solution of the addressed problem of the multi-robot motion
planning, which is known to be PSPACE-hard [5]. Although
prioritized planning is in general incomplete, it is fast even
for large multi-robot teams in complex environments. In pri-
oritized planning, each robot is assigned a unique priority and
the algorithm proceeds sequentially from the highest priority
robot to the lowest priority one. The robots consider the
higher priority robots moving along their planned trajectories
as moving obstacles, which they have to avoid. When the
algorithm finishes, each robot is assigned a trajectory not
colliding with either higher priority robots, since the robot
avoided a collision with those, nor with lower priority robots
that avoided a conflict with the given trajectory themselves.

In the case a single robot is unable to find a trajectory
that is conflict-free with higher-priority robots, the overall
algorithm fails as it does not perform backtracking. Clearly,

Algorithm 1 Centralized Prioritized Planning (CPP)

Ensure: After the algorithm finishes, Traji contains the
final computed trajectory for the robot with priority i.
If the robot cannot find a trajectory not colliding with
higher priority robots, Traji stores ∅.

1: procedure CPP(〈s1, g1〉, . . . , 〈sn, gn〉)
2: Avoids ← ∅
3: for i← 1 . . . n do
4: Traji ←BEST-TRAJi(si, gi,Avoids)
5: Avoids ← Avoids ∪ {Traji}
6: end for
7: end procedure

8: function BEST-TRAJi(s, g , avoids)
9: return the best trajectory from s to g not conflict-

10: ing with trajectories in avoids .
11: Otherwise return ∅.
12: end function

such a scheme is sensitive to initial prioritization of the
robots in the team; however, there are simple heuristics
for choosing an efficient ordering [17]. The main benefit
of the prioritized plannning strategy is a fast runtime in
relatively uncluttered environments typically encountered in
multi-robot applications, especially if we consider domains
such as operations of cooperating UAVs.

A straightforward implentation of the prioritized strategy
is a centralized algorithm. A brief overview of the centralized
algorithm we considered for evaluation is presented in the
next section. The proposed ADPP algorithm is based on the
decentralized synchronized algorithm [19], and therefore, it
is described in more detail in Section III-B.

A. Centralized Algorithm

A collision-free operation of a multi-robot team can be
ensured by forcing all robots to communicate their objectives
to a centralized planner, which centrally computes a solution
and informs the robots about the trajectory they have to
follow in order to maintain the conflict-free operation. As a
baseline for evaluation of decentralized algorithms, we con-
sidered cooperative A* [13] (see Algorithm 1), a centralized
algorithm based on the prioritized planning scheme (CPP).

We assume that BEST-TRAJi(s, g , avoids) is an appli-
cation specific routine that returns an optimal trajectory
for robot i in space W that avoids robots that follow the
respective trajectories in Avoidsi. Such a routine can be
implemented by any motion planning technique for planning
with moving obstacles (e.g., [18] or [11]).

B. Decentralized, but Synchronized Algorithm

A decentralized multi-robot planning algorithm utilizing
the prioritized planning scheme has been presented in [19]
and it is denoted as the synchronized decentralized prioritized
planning (SDPP) algorithm here. Algorithm 2 lists the pseu-
docode of the SDPP, slightly adapted for exposition purposes.



Algorithm 2 Synchronized Decentralized Prioritized Plan-
ning (SDPP) – pseudocode for the robot i

Ensure: After the algorithm finishes, Traji contains the
final trajectory for robot i. If no solution was found,
Traji stores ∅.

1: procedure SDPP(s, g , priority)
2: Si ← s; Gi ← g; I ← priority ; Avoidsi ← ∅; Traji ← ∅
3: REPLAN
4: wait for all other robots to finish the planning
5: process messages and update Avoidsi set
6: while not global termination detected do
7: CHECK-CONSISTENCY
8: wait for all other robots to finish the iteration
9: process messages and update Avoidsi set

10: end while
11: end procedure

12: procedure CHECK-CONSISTENCY
13: if Traji collides with Avoidsi then
14: REPLAN
15: end if
16: end procedure

17: procedure REPLAN
18: Traji ←BEST-TRAJi(Si, Gi,Avoidsi)
19: BROADCAST(I, T raji)
20: end procedure

Before the start of the algorithm, each robot is assigned a
unique priority I ∈ 1 . . .N , with N being the size of the
multi-robot team and I = 1 denoting the robot with the
highest priority.

The algorithm proceeds in synchronized iterations. In each
iteration, the robots recompute their trajectory if necessary
and subsequently broadcast it to other robots. A robot must
recompute its trajectory in the case its current trajectory is
in conflict with any trajectories of the higher priority robots
computed and communicated in the previous iterations.

The algorithm finishes when all the robots cease to com-
municate and either hold a trajectory, or they were not able
to find a collision-free solution.

IV. ASYNCHRONOUS PRIORITIZED PLANNING

Due to its synchronous nature, the SDPP algorithm is
cumbersome to implement and does not fully exploit the
computational power distributed among individual robots.
In every iteration, the robots that finished their trajectory
planning routine sooner, or did not have to re-plan at all, sit
idle while waiting for the robots with a higher workload in
that iteration (or simply slower computation), even though
they could theoretically resolve some of the conflicts they
have among themselves in the meantime and thus speed up
the overall algorithm run. An example of a situation, where

Algorithm 3 Asynchronous Decentralized Prioritized Plan-
ning (ADPP) – pseudocode for the robot i

1: procedure ADPP(s, g , priority)
2: Si ← s; Gi ← g; I ← priority ; Avoidsi ← ∅; Traji ← ∅
3: EXEC-ASYNC(REPLAN)
4: wait for global termination
5: end procedure

6: message handler RECEIVE-INFORM(j, traj)
7: if j < I then
8: Avoidsi ← (Avoidsi \ 〈j, _〉) ∪ {〈j, traj 〉}
9: EXEC-ASYNC(CHECK-CONSISTENCY)

10: end if
11: end message handler

12: procedure EXEC-ASYNC(Routine)
13: terminate currently running computation (if any)
14: execute asynchronously Routine
15: end procedure

the asynchronous algorithm would be beneficial is illustrated
in Figure 1.

To deal with such an inefficiency and to remove the need
for the distributed termination detection at each iteration,
we propose an asynchronous decentralized variant of the
prioritized planning coined the asynchronous decentralized
prioritized planning (ADPP) algorithm, whose pseudocode
is exposed in Algorithm 3. The asynchronous algorithm
replaces the concept of globally synchronized iteration (while
loop in Algorithm 2) by a reactive approach in which every
robot reacts merely to incoming INFORM messages. Upon
receiving an INFORM message (RECEIVE-INFORM routine
in Algorithm 3), the robot simply replaces the information
about the trajectory of the sender robot in its Avoidsi set
and checks whether its current trajectory is consistent with
the contents of the new Avoidsi set. If the current trajectory
is inconsistent the robot triggers replanning, otherwise the
robot can remain idle.

Further, contrary to the SDPP, the REPLAN and CHECK-
CONSISTENCY routines are executed asynchronously. If a
computation is already running for an older contents of the
Avoidsi set, (i.e., previously invoked REPLAN or CHECK-
CONSISTENCY routines) the computation is interrupted and
started anew with the updated contents of the Avoidsi set.

A. Correctness of the ADPP

The ADPP algorithm is correct, which means that if it
terminates then the found trajectories are mutally collision
free or it is reported that a feasible solution has not been
found. The proof the algorithm correctness is based on
showing the algorithm terminates and soundness of the found
solution.

Proof (ADPP termination): The termination of the algo-
rithm can be shown by an induction on an individual robot
priority i that each robot ri eventually stops sending the
INFORM message.



Fig. 1: Example multi-robot coordination problem. Left:
start and target positions of the robots 1, 2 and 3. We
assume that robot 2 plans longer, because it has to avoid
the black obstacle. Middle: Sequence diagrams showing the
planning process in CPP, SDPP and ADPP. Right: the final
trajectories.

Initial step: There is no robot with the priority higher
than the robot r1; thus, the highest priority robot r1 informs
the lower priority robots only once in the first iteration of
the algorithm. After that it remains silent since its trajectories
will always be consistent with an empty set of trajectories.

Induction step: Let consider the following induction
hypothesis: “after the robots with priorities 1 . . . k − 1
stopped communicating, eventually also the robot with the
priority k stops sending INFORM messages”. Now, assume
this is not the case and there is a situation such that the
robot k would end up sending INFORM messages forever.
However, for such a case the robot must have its mailbox
continually being filled with INFORM messages; so, its
RECEIVE-INFORM handler routine gets invoked infinitely
many times. In a consequence, the robot would possibly need
to recompute its best trajectory and subsequently inform the
lower priority robot infinitely often. That implies existence
of a sender for each such message and hence by necessity
there must be at least one robot with a priority higher than
k, which keeps sending INFORM messages forever, which
contradicts the induction hypothesis.

As a consequence of the consecutive silencing of the
robots from high to lower priorities, it is straightforward to
see that in the course of the ADPP algorithm execution, each
agent makes at most N iterations before it terminates.

Proof (ADPP correctness): Now, we know the algo-
rithm terminates and thus we can show the final variables
Traji store a set of non-conflicting trajectories. Since each
robot eventually sends its last INFORM message and ceases to
communicate, all other robots with a lower priority eventu-
ally process all last INFORM messages from all robots with
higher priority together with their final trajectories (being
either a valid trajectory, or ∅). At that moment, all the tuples
〈j,Traj j〉 for all j > i are stored in the set Avoidsi of
the robot ri. Subsequently the robot eventually invokes the
CHECK-CONSISTENCY routine for the last time and thus
either Traji will end up unchanged, recomputed and again
non-conflicting with either of 〈j,Traj j〉 for all j < i, or
being invalid (∅). Finally, the robot informs all the robots
with priorities lower than i and ceases to communicate.

When the last robot stops communicating, all the Traj i
variables are either set correctly, or the algorithm failed to
find a solution for some of the participating robots.

As already noted, the ADPP is incomplete, which can be
simply shown by the following example. Imagine the highest
priority robot finds a solution, which does not allow to find a
collision-free trajectory by other robots while for a different
choice of priorities there can be a feasible solution for all
robots.

B. Implementation Notes and Plan Execution

In this work we do not make attempts to limit the number
of recipients of each message (e.g. as in [19]) because a)
we assume that the robots use a wireless communication
channel, in which it is cheaper to broadcast a single message
than to transmit multiple single-recipient messages and b) in
open systems the identities of lower-priority agents are often
unknown a priori.

A practical detection if the termination condition is satis-
fied can be implemented without any communication over-
heads as follows. If the total number of the robots in the team
is fixed, the following marking-based termination-detection
mechanism can be used. A robot ri marks its trajectory as
final if it is collision-free with the current Avoidsi set and the
trajectory of the robot with the priority i−1 is marked final.
This can be communicated to other robots by marking the
trajectory in the INFORM message with a final flag (if Traji
has changed) or by broadcasting a short FINAL message to
confirm that the current Traji is still valid, but now also
final. The initial trajectory of r1 is trivially marked final.
When a robot broadcasts its final trajectory, it can safely
terminate its computation. Once the final trajectory has been
generated by the lowest-priority robot rn, the computation
terminates globally; hence, if a robot receives the INFORM
message with the final trajectory of the lowest-priority robot,
it can deduce the global termination condition has been
reached.

If the size of the team is not fixed, one can for example
bound the maximum time of the BESTTRAJ planning and
pronounce the computation terminated if the system is silent
for more than the given time.

After the termination condition is reached and all the
trajectories are collision-free (otherwise the planner can
report an infeasible situation to an operator) the robots
start to follow the found trajectories. Here, it is worth to
mention that robots (e.g., UAVs that cannot stop their motion
during flight) may follow the previous plans during the
computation (we assume the first initial plan is collision-
free, e.g. loitering). In such a case, one can imagine that an
individual robot ri can start execution its new collision-free
plan immediately when it is found and no new updates of
the Avoidsi set has been received during planning. Even
though the common acceptance of the global plan provides
the theoretical guarantee of all robots reaching their goals,
the latter approach with immediate execution of the plan
provides a faster response of the particular robot to the new
situation. In the results presented in this paper, we consider



the first approach in evaluation presented in Section V,
while for practical deployment using real Multi-UAV robotic
system we rather consider the latter approach, see Section VI.

The readers interested in deeper analysis of the algorithm
are referred to the results of our preliminary work [2].

V. EVALUATION

The expected benefit of the proposed ADPP algorithm
has been evaluated in a comparision with the previous
approaches CPP, SDPP on a series of randomly generated
problem instances. The particular problem instances follow
a common structure based on a 20 m x 20 m large 2-d
environment populated by n disc-shaped robots having the
radius 0.4 m. The robots plan their trajectories using an
A* planner operating on a spatio-temporal 4-connected grid
graph, where the heuristic is the time needed to travel the
Euclidean distance from the current node to the destination
node at the maximum speed. The robots can move on the
edges of the graph with the constant speed of 1 m/s or they
can wait for 0.5 s on any of the vertices in the graph. The
“wait” action can be used repeatedly.

The evaluated runtime characteristics of the algorithms
are the wall-clock runtime, communication complexity (the
number of broadcasted messages) and solution quality. The
characteristics have been measured using the Intel Core 2
Duo CPU running at 2.1 Ghz. In the case of decentral-
ized algorithms, a simulated concurrent execution has been
considered using a discrete-event simulation. The arriving
time of each message is used to measure execution time
of the particular planning instances to determine the real
computational requirements as the planning is executed on
n independent computers assuming perfect communication
with no latency. The simulator of concurrent execution
was implemented using Alite multi-agent simulation toolkit.
The complete source code of the experimental environment
(including the simulator) and the video recordings of the ex-
periments are available at http://agents.fel.cvut.
cz/~cap/adpp/.

In the evaluated problems, the number of robots varies
from 30 to 100. The start position for each robot in the
scenario was selected randomly from a uniform distribution
(see Figure 2), the goal position was generated randomly
in the distance from the start position that was taken from
the interval (5, 10). Further, we asserted that no two robots
share the start node and no two robots share the destination
node. For each problem with a particular number of robots
10 different random trials was performed and average values
of the measured characteristics are presented here.

The wall-clock runtime represents the real-world time a
particular algorithm would need to find a solution. The wall-
clock time for the CPP is equal to its CPU-time and can
be measured directly. The average wall-clock runtime of
the decentralized algorithms on random scenarios with n
robots was obtained by running an n concurrent processes
simulation of the algorithm execution. The average required
wall-clock runtime are depicted in Figure 3a. The results

show that the decentralized algorithms requires shorter run-
time than the centralized solver. Further, the proposed ADPP
provides significantly better runtime performance than the
SDPP, especially in dense problem instances with many
conflicting robots.

Regarding the computational complexity, we can consider
the CPP algorithm used in a distributed system as follows.
All the robots have to communicate their objectives to the
central solver. Then, the central solver finds a solution and
informs each robot about its new path. Thus, the number
of required messages can be computed analytically and the
communication complexity of the CPP is 2n. The required
number of exchanged messages is ploted in Figure 3b. It is
shown that for sparse problems, the decentralized algorithms
require fewer messages than the centralized approach. The
communication complexity of the decentralized algorithms
starts exceeding the centralized approach for more than 60
robots.

The quality of the found solutions is measured as a
cumulative time spent by robots navigating their trajectories
and defined as

cost(P ) =
dur(P )− dur(P ′)

dur(P ′)
, (1)

where dur(P ) =
∑n

i=1 t
dest
i , tdesti denotes the shortest time

instant at which the robot ri reaches its destination desti
and P ′ is the set of the best trajectories for each robot if
collisions are ignored.

Results of the measured average costs are shown in
Figure 3c. The decentralized algorithms return a slightly
worse solution (on average) than the CPP algorithm. The
reason is the replanning condition used by the decentralized
algorithms. The condition states that a robot should replan
its trajectory only if the trajectory is inconsistent with its
view of the situation. Thus, the robot may receive an up-
dated trajectory from a higher-priority robot that allows an
improvement in its current trajectory, but since the trajectory
may be still consistent, the robot will not exploit such an
opportunity for an improvement.

Finally, Figure 3d shows the failure rates of the individual
algorithms as a function of the number of robots in a sce-
nario. We can see that the incompleteness of the prioritized
planning (i.e., there is at least one robot that failed to find a
consistent trajectory) starts exhibiting itself only in relatively
dense scenarios.

VI. DEPLOYMENT

In this section, we present results of the ADPP algorithm
deployment in our multi-UAV system, which demonstrate
a practical applicability of the proposed algorithm in real
world scenarios. The considered multi-UAV system is be-
ing developed under a long-running research effort in our
center [12], which is concerned with development of multi-
agent control algorithms for teams of cooperating UAVs to
autonomously carry out tasks such as patrolling, tracking
or area surveillance in tactical missions. In fact, the main



Fig. 2: One instance of a random scenario with 90 robots.
The start and goal positions of each robot are depicted on
the left, the final solution found is on the right.

30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

CPP

SDPP

ADPP

Number of Agents

W
al

lc
lo

ck
 R

un
tim

e 
(s

)

(a) Average wall-clock runtime

30 40 50 60 70 80 90 100 110 120
0

50

100

150

200

250

300

350

400

Number of Agents

N
um

be
r 

of
 M

es
sa

ge
s

(b) Average messages broadcasted

30 40 50 60 70 80 90 100 110 120
0

0.05

0.1

0.15

0.2

0.25

Number of Agents

C
os

t 
(s

)

(c) Average cost (prolongation of tra-
jectories)

Number of agentsCA SDPP IADPP
30 0 0 0
40 0 0 0
50 0 0 0
60 0 0 0
70 0 0 0
80 0 0 0
90 0.1 0.1 0

100 0.2 0.2 0.2
110 0.5 0.4 0.4
120 0.6 0.6 0.7

30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Agents

F
ai

le
d 

In
st

an
ce

s/
A

ll 
In

st
an

ce
s 

ra
tio

(d) Failed instances ratio

Fig. 3: Results from the random scenario

motivation behind the development of the proposed ADPP al-
gorithm was to develop a conflict resolution mechanism that
can be deployed to real UAVs, run on the embedded onboard
computational resources and be able to deal with real-world
communication constraints. The application context and a
brief description of the hardware equipment is presented in
Section VI-A. Although the core of the proposed ADPP
algorithm is identical for desktop as well as on-board com-
puters, there are particular issues that have to be addressed
for its integration and deployment in field experimenting.
These issues and proposed solutions are disccused in Section
VI-B. Finally, practical achievements in the so-called super-
conflicit scenarios are presented in Section VI-C.

A. Multi-UAV Robotic TestBed

Our test bed consists of two UAVs based on the Unicorn
airframe equipped with the Kestrel Autopilot from Lockheed
Martin (see Figure 4). In addition, the platform is equipped

with the Gumstix Overo EarthStorm embedded computer for
an on-board computation and Xbee 2.4GHz RF module to
enable direct UAV-to-UAV messaging. Our algorithms are
primarily targeted to large UAV teams. However, due to the
limited number of physical UAVs we have at our disposal, a
mixed-reality approach [6] is used to scale up. Specifically,
we use two real airborn UAVs in a field (see Figure 5),
while the rest of the team is simulated. A description of
the integrated system, which allows a single human operator
to use a high-level interface to task a team of autonomous
UAVs and related results of field experiments cas be found
in [12].

To address the flying capabilities of the employed UAVs,
especially a relatively high inaccuracy in the plan execution
due to unstable wind, we model the UAV (for the purposes of
the trajectory planning and conflict resolution) as a relatively
large cylindric safe zone around each UAV. Specificially, we
set the radius to roughly 100 m and the half-height of the
cylinder to 10 m. The parameters were chosen empirically
to reflect the accuracy of the autopilot to follow the given
trajectory in difficult wind conditions.

An individual UAV can communicate using the radio link
having the shared capacity 25 kBps under ideal conditions.
However, the serial link that connects the XBee modem to the
on-board computer limits the maximum achievable broadcast
throughput to 5kBps per UAV. To keep the latency low and
to use the bandwidth efficiently, the data are transferred in a
raw form and thus the data delivery is not guaranteed.

B. Closed-Loop ADPP

Four main issues have to be addressed to apply a conflict
resolution algorithm (as the proposed ADPP) to a real-world
settings of a complex mission control. Firstly, the whole team
or individual team members may be re-tasked by an operator
and thus the goals of any of the UAVs may change at any
time during the mission execution. Secondly, the trajectories
generated by the ADPP are often executed imprecisely by the
UAVs, especially under unstable wind conditions. Thirdly,
the used radio communication channel does not guarantee
message delivery and thus some messages may get lost.
Fourthly, during the mission execution, some UAVs may be
abruptly removed from the robotic team, while some new
ones can be added.

It is clear that the afforementioned issues strenghten the
requirements on the fast response of the mission planning, as
the whole setup of the task can quickly change. Therefore,
the conflict resolution also has to provide a prompt response.
To address these requirements, we adapted the original ADPP
to work in a closed-loop fashion. The pseudo code of the
closed-loop version of the ADPP (called CLAPP) is given
in Algorithm 4. In CLAPP, an execution of the trajectories
is continuously monitored and a replanning is invoked if
necessary. The replanning is triggered: a) if the robot is
assigned a new goal Gi (e.g., by an operator); or b) if the
robot has diverted from its planned trajectory. For the latter
case, we use an application-specific predicate far(Traji, Si)
that is assumed to be true if the robot’s actual position



Algorithm 4 Closed-loop Asynchronous Decentralized Pri-
oritized Planning - pseudocode for the robot i

1: Si stores robot’s current position; Gi stores robot’s current goal

2: procedure CLAPPINIT(priority)
3: Avoidsi ← ∅; Traji ← ∅; I ← priority;
4: EXEC-ASYNC(REPLAN)
5: end procedure

6: when Gi has a new value or far(Traji, Si)
7: EXEC-ASYNC(REPLAN)
8: end when

9: when Traji has a new value
10: FOLLOW(Traji)
11: end when

12: periodically: BROADCAST(I, T raji)

Fig. 4: Unicorn fixed-wing UAV from Lockheed Martin

Si is too far (above a given tolerance in space or time)
from its current trajectory Traji (lines 6-8). Observe that
each such forced replanning triggers a new asynchronous
prioritized planning process and thus it may cause a cascade
of replannings for lower-priority UAVs. However, just as in
the standard ADPP, each of the robots will eventually adapt a
conflict-free trajectory or reports a failure to find one. From
a practical point of view, it should be noted that such an
extension was possible due to the asynchronous nature of
the ADPP. Implementing such a dynamic mechanism with a
centralized or a synchronized algorithm would be much less
natural.

Because of the possible message loss, the UAVs broadcast
their planned trajectory not only when it changes, but also
periodically onwards.

The possible dynamic team reconfiguration does not allow
to wait for a global termination of the ADPP run, and
therefore, a robot starts executing its collision-free trajectory
immediately when it is planned (lines 9-11). For the tra-
jectory generation (BESTTRAJ routine) we use an any-time
RRT*-based [7] spatio-temporal trajectory planner, which is
restricted to provide a solution within one second.

Fig. 5: The UAV during a field experiment.

C. Superconflict experiment

The behavior of the proposed technique within a com-
plex mission is demonstrated in a so-called “superconflict”
scenario. We considered four UAVs with starting positions
placed at the corners of a square and their goals being at the
respective diagonal opposite corners. Hence, all the airplanes
are initially in a conflict in the middle of the square, see
Figure 6. In order to show the behaviour of the CLAPP
technique more clearly, the BESTTRAJ trajectory planners
of the individual UAVs were constrained to use only a fixed
flight altitude and a fixed flight velocity.

In this experimental setup, two real UAVs (Plane1 and
Plane2) are attached to a hardware-in-the-loop simulator
and two others (Plane3 and Plane4) are simulated. The
control algorithms are deployed and run on the Gumstix
on-board computers. The hardware UAVs use the safe zone
radius 110 m, while the simulated ones use 70 m. The
virtual UAVs are controlled by the identical software as the
hardware UAVs; however, they run within virtual machines
on a desktop computer. Both real and simulated UAVs
communicate via their XBee radio modules. The Kestrel
autopilot of the hardware UAVs is connected to a high-
fidelity flight simulator Aviones1. When the mission is started
the UAVs execute the CLAPP algorithm to coordinate their
motions. The resulting traces that were recorded during the
experiment are shown in Figure 7 and can also be seen in
the attached video. One can see the typical phenomena of
prioritized planning – the highest-priority Plane 1 keeps its
first straight-lane trajectory, while all other UAVs need to
change their first trajectory to adapt.

VII. CONCLUSION

In this paper, we present a novel asynchronous decen-
tralized algorithm for the multi-robot motion coordination
problem. The algorithm removes the need for an explicit
synchronization of the robots in between individual compu-
tational rounds. From a practical point of view, the newly
proposed asynchronous algorithm is a more straightforward
and it is easier to implement, because it does not require a
distributed termination detection to synchronize the agents at

1http://aviones.sourceforge.net/
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Fig. 6: Superconflict scenario – UAV missions
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Fig. 7: Superconflict scenario – traces of the UAVs

the end of each computational round, which, in fact, is a diffi-
cult to guarantee using an unreliable communication channel.
Besides, the new algorithm in practice finds solutions faster
and it better exploits available computational resources in the
distributed environment. The presented evaluation results of
the real-time performance show that the speed up improve-
ments of the asynchronous decentralized algorithm can be
significant in comparison with the synchronous decentral-
ized algorithm. Regarding a comparison of the centralized
and decentralized approaches, the results indicate that the
decentralized algorithms are advantageous as the number of
the needed messages to find a solution can be similar for both
cases; however, the decentralized algorithms are significantly
faster.

The motivation behind the ADPP design was to develop
a conflict resolving planning algorithm that can be de-
ployed in the real-world multi-UAV system with an unre-
liable communication and limited on-board computational

power. The closed-loop derivation of the ADPP exhibits that
the proposed asynchronous coordination mechanism can be
employed in a distributed robotic application with several
autonomous UAVs under real-world communication con-
straints and meets the desired requirements. In future work,
we would like to investigate incremental motion planning
algorithms (e.g. D* [8]) in place of BESTTRAJ routine to
avoid premature interruptions of running planners.
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