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Abstract

There is a huge gap between agent programming languages used for industrial ap-
plications and those developed in academia. While the former are mostly exten-
sions of mainstream programming languages (e.g. Java), the latter are often very
specialized languages, based on reactive rules. These specialized languages enjoy
clear semantics and come with a number of knowledge representation features, but
lack important aspects such as code re-use, modularity, encapsulation etc.
We present a method to extend the syntax of existing specialized agent oriented
programming languages to meet the requirements of modern programmers. We
illustrate our method on a simple language based on reactive rules. We then grad-
ually extend the core language by several higher level syntactic constructs, thus
improving the support for source code modularity and readability.

1 Introduction
Since Shoham’s seminal paper more than a decade ago, many specialized programming
languages for the development of agents with mental states have been proposed ([1]).

On the one hand there is a pragmatic approach, based on the strengths of modern
mainstream programming languages. An existing programming language is extended
with a layer of specialized constructs and mechanisms, to support the development of
agents with mental states. On the other hand, there is a theoretically driven approach,
which aims at designing a stand-alone agent programming language from first princi-
ples, using mental attitudes and knowledge representation as primary concepts.

The most prominent examples of the pragmatic approach are JACK [19] and Jadex
[15], both based on Java as the underlying language. They offer a programmer all
the comfort of software development in Java. The benefits of a modern and practi-
cally proven object-oriented syntax, vast range of libraries and easy integration with
legacy and 3rd party systems make these languages very popular among practitioners.
However, difficult integration of specialized knowledge representation techniques (in
particular unclear semantics w.r.t. high level concepts like beliefs, or goals, relying
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heavily on the semantics of the underlying language) are the major drawbacks of these
programming frameworks.

The most prominent representatives of the theoretically driven approach are lan-
guages like 3APL [10, 8], AgentSpeak(L) [16, 3], GOAL [9], or IMPACT [17]. The
designers of these systems took most of the issues mentioned above seriously and de-
veloped imperative frameworks with declarative features. Although they provide a
theoretically well defined semantics and support powerful knowledge representation
techniques, most of them are not yet suitable for industrial applications. All these lan-
guages are based on reactive rules and agent programs are defined as an unstructured
set of such rules. Lacking a program structure, they do not support source code modu-
larity in higher level terms similar to procedures, modules, or classes in procedural, or
object oriented programming. This leads to difficult code re-use, which is one of the
most important features of modern programming languages.

We argue, that an ideal specialized programming language for agents with mental
states should be located somewhere in between these two extremes. While providing
a clear and robust theoretical semantics and easy integration of powerful knowledge
representation and reasoning techniques, it must also take into account engineering
aspects of software development as equally important issues. We believe that an easily
readable syntax of a programming language, allowing conceptual encapsulation on
the source code level, and support for a program modularization, are crucial issues in
design of programming languages for cognitive agents.

In this paper, we demonstrate how the syntax of specialized agent oriented program-
ming languages, based on reactive rules, can be carefully designed to approach the
requirements of modern programmers. Our approach follows the tiered approach to a
programming language design [12]. As a basis for further enrichment, we first propose
a simple abstract programming language based on reactive rules (Section 2) together
with an interpreter for it. The main focus of this paper is on gradually extending the
core language by several higher level syntactic constructs (Section 3), thus improving
the support for source code modularity and readability.

One of the main results in this paper is the introduction of a mental state transformer
(mst), an extension based on a functional view on an agent program. We propose a
compiler transforming a program using the extended syntax into the core language.
Discussion on related work (Section 4) and a summary with an outlook to on-going and
future work (Section 5) conclude the paper.

2 Core programming language
The architecture of specialized programming languages for agents with mental states
can be naturally decomposed into two parts. Firstly, the language has to provide means
for modeling the internal structure of agent’s mental state. Secondly, it has to feature
control structures for encoding transitions between these states. We are convinced,
that these aspects of an agent oriented programming language should be, and can be
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studied separately. In this work, we focus on dynamic aspects of an agent programming
language.

The starting point for the design of the core language is the approach applied in
the modular BDI architecture [14] and IMPACT [17], where authors abstract from the
internal structure of agent’s mental state. The structure of a mental state reduces to a
black box providing only a query and update interface, while the programming language
itself facilitates the control over mental state transitions.

An agent program in the core language consists of a set of reactive rules. Given a
query, when a reactive rule evaluates to true in the current mental state, then an update
operation is performed on this state. The semantics of a query and update operation is
provided by abstract operators, specific to the internal structure of agent’s mental states.
We also abstract from the interface to agent’s environment. It can be handled by queries
(sensor interface) and updates (effector interface) integrated into the implementation of
the mental state as well (we refer to a similar approach in modular BDI architecture
[14]).

The semantics of an agent system is then provided in terms of a transition system
over a set of mental states. We give both operational and denotational views on the
semantics of the core language. The operational semantics shows the execution of a
single primitive construct of the language, while the denotational viewpoint provides a
functional view on the semantics of an agent program. This view will later turn out to
be crucial for modularizing the language. We conclude this section by giving details
of the interpreting algorithm and propose a concrete syntax for the core programming
language.

2.1 Abstract syntax
As the internal structure of mental states is not our concern here, we abstract from it
by defining a mental state as a theory in a given language L. This abstraction keeps
the concept of a mental state modular and allows to examine and update it by means of
abstract query and update operations.

Definition 1 (language, formula, query, update) Let L be a language of mental states.
Then a mental state σ is a theory in this language and a formula ϕ ∈ σ is called a
mental state formula. Query and update languages LQ and LU are defined as follows:

• if ϕ ∈ L, then Q(ϕ) ∈ LQ and U(ϕ) ∈ LU ,

• if φ1, φ2 ∈ LQ then φ1 ∧ φ2 ∈ LQ, φ1 ∨ φ2 ∈ LQ and ¬φ1 ∈ LQ,

• > ∈ LQ, ⊥ ∈ LQ, nop ∈ LU

While update formulas are quite simple, allowing only a single update operation at a
time, query formulas can be more complex. They can involve conjunctions, disjunctions
and negations. Primitive constructs of the language are composed of query and update
formulas.
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Definition 2 (transition rule, agent program) Let LQ and LU be query and update
languages and φ ∈ LQ, ψ ∈ LU be formulas. We say that a rule of the form φ −→ ψ
is a transition rule. An agent program is a set of rules

P = {φ −→ ψ| φ ∈ LQ and ψ ∈ LU}

composed of query and update formulas from the corresponding query and update lan-
guages LQ and LU . We also say that P is an agent program in L.

2.2 Semantics
Given an agent program, we need to define a precise meaning of it. First, we show
how transition rules are interpreted as single transitions in an abstract transition system
over a set of possible mental states. Then, we also provide denotational semantics for
a program to show a functional view of its meaning. The semantics of transition rules
is defined in terms of abstract query and update operators. This makes the semantics of
the core language modular and independent on the internal structure of agent’s mental
states.

Definition 3 (abstract query/update operators) Let L be a language of mental states
and σ ⊆ L be a mental state (theory) in that language. Let also ϕ ∈ L be a formula.
An operator QueryL is a mapping

QueryL : L × 2L → {true, false}; 〈ϕ, σ〉 7→ QueryL(ϕ, σ)

The corresponding update operator UpdateL is a mapping

UpdateL : L × 2L → 2L; 〈ϕ, σ〉 7→ UpdateL(ϕ, σ)

We also assume

- QueryL(>, σ) = true , QueryL(⊥, σ) = false , and

- UpdateL(nop, σ) = σ.

In the case of a query, the result is a truth value of ϕ w.r.t. σ. The result of an up-
date operator application is a new mental state σ′ ⊆ L, which reflects an update ϕ on
σ. Additionally, there are trivial cases for constant true and false queries, > and ⊥
respectively, and an empty update nop.

For practical purposes, query and update operators QueryL and UpdateL should be
computable procedures evaluating formula ϕ ∈ L against a theory σ ⊆ L.

The semantics of interaction rules is defined in terms of query and update operator
evaluations. For that, however, we first need to relate formulas of the form Q(ϕ) and
U(ϕ) to applications of corresponding abstract operators QueryL and UpdateL to the
actual mental state.
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Definition 4 (semantics of queries and updates) Let L be a mental state language
and LQ and LU be query and update languages over L. Let also σ be a mental state.
Application of a query operator QueryL is denoted by |= and⊕ denotes an application
of an update operator UpdateL on a mental state. The semantics of a ground query
formula φ ∈ LQ is defined as follows

• if φ = Q(ϕ) and ϕ ∈ L, then σ |= φ iff QueryL(ϕ, σ) = true, otherwise σ 6|= φ
(i.e. QueryL(ϕ, σ) = false),

• if φ = ¬φ′ and φ′ ∈ LQ, then σ |= φ iff σ 6|= φ′,

• if φ = φ1 ∧ φ2 and φ1, φ2 ∈ LQ, then σ |= φ iff σ |= φ1 and σ |= φ2,

• if φ = φ1 ∨ φ2 and φ1, φ2 ∈ LQ, then σ |= φ iff σ |= φ1 or σ |= φ2

and for an update formula ψ ∈ LU :

• if ψ = U(ϕ) and ϕ ∈ L, then σ ⊕ ψ = σ′ iff
UpdateL(ϕ, σ) = σ′.

Note, that we do not define a more powerful notion of negation in query formulas (like
e.g. a default negation) as this would require a deeper insight into the structure of mental
state. The interpreter of the language only needs to know whether a query is satisfied,
or not, regardless on what kind of specialized reasoning is hidden behind the internal
semantics of the query operator.

An agent system moves from one mental state to another by the application of some
applicable transition rule.

Definition 5 (agent system transition) Let φ −→ ψ be an interaction rule and σ be a
mental state. Then

σ |= φ, σ ⊕ ψ = σ′

σ −→ σ′

The rule φ −→ ψ induces this agent system transition. We also say that a rule
φ −→ ψ is applicable in σ, iff σ |= φ.

Finally, we specify a semantics of an agent program in terms of possible evolutions of
within the transition system.

Definition 6 (agent system: operational view) A computation run Comp(σ0) of an
agent system over a language of mental states L, described by an agent program P , is
a possibly infinite sequence σ0, . . . , σn, . . . of mental states over L (∀i : σi ⊆ L), so
that ∀i ≥ 0 : σi −→ σi+1 is an agent system transition induced by some rule ri ∈ P .

The agent system is then characterized by the set of all possible computation runs
induced by the program P .
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The operational semantics offers a procedural view on the agent program as a specifi-
cation of a problem subspace in terms of allowed computation runs. It gives a rather
localized perspective on the meaning of a single transition rule w.r.t. to a given agent
system evolution.

On the other hand, we can see a single rule φ −→ ψ as a prescription of a transition
between classes of mental states. The query part φ divides the space of mental states
into two classes, according to the truth value of formula φ. When the system happens
to be in one of the states in which φ evaluates to true, the update formula ψ specifies a
direction in which it should move in the next step. The rule then prescribes a transition
from the class of states in which φ holds to the set of states resulting from application
of update formula ψ to it.

This view on the meaning of a transition rule inspires the alternative semantics of an
agent system, which suggests understanding a set of transition rules as a partial function
over mental states.

Definition 7 (agent system: denotational view) Let L be a language of mental states
and P an agent program in L. Then the agent program P is characterized by a partial
function

FP : 2L × LU −→ 2L; 〈σ, ψ〉 7−→ σ′

where σ, σ′ ⊆ L are mental states and ψ ∈ LU is an update formula. FP(σ, ψ) = σ′

iff ∃(φ −→ ψ) ∈ P , such that σ −→ σ′ is a transition induced by some rule in P .

The functionFP is a partial function defined only for those mental states in which some
rule r ∈ P can be applied. I.e. those, in which a query formula of some rule from the
program P is satisfied. It completely characterizes the agent system described by P .

Operational semantics provides a view on an agent program as an explicit charac-
terization of a problem subspace in terms of possible agent system evolutions. Com-
plementary to that, denotational semantics suggest a specification of the same problem
space in terms of a specification of all the considered sets of mental states and all the
allowed transitions between them.

2.3 Concrete syntax and interpreter
To complete our core programming system definition we provide a concrete syntax and
an interpreter algorithm for it. Our syntax proposal of the core language is straightfor-
ward. BNF of the core programming language is as follows (white space and string
definitions are omitted):

<program> := <rules>
<rules> := <rule> | <rule> <rules>
<rule> := "when" <queries> "then" <update> ";"
<queries> := <query> | "not" <queries> |

"(" <queries> "and" <queries> ")" |
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"(" <queries> "or" <queries> ")"
<query> := "true" | "false" |

"query" "[{" <qformula> "}]"
<update> := "nop" |

"update" "[{" <uformula> "}]"

<qformula> and <uformula> are well formed formulas from LQ and LU re-
spectively.

Query and update non-terminals are defined using quite complex bracket delimiters.
This is because the syntax of <string> non-terminal can be arbitrarily complex and
might involve various kinds of character combinations possibly including characters
like {, or }1.

We finally propose an extremely simple and straightforward interpreting algorithm
following the generic scheme applied in languages like e.g. 3APL. Algorithm 1 lists
the detail pseudocode of the core language interpreter.

Algorithm 1 run(σ0,P)
σ = σ0

loop
ρ = {(φ −→ ψ) ∈ P|σ |= φ}
if ρ 6= ∅ then

non-deterministically choose (φ −→ ψ) ∈ ρ
σ = σ ⊕ ψ

end if
end loop

Given a current mental state, the interpreter first selects all the rules applicable in that
state, then non-deterministically chooses one of them and applies its update formula to
the actual mental state.

We assume here, that the selection function which chooses the rule to be applied
from the set of all applicable rules conforms to a fairness condition (inspired by a
similar weak-fairness condition in GOAL [9]):

Condition 1 (fairness condition) It is not the case that for a given computation run
Comp(σ0) a rule r ∈ P is always applicable from some point in time on and never
selected for the execution.

Apparently, the interpreter is inherently non-deterministic. It is therefore desirable to
allow a programmer to secure a higher degree of determinism in the rule selection, when
needed. To this end, we introduce in Subsection 3.1 a simple syntactic extension of the
core language facilitating a finer grained control of the rule selection mechanism.

1In practice, probably additional handling of special character classes would be necessary.
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Note also, that our core language is intentionally oversimplified. For the sake of
clarity, we did not introduce variables in transition rules and we also define only atomic
updates without chaining of update formulas. Although these trivial extensions seman-
tically enhance the language and in practice would be crucial for a practical use, they
are not important within the scope of this paper. For introducing such language features
we refer to [14], where authors introduced them to a language similar to ours.

Example 1 (stock exchange agent) Consider an agent managing its user’s stock port-
folio. Given a mental state implementation in a Prolog-like language, a simplified
program for buying the title MSFT might look like the following:

when [{ wants(MSFT) }] and
[{ price(MSFT)<avg(MSFT,12h) }]

then [{ act(issue_order(buy(MSFT,10))) }] ;

when [{ price(MSFT)<max(MSFT,180d) }] and
[{ price(MSFT)<avg(MSFT,7d) }]

then [{ introduce_goal(wants(MSFT)) }] ;

The agent buys the stock MSFT when it knows it wants it and its price falls under the
last 12 hours average. Similarly, when the price of the stock is low, according to the
agent’s analysis, it introduces a desire to buy the stock.

3 Extensions

The core programming language as it is defined in the previous section is still quite
rigid. It is hardly imaginable for a modern programmer to easily manipulate an un-
structured and possibly huge set of reactive rules. Therefore, in this section we pro-
pose several extensions of the core language enhancing the flexibility in structuring the
source code of an agent program.

To introduce various programming language extensions we follow the tiered ap-
proach to design a programming language [12]. This leads to a layered language pro-
cessing structure: a core language interpreter and a compiler with integrated macro
preprocessor. The compiler translates programs written in an extended language, using
high level language features, into an equivalent program in the core language.

The tiered structure helps to maintain the simplicity and clarity of the programming
language semantics and at the same time allows further extending of the language. The
integration of a powerful macro language preprocessor allows a limited support for
custom-made language extensions.

Firstly, we introduce the abstraction of mental state transformer (mst) inspired by the
denotational view on an agent program. Then the “when-then-else” construct, extend-
ing the mental state transformer syntax, is defined. It facilitates structuring applicable
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and not applicable rules. For both of these extensions we provide a detailed transla-
tional semantics into the core programming language, which should serve as a basis for
the language compiler implementation.

Secondly, we propose several extensions based on an macro expansion mechanism.
The most important part in this section is the construction of a named mental state
transformer, which utilizes the previously introduced plain mental state transformer ex-
tension. Named mental state transformers provide a powerful means for agent program
decomposition and modularization. To define the precise meaning of this construct, we
also provide a translation to denotational semantics of standard mst’s.

Finally, we sketch several other, rather trivial, extensions based on macro expansion,
which show the way how to further enrich and simplify the programming language
syntax.

3.1 Core language extensions
3.1.1 Mental state transformers (mst)

Denotational semantics of agent programs provides a functional view on sets of transi-
tion rules. Hence any set of rules can be considered an agent program of its own. Using
this idea, we define a structural decomposition of an agent program into subunits and
provide means for composing them into compound structures.

According to Definition 7, a set of transition rules can be seen as a partial function,
transforming a class of mental states to another class of mental states by means of
performing updates on them. We call such a set a mental state transformer (mst)2.

Obviously, by unification of two mst’s we obtain a new mst, which is defined over a
larger class of mental states than the two original ones. Similarly, by specialization of
all the query formulas of a set of transition rules, we again obtain a new mst defined on
a subclass of mental states of the original one.

Following the tiered specification approach, we first provide a modified syntax of
agent program and subsequently define a translational semantics into the core language
syntax, introduced in Subsection 2.3. For clarity, we also provide a constructive deno-
tational semantics.

<program> := <transformer>
<transformer> := <update> ";" |

"{" <transformer> <transformer> "}" |
"when" <queries> "then" <transformer> ";"

We get the extended programming language syntax by replacing the original defi-
nition of <program> and adding the definition of <transformer> to the syntax
definition from Subsection 2.3. Obviously, the new syntax subsumes the old one. Defi-
nitions of <rules> and <rule> are obsolete and replaced by <transformer>.

2The name mental state transformer is inspired by a feature of the language GOAL [9]: however, the
semantics is different.
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Abstraction of mental state transformer provides a means for nesting transition rules
of the core language. A primitive mst specifies a single update operation ψ. It is a
shortcut for the fully expanded transition rule > −→ ψ, however it helps translating the
original syntax of transition rules to that of mst’s.

Definition 8 (mst: translational semantics) Let τ be a mental state transformer. Then
τ is said to be an agent program with mental state transformers and the corresponding
core language program P is constructed as follows3:

1. iff r ∈ τ is <update> , then “when true then r” ∈ P ,

2. iff r ∈ τ is a plain transition rule of the form “when Q then U”, where Q
and U are <queries> and <update>, then also r ∈ τ ′,

3. iff r ∈ τ is “when Q then τ ′” where Q is <queries> and τ ′ is a plain set
of transition rules, then for each rule r ∈ τ ′ of the form “when Q′ then U ′”
a rule “when Q and Q′ then U ′”∈ P . Q and U are <queries> and
<update> respectively.

For multiply nested mst’s, the transformation, specified by Item 3 should be performed
bottom-up from the innermost nesting, which contains either a simple update, or a set
of plain transition rules.

A corresponding denotational semantics for mst’s shows how the original notion of
agent program is reconditioned.

Definition 9 (mst: denotational semantics) Let L be a language of mental states,
φ −→ ψ, where φ ∈ LQ and ψ ∈ LU , is a transition rule and let φ′ ∈ LQ be a
query formula. The notion of mst is defined as follows:

1. τ = {> −→ ψ} is a mst,

2. if τ is a mst and φ′ ∈ LQ, then also τ ′ = {(φ′ ∧ φ, ψ)|(φ −→ ψ) ∈ τ} is a mst,

3. if τ1 and τ2 are mst’s, then also τ1 ∪ τ2 is a mst.

A simple update formula is a primitive mst (Item 1). Primitive elements can be com-
bined to compound mst’s by means of specialization (Item 2) and generalization (Item
3). An agent program is also a mst. The concept of mental state transformer thus pro-
vides a view on an agent program as composed of conceptually encapsulated subunits,
which in turn are again composed of lower level mst’s.

3For better readability, we omit the syntactic sugar w.r.t. the language BNF.
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3.1.2 When-then-else

When in a given mental state several transition rules are applicable, the interpreter is
supposed to non-deterministically choose one of them (complying to the fairness con-
dition). A developer might need to restrict and narrow the choice of the interpreter’s
selection function. In the core language, this can be done by writing complex queries,
so that the number of applicable rules in a certain mental state is minimized and in turn,
the number of states in which a rule is applicable is minimized as well.

The abstraction of the mental state transformer introduced nested rules, allowing a
developer to restrict the scope of applicability of the inner rule by the query of the outer
one (“when-then” construct). As we already said above, according to its validity, a
query divides a set of mental states to two classes. By a trivial extension of the “when-
then” construct to handle also the “-else” branch, the programmer gets a means to
specify mental state transformers for both of them. This helps to narrow the interpreter’s
choice using a compact syntax.

<transformer> := "when" <queries>
"then" <transformer>
"else" <transformer>

The semantics is defined as an extension of Definition 8.

Definition 10 (mst: translational semantics cont.)

4. iff r ∈ τ is “when Q then τ ′ else τ ′′ ”, whereQ is <queries> and τ ′, τ ′′

are plain sets of transition rules, then for each rule r ∈ τ ′ of the form “when Q′

then U ′” a rule “when Q and Q′ then U ′”∈ P . Similarly for each rule
r ∈ τ ′′ a rule “when ¬Q and Q′ then U ′”∈ P . Q′, U ′ are <queries>
and <update> respectively.

By introducing sequences of nested rules of the form “when Q1 then τ1 else
when Q2 then . . . else when Qn then τn;” a programmer gradually restricts
the choice of the interpreter using a compact syntax without annoying repetitions. An
interesting consequence of using “when-then-else” construct is that the program can be
read in a sequential way, although it is not sequential in nature.

Example 2 (stock exchange cont.) We modify the agent program from Example 1 to
drop the goal to buy stock when there is a market turmoil going on. Otherwise it should
behave as in Example 1.

when [{ news(’overtake’)>2 }] and
[{ avg(DOW,5h)<0.70∗avg(DOW,2d) }]

then [{ drop_goal(wants(MSFT)) }]
else {

%% Example 1 code %%
} ;

DEPARTMENT OF INFORMATICS 12
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Market turmoil is defined as a state, when at least two news about a company over-
take arise and market index average in the last five hours falls more than 30% under
the last two days average.

Note, that in the core language, the equivalent program would require three separate
transition rules.

3.2 Macro extensions
As we already indicated at the beginning of this section, we propose integrating a macro
language into the compiler. In the following, we introduce several extensions exploiting
a macro expansion. In practice we have in mind employing a robust macro preprocessor
like e.g. GNU M44.

3.2.1 Named mental state transformers

The concept of a plain mst introduced modularity into an agent program, however it
does not allow an easy re-use of already defined mst’s in different contexts of the agent
program. The extension to a named mental state transformer provides a means to re-use
previously defined mst’s in different contexts of an agent program. A label (handle) of
a named mst serves as a placeholder for it. It is expanded into a full-fledged code by a
macro preprocessor.

Again, following the tiered approach, we first provide a syntactical specification
followed by a detailed translation of named mst into the denotational semantics of plain
mst. The syntax of the programming language is extended by the following EBNF:

<program> := <trans_def>* <transformer>
<trans_def> := "define" <identifier>

<transformer>
<transformer> := <identifier>

<program> is again redefined, and the rest of the definition extends the previous
ones. <identifier> should be a unique label, distinct from the already introduced
keywords like query, update etc.

A straightforward denotational semantics of the modified definition of agent program
in terms of simple mst’s follows.

Definition 11 (named mst) A modified mst construct is defined by adding the following
to Definition 9:

4. if τ is a mst and label is a unique identifier (<identifier>), then (label , τ) is
a named mst definition,

5. if (label , τ) is a named mst definition, then (label) is a mst as well,

4http://www.gnu.org/software/m4/
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Now we provide a translation of the modified mst construct to the plain mst as defined
in Definition 9.

Definition 12 (expanded mst) Let L be a language of mental states, Γ be a set of
named mst definitions in L and τ be a mst. We define Exp(τ), an expansion operator
of a mst, as Exp(τ) = τ \ {(label)|(label) ∈ τ ∧ ∃(label , τ ′) ∈ Γ} ∪ {τ ′|(label) ∈
τ ∧ (label , τ ′) ∈ Γ}.

Now the expansion fixed point follows:

• Exp0 (τ) = τ

• Expi+1(τ) = Exp(Expi(τ))

The expanded mst τe, corresponding to τ , is a fixed point of the Exp operator. I.e. such
a mst τe, for which ∃i ≥ 0, so that τe = Expi(τ) = Expi+1(τ) and 6 ∃(label) ∈ τ .

The semantics of an agent program P = (Γ, τ) with a set of named mst definitions
Γ is that of the expanded mst τe corresponding to τ w.r.t. Γ.

The expansion operator Exp simply replaces all the labels by their corresponding con-
tent according to their definitions. For an agent program to expand correctly, each label,
used as a placeholder for a mst, has to be previously defined in the agent program P as
well. Recursive schemata of mst “calls” do not correctly expand into a simple program
without labels, because the fixed point w.r.t. Exp operator, does not exist for them. Re-
cursive applications of named mst’s in the agent program, if allowed, would also lead
to infinite query evaluation5.

Note also, that due to uniqueness of labels of named mst’s, there is at most one fixed
point of Exp operator for any program P = (Γ, τ).

3.2.2 Named queries, code templates and more

To conclude our tour through gradual extensions of the core programming language, we
finally sketch several simple extensions, which further enrich the language and stand as
an inspiration for implementation of the language compiler.

As we already mentioned several times above, queries in transition rules can be seen
as mental state classifiers. It might be practical to re-use these classifiers in different
contexts and specialize them in different parts of an agent program. For that, we can
again use the macro expansion facility of the language compiler. A named query can
be viewed as an abbreviation for a complex query formula:

<query_def> := "defineq" <identifier>
"{" <queries> "}"

<query> := <identifier>

5Except for external events, which we abstract from, a mental state cannot be changed unless an update is
performed. In turn, this cannot happen either, because the interpreter cannot properly perform a query on it.
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This definition again extends the definition of the core language syntax introduced in
Subsection 2.3. We assume unique query abbreviation identifiers. A formal definition
of named query expansion is similar to that of named mst: our comments w.r.t. recursive
application and the existence of fixed points of the expansion operator apply as well.

Many more trivial extensions based on macro expansion can be introduced. We only
briefly list some of those, which we believe contribute to improving the coding experi-
ence using a reactive rule based programming language, such as the one defined here.
Named updates, or definition of re-usable modules, consisting of several named mst’s,
with features resembling name spaces, will further enhance modularization of an agent
program. Parametrized macro definitions and their further extensions to syntactical
constructs resembling lambda-calculus of Lisp will lead to implementation of re-usable
code templates, similar to those of C++. A powerful macro language will even allow a
programmer to define custom-made extensions of the programming language tailored
for a particular application.

We conclude this section with an example sketching a part of an agent program using
some of the features above.

Example 3 (stock exchange cont.) Parametrized mst definitions allow us to reformu-
late and modify the code from Example 2 to implement specific strategy w.r.t. certain
stock title. Different variants of strategies for different stocks can be used in different
situations. Use of a named query definition further improves the code readability as
well.

define careful_strategy(TITLE) {
when [{ wants(TITLE) }]
then [{ drop_goal(wants(TITLE)) }] ;

}

define opportunistic_strategy(TITLE) {
%% Adapted code from Example 1 %%

}

defineq market_turmoil {
[{ news(’overtake’)>2 }] and
[{ avg(DOW,5h)<0.70∗avg(DOW,2d) }]

}
. . .
when market_turmoil then {

careful_strategy(APPL);
careful_strategy(MSFT);

} else {
opportunistic_strategy(APPL);
opportunistic_strategy(MSFT);

}
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The last rule clearly summarizes the meaning of the whole program in a very com-
pact and easily readable statement.

4 Discussion and related work
Reactive planning is an important paradigm that led to implementations using reactive
rules in languages like AgentSpeak(L) [16, 3], 3APL [10, 8], GOAL [9], or the one
introduced here.

Interpreters of these languages in every step select a rule and then execute it w.r.t.
semantics of the particular language. In general, in each cycle the interpreter consid-
ers a set of rules independently of the previously selected and executed rules (doing
some bookkeeping within the internal structure of agent’s mental state). The resulting
agent system is then able to flexibly react to events and exceptional situations without
reconsidering its previous actions.

However, designers of an agent oriented programming language face a very difficult
problem: Such a reactive architecture of an agent program clashes with the traditional
sequential and imperative view on the program code.

We argue, that the functional view on an agent program

1. can be appropriately represented by an abstraction called mental state trans-
former,

2. can be used to conceptually decompose an agent program into functionally en-
capsulated subunits (higher level units "call" lower level ones, which allows struc-
turing the agent program into several conceptually separated layers), and

3. is particularly appropriate in the context of programming languages for agents
with mental states.

Instead of considering an agent program as a specification of all the paths along which
the agent system is allowed to evolve within its transition system, this abstraction shifts
the programming style to consider different contexts in which the agent might be in.
Each such context forms a subspace of the agent’s transition system and it might again
consist of a number of smaller subspaces, in each of which the agent performs a differ-
ent behaviour, i.e. different mental state update.

The concept of mental state transformer favours this subspace-nesting view on the
specification of an agent system by nesting queries of transition rules, finally resulting
in a mental state update. In the previous sections, we tried to demonstrate how this view
can be used to conceptually decompose an agent program into functionally encapsulated
subunits.

Most probably, 3APL [10, 8] is the most advanced rule based language w.r.t. agent
program modularity. Recent works by Dastani et. al. [7] and by van Riemsdijk et. al.
[18] introduce a semantically oriented modularity to 3APL. In [7] the authors formalize
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a notion of role, grouping together beliefs, goals, plans and reasoning rules of a BDI
agent. A role can be enacted, or deacted at run-time. The whole process is handled by
3APL’s deliberation cycle.

In [18], the authors introduce a concept of goal oriented modularity for 3APL. It
is based on decomposition of a set of practical reasoning rules of a BDI agent into
modules, according to goals they help to achieve. A module can be called within a
rule to achieve a subgoal in the context of a plan. When the subgoal is achieved, the
control returns back to the context from which the module was called. This resembles
a stack of routine calls in procedural languages. Implementation of both of these 3APL
extensions requires modification of 3APL’s semantics and the language interpreter.

Both role and goal oriented approaches to modularize an agent program are based
on particularities of the internal structure of agent’s mental state, namely BDI architec-
ture. As our approach introduces a functional modularity, supported by purely syntactic
extensions of the language, they can be seen as orthogonal to ours and, we believe, can
be combined. A combination of modularization of practical reasoning rules, based on
the abstraction of mst’s, within the role, or a goal oriented module, can lead to a finer
grained structuring of agent programs.

As far as we know, no method to facilitate modularity, at least not in the sense of
decomposition of an agent program to conceptually encapsulated components, has ever
been proposed for languages like AgentSpeak(L)/Jason [3], or GOAL [9]. We are also
not aware of any work introducing source code modularity into declarative approaches
like e.g. MINERVA [11] and DALI [6]. These two languages exploit the strengths of
declarative logic programming and the semantics of both of them is closely connected
to logic program updates.

However, we believe that our approach can be adapted to introduce modularization in
these languages as well (however, this is not straightforward for MINERVA and DALI,
because their semantics is not just based on reactive rules).

A modularization based on the abstraction of capabilities was introduced in JACK
[5] and further extended in Jadex [4]. Capability, similarly to a role in 3APL, encap-
sulates related beliefs, goals, plans and events. However, as both of these systems can
be seen as extensions of Java, all the syntactically oriented modularity implemented in
Java applies to them as well. Since our approach is oriented towards modularization of
languages based on reactive rules, any direct comparison does not make sense.

Finally we discuss the relation of our simple programming language to approaches
like IMPACT [17], and modular BDI architecture [14]. These programming frame-
works introduce a vertical modularity to agent programming. The programming lan-
guage in which a developer encodes how an agent system should move from one mental
state to another, by means of updates, is in these approaches independent of the internal
structure of agent’s mental states. A programmer is free to choose a knowledge repre-
sentation technique to employ and develop the agent’s mental state representation in it,
or can use this freedom to agentize 3rd party legacy code like e.g. mainstream database
systems.

These two approaches inspired the design of our core programming language. This
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allowed us to study modularization of an agent program independently of intricacies of
the architecture of an agent’s mental state.

5 Conclusion and future work
The contribution of this paper is an attempt to give an answer to the following question:

Given an (unstructured) agent language based mainly on reactive rules,
how can the syntax be extended so that important features allowing code
re-use, modularization and the like are available?

To this end we introduced a novel abstraction given by the notion of a mental state
transformer.

While we discussed in this paper only the theoretical basis, we are currently working
on an implementation of the interpreter-compiler stack for the programming language
similar to the one proposed here. We hope to refine some of the extensions of the
language using macro expansion and to experiment with the resulting language, in order
to put the abstraction of mst’s to a test. As the structural decomposition, introduced in
this paper, leads to a new programming style, it is necessary to prove the usefulness of
the presented language in practice by developing a non-trivial agent system application.
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