
An open agent architecture:
Fundamentals
(revised version - February 2008)

Peter Novák

IfI Technical Report Series IfI-07-10

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Contact: wjamroga@in.tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelli-
gence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Kai Hormann (Computer Graphics)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Economical Computer Science)
Prof. Dr. Niels Pinkwart (Economical Computer Science)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)

An open agent architecture: Fundamentals
(revised version - February 2008)

Peter Novák

Department of Informatics
Clausthal University of Technology

Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany
peter.novak@tu-clausthal.de

Abstract

Different application domains require different knowledge representa-
tion techniques. Therefore a robust agent oriented programming frame-
work should not commit to a single KR technology. Instead, it should
facilitate an easy integration of heterogeneous knowledge representation tech-
niques in a single agent system. Similarly, different situations an agent
might happen to be in, require different schemes of behaviours, such as
reactive vs. sequential. Mixing these can lead to a more robust agent
system. Finally, a complete agent-oriented programming system should
be complemented by a logic for reasoning about resulting implemented
agent programs and ideally serving as a methodological framework as
well.
In this first technical note of the series on open agent architecture we intro-
duce theoretical fundaments of a novel agent programming framework
of Behavioural State Machines. The presented framework draws a strict dis-
tinction between a knowledge representational and a behavioural level
of an agent program. It 1) supports a high level of modularity w.r.t. em-
ployed KR technologies, 2) allows implementation of hybrid agents, i.e.
mixing of both reactive, as well as sequential behaviours, and 3) pro-
vides a clear and concise semantics based on a well-studied computa-
tional model of Gurevich’s Abstract State Machines.

1 Motivation

The paradigm of agent and multi-agent systems bridges the gap between cogni-
tive robotics and programming intelligent software systems. In open multi-

1

peter.novak@tu-clausthal.de

Motivation

agent systems agents operate in highly dynamic and often unstructured en-
vironments with incomplete information about, and at best only a partial
control of it. In the last years we witnessed a stream of inspiration from cog-
nitive robotics into the agent programming research community.

Nowadays the landscape of agent programming languages and frameworks
is governed by BDI [16], one of the most influential architectures for ratio-
nal agents [22]. It became a source of inspiration for development of several
programming frameworks for software agents (for a survey of state-of-the-art
see e.g. [3], or [4]). Most of these frameworks try to some extent implement
axiomatic systems of either the original BDI architecture’s I-System [16], or
other similar formal theories of agent’s mental attitudes (e.g. [7]). In the
following we focus on a family of systems built from first principles and pro-
viding a clear formal semantics w.r.t. a formal model of BDI rational agents
such as e.g. AgentSpeak(L)/Jason [15, 5].

A fundamental difficulty with a straightforward transfer of such axioma-
tizations to implemented agent-oriented programming frameworks appears
to be an inflexibility w.r.t. agent’s knowledge representation and a too tight
coupling to a particular model of agent rationality. In the following, we sub-
stantiate our claims on the I-System, which is a set of postulates roughly ax-
iomatizing the internal mechanics governing a BDI-based agent.

Informally, I-System specifies that an agent should adopt only goals it be-
lieves to be an option (AI1). It should adopt intentions in order to achieve its
goals (AI2). If an agent has an intention to perform an action, it will even-
tually also perform it (AI3). It should be aware of the fact that it commit-
ted itself to certain goals and intentions (AI4, AI5). If an agent intends to
achieve something, it also has to have a goal to intend it (AI6). It should be
aware of its actions, i.e. if it performs an action, it should also believe that
it performed it (AI7). And finally an agent should never hold its intentions
forever, i.e. each intention must be eventually dropped (AI8).

In an attempt to implement elements of the I-System in a practical pro-
gramming framework, some of the requirements impose strong constraints
on the internal mechanics of implemented agents and their semantics. Be-
cause of the necessity to relate agent’s mental attitudes, such as goals, be-
liefs and intentions, (AI1, AI4-7), most of the time programming frameworks
bind to a single KR technology. Mostly, the KR of choice is Prolog, or a simi-
lar logical language. On the other hand, to comply with axioms of internal
dynamics and interactions between agent’s mental attitudes (AI2-3, AI8), au-
thors introduce intricate semantic rules bound to a particular choice of atti-
tudes and a model of rationality.

Obviously, such decisions make a theoretical study of implemented agent
systems easier. A rigorous system semantics in terms of logic-based languages
allows application of formal methods like formal system specification, model
checking, or verification. However, such radical design decisions have also
strong consequences on practical applicability of a particular agent program-

DEPARTMENTOF INFORMATICS 2

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

ming framework. A limited support for integration of heterogeneous KR
technologies in a single agent limits the applicability of the framework only
to domains, in which the chosen KR technology is appropriate. A choice
of mental attitudes, a programming framework implements, and the nature
of interactions between them, also prescribes a certain programming style,
which might not always fit a particular domain. Finally, the above men-
tioned constraints, together with a relative semantic intricacy of a deliber-
ation cycle provided by a particular framework dramatically raise the thresh-
old for adoption of such a framework by casual programmers.

We take a more liberal, rather an engineering stance to the design of agent
programming frameworks. The purpose of this paper is to propose an agent
oriented programming framework devised from basic principles, driven main-
ly by a need for an open, modular and pragmatic agent architecture. I.e. one not
dictating a programmer ways to design and implement his1 application, yet
allowing him to freely exploit techniques at hand, even if that would mean
a bad practice. Rather than a strict language semantics, a system developer
should be able to choose implementation techniques and an agent model
suitable for a specific application domain. It should be rather a set of method-
ological guidelines, which lead a programmer to a design of a practical agent
system, rather than a domain independent choice made by authors of a con-
sidered programming framework.

The result of the motivation analysis above are three main issues an agent
architecture has to address: knowledge representation modularity, encoding of
agent system dynamics and programming language semantics. After briefly dis-
cussing these principal issues in Section 2, in Section 3 we introduce a com-
putational model of Behavioural State Machines (BSM) tackling them. Subse-
quently, in Section 4, we introduce Jazzyk, an implemented programming
language and interpreter for BSM and discuss appropriateness of the BSM
model for agent oriented programming on an example of an office space
robot. In Section 5 we discuss relevant related work and finally Section 6
concludes the paper with an outlook to the on-going and future work.

2 Desiderata

Consider the general definition of an agent [22]: an agent is a situated and
embodied software entity, which autonomously acts in its environment, proac-
tively pursues its (or its user’s) goals and reacts to changes of, and events in,
its environment. Obviously, we omit here agent’s social abilities, which we
briefly discuss later in the Subsection 4.2. Additionally, we assume the agent’s
environment to be dynamic and unstructured. The agent builds a model, or a
representation of it and uses it to infer its situation-specific behaviour(s).

1Without any gender prejudice, to ease readability, we always refer a 3rd person in masculine.

3 Technical Report IfI-07-10

Desiderata

Behaviours Agent’s task in its environment is to autonomously perform
behaviours in order to reach its objectives. In terms of agent control, a de-
signer’s task is therefore twofold: 1) to encode agent’s behaviours in terms
of actions it performs in the environment, and 2) to encode mechanisms
of agent’s internal deliberation leading to choices of those actions. Inter-
nal behaviours of an agent are usually deterministic and fully controlled by
the agent, while, due to the dynamic and inaccessible nature of the environ-
ment, many of the exogenous actions have only partially predictable and
uncertain consequences. The extent of an environment’s predictability and
accessibility depends on a particular application domain.

The dynamics of an environment leads to difficulties with control of an
agent. Unexpected events and changes can interrupt the execution of com-
plex behaviours, or even lead to a failure. Therefore an agent has to be able
to switch its behaviours according to actual situation. Moreover, due to only
partial accessibility of the environment, some situations can be indistinguish-
able to the agent. Therefore it is vital to allow non-deterministic choice be-
tween several potentially appropriate behaviours.

Our stance is, that in terms behaviour encoding, a developer should be
able to freely mix various types of them. The selection of an appropriate
behaviour should be flexible enough to accommodate a range of arbitration
mechanisms, from strictly deterministic to arbitrary. These considerations
roughly correspond to those for hybrid robotic architectures [1].

Knowledge representation The requirement to model an environment
and to be possibly aware of own mental attitudes implies employment of
some knowledge representation technology. Even though committing to a
logic-based language has its advantages w.r.t. study of properties of resulting
agent systems, pragmatically it is obvious that different application domains
require different knowledge representation techniques. Only an application
specific choice of an appropriate KR, with an associated reasoning machin-
ery, can lead to a flexible, scalable and robust hybrid agent system. Therefore
the choice of a particular KR technology should be left to an agent designer
and the underlying programming framework should be modular enough to
accommodate a large range of KR approaches.

Situatedness and embodiment Agents are deployed to various types of
environments ranging from purely virtual to physical, or mixed. Therefore,
in general, we can consider only abstract characteristics of possible environ-
ments. In the core, an agent needs means to sense its surroundings, as well
as effectors to act in it.

In order not to impose arbitrary constraints on an environment, we chose
a model of active perception, i.e. an agent actively polls it for sensory informa-

DEPARTMENTOF INFORMATICS 4

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

tion. W.r.t. an agent, an environment plays a rather passive role of informa-
tion provider and action facilitator.

Language An agent programming language is a glue for assembling agent’s
behaviours to facilitate an efficient use of provided KR components and in-
terface(s) to the environment. A programming language is a software engi-
neering tool, in the first place. So even though its primary utilization is to
provide expressive means for behaviour encoding, at the same time it has
to fulfill high requirements on modern programming languages. Programs
have to be easily readable and understandable. The semantics must be trans-
parent, ideally with no hidden, or hardly understandable mechanisms. That
makes a language easy to use and adopt, and at the same time it allows po-
tential application of verification techniques. Finally, programs should be
scalable, easily maintainable and elaboration tolerant. These requirements
straightforwardly lead to a modularity and re-usability of source code, as well
as strong support for program decomposition.

3 Behavioural State Machines

To tackle the desiderata discussed in the previous section, we propose Be-
havioural State Machines (BSM), a general purpose computational model based
on the Gurevich’s Abstract State Machines [6], adapted to the context of agent
oriented programming.

The underlying abstraction is that of a transition system, similar to that
used in state-of-the-art BDI agent programming languages. States are agent’s
mental states, collections of partial states of its knowledge bases together
with a state of the environment. Transitions are induced by atomic modifiers
(updates) of mental states. An agent system semantics is then a set of all en-
abled paths within the transition system, which the agent can traverse dur-
ing its lifetime. To facilitate modularity and program decomposition, BSM
also provide a functional view on an agent program, specifying a set of en-
abled transitions an agent can execute in a situation it happens to be in.

Behavioural State Machines draw a strict distinction between the knowledge
representational layer of an agent and its behavioural layer. To exploit strengths
of various KR technologies, the KR layer is kept abstract and open, so that it
is possible to plug-in different KR modules as agent’s knowledge bases. The
main focus of BSM computational model is the highest level of control of an
agent: its behaviours.

5 Technical Report IfI-07-10

Behavioural State Machines

3.1 Syntax

Because of the openness of the introduced architecture, knowledge represen-
tation components of an agent are kept abstract and only their fundamental
characteristics are captured by a formal definition. Basically, a KR module
has to provide a language of query and update formulae and two sets of in-
terfaces: entailment operators for querying the knowledge base and update
operators to modify it.

Definition 1 (KRmodule)A knowledge representation moduleM = (S,L,Q,
U) is characterized by

• a set of states S,

• a knowledge representation language L, possibly defined over some domains
D1, . . . ,Dn and variables over these domains. L ⊆ L denotes a fragment of
L including only ground formulae, i.e. such that do not include variables.

• a set of query operatorsQ. A query operator |=∈ Q is a mapping |=: S ×L →
{>,⊥},

• a set of update operators U . An update operator ⊕ ∈ U is a mapping ⊕ :
S × L → S.

We say that two KR languages are compatible, when they include variables over the
same domainD and their sets of query and update operators are mutually disjoint.
Two KR modules with compatible KR languages are compatible as well.

W.l.o.g., a language not including variables is compatible with any other KR
language. Each query and update operator has an associated identifier. For
simplicity, we do not include these in the definition, however we will use
them throughout the text. When used as an identifier in a syntactic expres-
sion, we use informal prefix notation (e.g. |= ϕ, or ⊕ϕ), while when used as
an operator, formally correct infix notation is used (e.g. σ |= ϕ, or σ ⊕ ϕ).

Example 1 (running example) To demonstrate the flexibility of the intro-
duced architecture, KR technologies of our choice will be Answer Set Programming
[2] and Java.

B = (2AnsProlog ,AnsProlog∗, {|=ASP}, {⊕ASP ,	ASP}) is a KR module realiz-
ing an ASP knowledge base. The underlying language is that of AnsProlog∗ [2]. It
includes variables over atoms and function symbols. A set of states are all well-
formed AnsProlog∗ programs (sets of clauses). There is a single query and two
update operators. Query operator |=ASP corresponds to skeptical version of entail-
ment in ASP, i.e. P |=ASP ϕ iff ϕ is true in all answer sets of the program P . The
two update operators ⊕ASP and 	ASP stand for an update by and retraction of an
AnsProlog∗ formula (a partial program) to/from the knowledge base2.

2Theoretical issues with updates of logic programs are an intensively studied research field
and its deeper exploration is beyond the scope of this paper (for a basic overview see e.g. [11]).

DEPARTMENTOF INFORMATICS 6

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

A Java KR module C = (ΣJavaVM , Java, {|=eval}, {⊕eval}) is a formalization of
an interface to a running Java virtual machine. The set of Java KR module states
ΣJavaVM are all states of memory of a running VM (initialized by loading of some
Java program). Both query and update operators |=eval , ⊕eval take a Java expres-
sion and execute it in the context of the running virtual machine. Given a Java
language snippet φ, the query operator |=eval returns > iff the expression φ evalu-
ates to True, otherwise it returns ⊥. The update operator ⊕eval simply executes a
given Java expression.

Finally, G = (2Prolog ,Prolog , {|=Prolog}, {⊕Prolog}) is a Prolog KR module, with
a set of states represented as all possible sets of Prolog programs. Both, the entail-
ment operator |=Prolog and the update operators ⊕Prolog correspond to the usual
Prolog query evaluation.

Without a formal discussion, we can say modules B, C and G are compatible.
The AnsProlog∗ language as well as Prolog include variables over terms, i.e. strings
of alphanumeric characters, which is also a basic type of the Java language.

Query formulae are the syntactical means to retrieve information from KR
modules:

Definition 2 (query)LetM1, . . . ,Mn be a set of compatible KR modules. Query
formulae are inductively defined:

• if ϕ ∈ Li, and |=∈ Ui corresponding to someMi, then |= ϕ is a query for-
mula,

• if φ1, φ2 are query formulae, so are φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ1.

Query formulae can be inductively combined to compound formulae. The
informal semantics is obvious: if a language expression ϕ ∈ L is evaluated to
be true by a corresponding query operator |= w.r.t. a state of the correspond-
ing KR module, then |= ϕ is true in that state as well.

Subsequently we define mental state transformer, the principal syntactic
construction of BSM framework.

Definition 3 (mental state transformer)LetM1, . . . ,Mn be a set of com-
patible KR modules. Mental state transformer expression (mst) is inductively de-
fined:

1. skip is a mst (primitive),

2. if⊕ ∈ Ui andψ ∈ Li corresponding to someMi, then⊕ψ is a mst (primitive),

3. if φ is a query expression, and τ is a mst, then φ −→ τ is a mst as well (con-
ditional),

4. if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s too (choice and sequence).

7 Technical Report IfI-07-10

Behavioural State Machines

A standalone mental state transformer is also called an agent program associ-
ated with a set of KR modulesM1, . . . ,Mn. An update expression is a prim-
itive mst. The other three are compound mst’s (conditional, sequence and
non-deterministic choice). Finally, even though we use such a notation in
this paper, for brevity we omit the usual treatment of operator precedence
by brackets in query formulae and mental state transformers.

Informally, a primitive mst is encoding a transition between two mental
states, i.e. a primitive behaviour. Compound mst’s introduce modularity
and code re-use to the BSM framework.

Example 2 (running example cont.) Consider a simple robot in an office en-
vironment. Modules B and G from the Example 1 facilitate keeping track of agent’s
beliefs and goals. C provides an interface to the robot’s physical body (an interface
to its environment). Operators of the module B take as an argument a formula in
logical language, while those of C evaluate Java expressions in a running virtual
machine. Now we can write a conditional mental state transformer, demonstrating
examples of both, a compound query formula and a compound mst:

|=eval ‘Visual.see("boris")’∧ |=ASP ‘friend(boris)’ −→
(⊕eval ‘Audio.say("Hello!")’ ◦ ⊕ASP ‘met(boris)’)

The mst encodes a simple behaviour applicable, when the agent encounters a
person Boris, whom it considers a friend. When such a situation occurs, the robot
can perform a simple ballistic behaviour consisting of first greeting Boris and sub-
sequently remembering that this event occurred.

A mental state transformer encodes an agent behaviour. We take here a radi-
cal behaviourist viewpoint, i.e. also internal transitions are considered a be-
haviour. As the main task of an agent is to perform a behaviour, naturally
an agent program is fully characterized by an mst and a set of associated KR
modules used in it. We call such a system a Behavioural State Machine.

Definition 4 (BSM) An agent system (agent) A is fully characterized by a Be-
havioural State Machine A = (M1, . . . ,Mn,P), i.e. a collection of compatible
agent KR modules and an associated agent program. We also say, thatA is a BSM
overM1, . . . ,Mn with the agent program P.

3.2 Semantics

As we sketched above, the underlying semantics of BSM is that of a transition
system. However, before we define it rigorously, we first have to clarify the
notion of state and the semantics of the involved syntactic constructs.

Definition 5 (state) Let A be a BSM over KR modulesM1, . . . ,Mn. A state
of A is a tuple σ = 〈σ1, . . . , σn〉 of KR module states σi ∈ Si, corresponding to
M1, . . . ,Mn respectively. S denotes the space of all states overA.

DEPARTMENTOF INFORMATICS 8

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

σ1, . . . , σn are partial states of the σ. State of a BSM corresponds to the usual
notion of agent configuration (see e.g. [10]). A state can be modified by ap-
plying primitive updates on it and query formulae can be evaluated against
it.

To evaluate a formula in a BSM state by query and update operators, the
formula must be ground. However, non-ground formulae provide a more
concise and practical programming style and the syntax introduced in the
Subsection 3.1 explicitly allows them. Transformation of non-ground for-
mulae to ground ones is provided by means of variable substitution. Variable
substitution is a mapping θ ⊆ {[V/T]|V ∈ VarDi ∧T ∈ Di ∧ 0 ≤ i ≤ n}, where
D1, . . . Dn are domains and VarD1 , . . . ,VarDn are sets of corresponding do-
main variables. By ϕθ we denote a ground formula with all occurrences of
variable V ∈ V arDk replaced by an element T ∈ Dk, such that [V/T] ∈ θ,
for some 0 ≤ k ≤ n. We consider only legal substitutions, i.e. given a KR
language L including a domain D, instantiation ϕθ of a formula ϕ ∈ L is
considered legal, iff θ ⊆ {[V/T]|V ∈ VarD ∧ T ∈ D}, i.e. ϕθ ∈ L.

Finally, for a compound query formula φ, where φ is φ1 ∧ φ2, or φ1 ∨ φ2, or
¬φ1, formula φθ denotes φ1θ∧φ2θ, or φ1θ∨φ2θ, or¬(φ1θ) respectively. We say
that variable substitution θ is ground w.r.t. φ, when φθ is a ground formula.

Definition 6 (query evaluation) Let σ = 〈σ1, . . . , σn〉 be a state of a BSM
with KR modulesM1, . . . ,Mn and φ be a ground query formula constructed from
their corresponding KR languages. Evaluation of the query formula:

• when φ =|=i ϕ, where ϕ ∈ Li and |=i∈ Qi , corresponding to someMi, then
σ |= φ holds, iff σi |=i ϕ,

• when φ = φ1 ∧ φ2, or φ = φ1 ∨ φ2, or φ = ¬φ1, then σ |= φ holds, iff
(σ |= φ1) ∧ (σ |= φ2), or (σ |= φ1) ∨ (σ |= φ2), or σ 6|= φ1 respectively.

Informally, a primitive ground formula is said to be true in a given BSM state
w.r.t. a query operator, iff an execution of that operator on the state and the
formula yields >. For a formula from a KR language L of a KR module M,
only appropriate query operators are considered, i.e. those corresponding to
M.

Definition 7 (update and update set) An update of a state σ of a BSM A
over KR modulesM1, . . . ,Mn is a tuple (⊕, ψ), where⊕ ∈ Ui is an update operator
ofMi, and ψ ∈ Li is an update formula from the KR language of that module. If
ρ1 and ρ2 are updates, then also sequence ρ1 • ρ2 is an update.

An update set is a set of updates. A sequence of update sets ν1 • ν2 denotes an
update set ν = {ρ1 • ρ2|(ρ1, ρ2) ∈ ν1 × ν2} iff ν1 6= ∅. ν = ν2 otherwise.

Notions of update and update set are the bearers of the semantics of mental
state transformers. A simple update corresponds to a semantics of a primitive

9 Technical Report IfI-07-10

Behavioural State Machines

mst, while an update set corresponds to a mst encoding a non-deterministic
choice. The sequence of two update sets yields all possible sequential com-
binations of primitive updates from these sets. The syntactical notation of a
sequence of mst’s ◦ therefore corresponds to a sequence of updates, or update
sets, denoted by the semantic sequence operator •.

Given an update, or an update set, its application on a state of a BSM is
straightforward. Formally:

Definition 8 (applying an update) The result of applying an update ρ =
(⊕, ψ) on a state σ = 〈σ1, . . . , σn〉 of a BSM A over KR modulesM1, . . . ,Mn is a
new state σ′ = σ

⊕
ρ, such that σ′ = 〈σ1, . . . , σ

′
i, . . . , σn〉, where σ′i = σi ⊕ ψ, and

both⊕ ∈ Ui and ψ ∈ Li correspond to someMi ofA.
Inductively, the result of applying a sequence of updates ρ1 • ρ2 is a new state

σ′′ = σ′
⊕
ρ2, where σ′ = σ

⊕
ρ1.

Mental state transformers encode functions yielding update sets over states of
a BSM:

Definition 9 (mst semantics)A mental state transformer τ of a BSMA yields
an update set ν in a state σ under a variable substitution θ, iff yields(τ, σ, θ, ν) is
derivable according to the following calculus:

>
yields(skip,σ,θ,∅)

>
yields(⊕ψ,σ,θ,{(⊕,ψθ)}) (primitive)

yields(τ,σ,θ,ν), σ|=φθ
yields(φ−→τ,σ,θ,ν)

yields(τ,σ,θ,ν), σ 6|=φθ
yields(φ−→τ,σ,θ,∅) (condition)

yields(τ1,σ,θ,ν1), yields(τ2,σ,θ,ν2)
yields(τ1|τ2,σ,θ,ν1∪ν2) (choice)

yields(τ1,σ,θ,ν1), ν1 6=∅, ∀ρ∈ν1:yields(τ2,σ
L
ρ,θ,νρ)

yields(τ1◦τ2,σ,θ,
S

∀ρ∈ν1
{ρ}•νρ) (sequence: τ1 yields ν1 6= ∅)

yields(τ1,σ,θ,∅), yields(τ2,σ,θ,ν2)
yields(τ1◦τ2,σ,θ,ν2) (sequence: τ1 yields ∅)

The first two rules provide a semantics of primitive mst’s. skip results in
an empty update set, while a simple update yields a singleton update set. The
semantics of a conditional mst is provided for both cases w.r.t. validity of the
condition. If the left hand side query condition holds, the resulting update
set straightforwardly corresponds to that of the right hand side mst. Other-
wise, the semantics of a conditional mst is equivalent to skip. Conditional
mst facilitates a flexible means for nesting of BSM code blocks.

The functional view on a mst is the primary means of compositional mod-
ularity in BSM. A non-deterministic choice of two, or more mst’s denotes a
function yielding a unification of their corresponding update sets. The result

DEPARTMENTOF INFORMATICS 10

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

of a sequence of two, or more update sets, is a new update set consisting of
sequences of updates, as defined in Definition 7. However, each subsequent
update set can be only applied to a state, which is the result of applying an
arbitrarily chosen update from the previous set. Given a state, a sequence of
two mst’s denotes a non-deterministic choice from all possible update sets
resulting from applications of different choices of an update from the first
member of the sequence. In the case the first mst of the sequence yields an
empty update set, the resulting update set is that corresponding to the sec-
ond sequence mst.

Finally, the operational semantics of an agent is defined in terms of all
possible computation runs induced by a corresponding Behavioural State Ma-
chine.

Definition 10 (BSM semantics) A BSMA = (M1, . . . ,Mn,P) can make a
step from state σ to a state σ′ (induces a transition σ → σ′), if there exists a variable
substitution θ, s.t. the agent program P yields a non-empty update set ν in σ under
θ and σ′ = σ

⊕
ρ, where ρ ∈ ν is an update.

A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSMA, iff for each
i ≥ 1,A induces a transition σi → σi+1.

The semantics of an agent system characterized by a BSM A, is a set of all runs
ofA.

Even though the introduced semantics of Behavioural State Machines speaks
in operational terms of sequences of mental states an agent can reach during
its lifetime, the style of programming induced by the formalism of mental
state transformers is rather declarative. Primitive query and update formu-
lae are treated as black-box expressions by the introduced BSM formalism.
On this high level of control, they rather encode what should be executed,
while the question how it is done is left to the underlying KR module. I.e.,
agent’s deliberation abilities reside in its KR modules, while its reactive behaviours
are encoded as a BSM.

4 Agent oriented programming

The plain formalism of Behavioural State Machines, as introduced in Section 3,
does not feature any of the usual characteristics of rational agents [22], such
as goals, beliefs, intentions, commitments and alike, as first class citizens. As we
already stated in Section 1, our position on design of an agent programming
framework is rather liberal and pragmatic. It should be rather methodolog-
ical guidelines and exploitation of degrees of freedom provided by the BSM
programming framework, which guide a programmer to a design of a prac-
tical agent system. In the following, we discuss some of them and demon-
strate how some features, desirable for rational agents, can be implemented

11 Technical Report IfI-07-10

Agent oriented programming

program ::= mst
mst ::= update | conditional | sequence | choice | ‘{’ mst ‘}’
sequence ::= mst ‘,’ mst
choice ::= mst ‘;’ mst
conditional ::= ‘when’ query_expr ‘then’ mst [‘else’ mst]
query_expr ::= query ‘and’ query | query ‘or’ query |

not ‘query’ | ‘(’ query ‘)’
query ::= ‘true’ | ‘false’ |

<operatorId> <moduleId> [variables] formula
update ::= ‘skip’ | <operatorId> <moduleId> [variables] formula
formula ::= ‘[{’ <arbitrary string> ‘}]’
variables ::= ‘(’ (<identifier> ‘,’)* <identifier>‘)’

Figure 1: Jazzyk core EBNF

using the BSM framework. However, before that we sketch an implemented
instance of BSM.

4.1 Jazzyk

In our attempt to practically test the BSM approach to programming agent
systems, we designed a programming language Jazzyk and an interpreter for
it. Figure 1 lists the EBNF of Jazzyk, which straightforwardly follows from the
syntax of BSM introduced in Subsection 3.1.

The core of Jazzyk syntax are rules of conditional nested mst’s of the form
query −→ mst . These are translated in Jazzyk as “when <query> then <mst>”.
Mst’s can be joined using a sequence ‘,’ and choice ‘;’ operators correspond-
ing to BSM operators ◦ and | respectively. The operator precedence can be
managed using braces ‘{’, ‘}’, resulting in an easily readable nested code
blocks syntax. The query formulae are a straightforward translation of BSM
query syntax.

Each KR module provides a set of named query and update operators, iden-
tifiers of which are used in primitive query and update expressions. To allow
the interpreter to distinguish between arbitrary strings and variable identi-
fiers in primitive query and update expressions, Jazzyk allows optional ex-
plicit declaration of a list of variables used in them. A standalone update
expression is a shortcut for a BSM rule of the type > → <update>. For sim-
plicity, the EBNF in Figure 1 omits syntax for declaration and initialization
of KR modules. An obvious syntactic sugar of “when-then-else” condi-
tional mst is introduced as well. Moreover, Jazzyk implementation includes
a macro language3 enabling support for higher level code structures, like e.g.
named mst’s with optional arguments.

The semantics of the Jazzyk interpreter is that of BSM as described in Sub-
section 3.2 with few simplifications to allow for an efficient computation:
1) query expressions are evaluated sequentially from left to right, 2) the KR

3GNU M4 available at http://www.gnu.org/software/m4/.

DEPARTMENTOF INFORMATICS 12

http://www.gnu.org/software/m4/

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

modules are responsible to provide a single ground variable substitution for
declared free variables of a true query expression, 3) before performing an
update, all the variables provided to it have to be instantiated, and 4) rules
are evaluated in an arbitrary order, with the option to switch sequential eval-
uation on. Finally, few additional keywords like e.g. exit and various config-
uration options are introduced, together with a mechanism for initializing
the initial states of KR modules.

4.2 BSM and AOP

Figure 2 lists an example of a Jazzyk code for the office space robot from
Example 1. In the normal mode of operation, the robot moves randomly
around and when interrupted by somebody, it smiles and utters a greeting.
When it detects low battery alert, it switches off all the energy consuming
features and tries to get to a docking station, where it can recharge.

In the following, we discuss the details of the robot implementation in
Jazzyk and relate it to some desirable agent-oriented features.

Heterogeneous KR The agent uses three KR modules corresponding to
those introduced in the Example 1: beliefs - an ASP module representing
agent’s beliefs (B in Example 1) with a query operator query and two update
operators adopt, drop, corresponding to |=ASP , ⊕ASP and 	ASP ; body - a
Java module for interfacing with the environment (C), providing query and
update operators sense and perform (|=eval and⊕eval) ; and goals - a Prolog
module to represent goals (G), with operators query and update (|=Prolog

and⊕Prolog).
In the presented example, the agent uses two different knowledge bases

(KB) to store information representing its mental attitudes: beliefs and goals.
Instead of fixing the roles of various KBs in an agent, it is was here the pro-
grammer who chose a number and roles of KBs.

The robot employs only a single belief base to store the information about
the world. However, in real-world applications it might be useful to employ
several knowledge bases using heterogeneous KR technologies to facilitate a
robust agent development. The BSM framework allows an easy integration
of heterogeneous KBs in a transparent and flexible way.

Situatedness and embodiment Interaction with an environment is fa-
cilitated via the same mechanism as handling of various knowledge bases.
Similarly to a KR technology, the essence of an interface to an environment
are sensor and effector operators. The scheme is the same as for query and up-
date interfaces of a pure KR module. Metaphorically, in line with behaviourist
roboticists, we could say that KR module for interfacing with an environ-
ment uses the world as its own representation [1]. Moreover, given the flexi-

13 Technical Report IfI-07-10

Agent oriented programming

/∗ Initialization ∗/
declare module beliefs as ASP /∗ initialization ommited ∗/
declare module goals as Prolog /∗ initialization ommited ∗/
declare module body as Java /∗ initialization ommited ∗/

/∗ Perceptions handling ∗/
when sense body (X,Y) [{ GPS.at(X,Y)}]
then adopt beliefs [{ at(X,Y) }] ;

/∗ Default operation ∗/
when sense body [{ (Battery.status() == OK) }] then {

/∗ Move around ∗/
perform body [{ Motors.turn(Rnd.get(), Rnd.get()) }] ;
perform body [{ Motors.stepForward() }]

} else
{

/∗ Safe emergency mode − degrade gracefully ∗/
perform body [{ Face.smile(off) }] ;
perform body [{ InfraEye.switch(off)}] ;
update goals [{ assert(dock) }]

} ;

/∗ Goal driven behaviour ∗/
when query goals [{ dock }] then {

when query beliefs (X,Y) [{ position(dock_station, X, Y) }]
then {

perform body (X,Y) [{ Motors.turn(X,Y) }] ;
perform body (X,Y) [{ Motors.stepForward() }]

}
} ;

/∗ Commitment handling ∗/
when query goals [{ dock }] and

query beliefs [{ position(dock_station, X, Y), at(X,Y) }]
then update goals [{ retract(dock) }] ;

/∗ Interruption handling ∗/
when sense body (X) [{ Visual.see(X) }] and

query beliefs (X) [{ friend(X), not met(X) }]
then {

perform body [{ Face.smile(on) }] ,
perform body [{ Audio.say("Hello!") }] ,
adopt beliefs (X) [{ met(X) }]

}

Figure 2: Example of an office space robot agent

DEPARTMENTOF INFORMATICS 14

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

bility of BSM framework w.r.t. heterogeneous KR technologies, an agent can
easily interface with various aspects of its environment using different mod-
ules. Social and communicating agents can use specialized modules to inter-
face with social environments they participate in (such as a FIPA compliant
MAS platform) and at the same time perform actions in other environments
they are embodied in.

In our example, the robot interacts with its environment via the module
body. Figure 2 shows examples of perception handling and performing ac-
tions.

Reactiveness and scripts The model of Behavioural State Machines is pri-
marily suitable for encoding non-deterministic choice of reactive behaviours.
However, it also allows encoding of script-like, or so called ballistic, behaviours
[1]. An example of such is listed in Figure 2, in the part “Interruption han-
dling”, where the robot first smiles, says “Hello!” and finally records a notice
about the event.

Such sequential, or script-like behaviours can pose a problem if an agent
performs more than one exogenous action in a sequence. If the subsequent
action depends on the previous one, which can possibly fail, the whole script
can fail. Therefore an extensive use of script behaviours can lead to a fragile
implementation. These are however considerations, which are extensively
studied in robotics research [1] and we do not need to discuss them further.
We only stress, that degrees of freedom, the computational model of BSM
provides, allow programmers to exploit various programming styles and de-
sign techniques. This, however does not eradicate a need for a careful system
analysis, design and consideration before using a particular technique.

Goal driven behaviour and commitment strategies The robot in
our example uses goals to steer its behaviour in certain situations. Goals are
used here to keep a longer-term context of the agent (docking), yet still allow
it to react, change the focus to unexpected events (meeting a friend), in an
agile manner.

Goals come with a certain commitment strategy. Different types of goals
require different types of commitments (e.g. achievement vs. maintenance
goals). The BSM model is quite flexible w.r.t. commitment strategy imple-
mentation. In the presented example, the commitment w.r.t. the goal ϕ =
dock can be informally written as an LTL formula �(Gϕ ∧Bϕ→ ♦¬Gϕ) - an
implementation of the axiom AI8 of the I-System (see Section 1).

Different commitment strategies can be implemented in the BSM model.
The study of various types of commitment strategies and formal specifica-
tion methods for BSM will be, however, a subject of our future work (see Sec-
tion 6).

15 Technical Report IfI-07-10

Discussion and related work

5 Discussion and related work

The primary motivation for development of the framework of Behavioural
State Machines was 1) integration of heterogeneous knowledge representa-
tion technologies in a single agent system and 2) flexibility w.r.t. various
types of behaviours. The BSM framework borrows the idea and the style of
KR modules integration from Modular BDI Architecture [13] and its theoreti-
cal foundations stem from the well studied general purpose computational
model of Gurevich’s Abstract State Machines (ASM) [6].

In particular, the BSM framework can be seen as a special class of ASM,
with domain universes ground in the KR modules, lacking parallel execu-
tion to maintain atomicity of transition steps and featuring specialized type
of sequences of updates. The close relationship to the formalism of ASM, al-
lows an easy transfer of various ASM extensions, such as turbo, distributed,
of multi-agent ASM [6], to BSM framework. Moreover, ASM formalism comes
with a specialized modal logic for reasoning about ASM programs, what might
turn out to be useful in the context of the already mentioned formal specifi-
cation methods for BSM.

It can be argued that the language of BSM is oversimplified and does not
follow a popular tradition of BDI [17] architecture. We already addressed
these issues in our work on Modular BDI Architecture [13]. There we showed
how a BDI agent architecture can be implemented in a modular way in a
framework close to BSM with an advantage, that an agent system designer
has a freedom to implement a model of rationality suitable for the agent ap-
plication instead of fixing it in the programming framework. Modular BDI
Architecture introduced decomposition of an agent system into a set of in-
dependent KR modules. However, its plain rule-based language was con-
strained only to BDI-type agents and did not facilitate compositional modu-
larity w.r.t. behavioural decomposition.

In [14] we developed a higher level syntax for a rule based language based
on principles of the Modular BDI Architecture. However the semantics of the
language introduced in [14] was not simple enough and did not allow a straight-
forward implementation of a transparent language interpreter. Moreover,
the concept of mental state transformer was still quite complex what led to
problems with implementation of source code modularity in the language.
The presented framework of Behavioural State Machines is thus a culmination
of the effort towards designing a practically applicable programming lan-
guage based on the fundamental principles of the Modular BDI Architecture.
It provides a simple readable syntax and as well as a clear and transparent
semantics.

To our knowledge, most implemented state-of-the-art agent oriented lan-
guages like e.g. AgentSpeak(L) [5], 3APL [8], MetateM [9], or Golog [12] in their
plain form are not easily extensible to handle several heterogeneous knowl-

DEPARTMENTOF INFORMATICS 16

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

edge bases. The main obstacle to such an effort is a tight coupling of KR ap-
proach (usually Prolog, or a FOL-style language) with the language for encod-
ing agent’s behaviours (MetateM, Golog), or a tight coupling of interactions
between the components of an agent system, such as a belief base and a goal
base (family of languages stemming from AgentSpeak(L)).

GOAL [10], according to the authors, theoretically allows modularity w.r.t.
the employed KR technology to some extent. However, a tight coupling of
belief and goal bases via strong semantic conditions on the commitment
strategy for goals imposes much stronger requirements on the integrated KR
modules than the liberal approach of BSM. Moreover, up to our knowledge
there is no published working implementation of GOAL with KR modularity
yet.

IMPACT [19] is a system featuring a similar degree of freedom w.r.t. hetero-
geneous KR technologies as the BSM framework. It was designed to support
integration of heterogeneous information sources as well as agentification of
legacy applications. IMPACT agent consists of a set of software packages with
a clearly defined interface comprising a set of data types, data access func-
tions and type composition operations. An agent program is a set of declara-
tive rules involving invocations of the underlying components via the prede-
fined data access functions. The main difference between IMPACT and BSM
framework is the semantics of agent programs. While a BSM program en-
codes a merely non-deterministic choice of conditional update expressions,
and thus facilitates reactive behaviours of the agent, various semantics of IM-
PACT are strictly grounded in declarative logic programming. A set of code
calls of an IMPACT program, to execute in each deliberation cycle, is com-
puted according to rationality requirements imposed by a particular IMPACT
semantics. No such epistemic considerations are made for a BSM program.
The control over which primitive mst’s are enabled in a particular class of
mental states is rather left to a programmer.

Finally, let us discuss how the presented BSM framework fits Shoham’s def-
inition of an AOP framework [18]. According to Shoham, a complete AOP
framework will include three primary components: 1) a formal language
for describing a mental state, 2) an interpreted programming language for
defining agent programs faithful to the semantics of mental state, and 3) an
“agentifier” converting neutral devices into programmable agents.

Obviously, we intentionally avoid to deal with the first component of an
AOP framework in BSM. Instead we focus more on the programming lan-
guage. KR language, as well as the semantics of a KR module is left open in
the BSM framework. However, through the requirement of providing query
operators, the existence of a well defined semantics of the underlying knowl-
edge base is secured. The BSM programming language is merely a tool for de-
sign of a variety of interactions between the KR modules of an agent. More-
over, by adding an appropriate query/update interface to a legacy system,
e.g. a relational database, it can be easily wrapped into a service agent enve-

17 Technical Report IfI-07-10

References

lope, or made a part of a more sophisticated agent system, i.e. “agentified”
in the very sense of Shoham’s concept of agentification.

6 Conclusion

The main contribution of the presented paper is the theoretical framework
of Behavioural State Machines, an architecture for programming flexible and
robust hybrid agents, exploiting heterogeneous KR technologies and allow-
ing an easy agentification of low level interfaces and information sources. Its
semantics is primarily obeying principles of KR modularity, and flexibility in
terms of encoding reactive, as well as sequential behaviours. It draws a strict
distinction between the representational vs. behavioural aspects of an agent
and primarily focuses on the later.

We also roughly introduced Jazzyk, an implemented programming lan-
guage for BSM framework. Further details with a rigorour technical descrip-
tion of the language will be provided in the subsequent technical note of this
series.

We fall short of discussing a real world application of Jazzyk in this pa-
per. In order to substantiate the presented theoretical framework in a real
world experiment and drive our future research, we are currently intensively
working on a showcase agent system similar to the one described in [21]: a
non-trivial BDI-based bot in a simulated 3D environment of a Quake-based
computer game. The main KR technology used for the agent’s beliefs and
goals will be ASP, powered by Smodels solver [20]. To this end we already de-
veloped several prototype Jazzyk KR plug-ins for Smodels, Python and a mod-
ule for interaction with the Nexuiz4 game server. We plan to implement a
Scheme/Guile5 module as well.

In the future, we will focus on studying higher level formal agent specifica-
tion methods based on modal logic, which allow automatic translation into
the plain language of BSM. We briefly touched on this issue in the discussion
of goal oriented behaviours and commitments in Subsection 4.2. We expect
this research to be pragmatically driven by the already mentioned showcase
demo application.

7 Acknowledgments

I have to thank Koen Hindriks who pointed me at Gurevich’s work on Evolv-
ing Algebras (later renamed to Abstract State Machines) which I use as a sub-
strate for the presented framework of Behavioural State Machines.

4http://www.alientrap.org/nexuiz/
5http://www.gnu.org/software/guile/

DEPARTMENTOF INFORMATICS 18

http://www.alientrap.org/nexuiz/
http://www.gnu.org/software/guile/

ANOPEN AGENT ARCHITECTURE: FUNDAMENTALS (REVISED)

References

[1] R. C. Arkin. Behavior-based Robotics. MIT Press, Cambridge, MA, USA,
1998.

[2] C. Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, 2003.

[3] R. H. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J. J. Gomez-
Sanz, J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey of program-
ming languages and platforms for multi-agent systems. Informatica,
30:33–44, 2006.

[4] R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni. Multi-Agent
Programming Languages, Platforms and Applications, volume 15 of Mul-
tiagent Systems, Artificial Societies, and Simulated Organizations. Kluwer
Academic Publishers, 2005.

[5] R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the Golden Fleece of
Agent-Oriented Programming, chapter 1, pages 3–37. Volume 15 of Multi-
agent Systems, Artificial Societies, and Simulated Organizations [4], 2005.

[6] E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

[7] P. R. Cohen and H. J. Levesque. Intention is choice with commitment.
Artif. Intell., 42(2-3):213–261, 1990.

[8] M. Dastani, M. B. van Riemsdijk, and J.-J. Meyer. Programming Multi-
Agent Systems in 3APL, chapter 2, pages 39–68. Volume 15 of Multiagent
Systems, Artificial Societies, and Simulated Organizations [4], 2005.

[9] M. Fisher. A survey of Concurrent MetateM - the language and its appli-
cations. In D. M. Gabbay and H. J. Ohlbach, editors, ICTL, volume 827
of Lecture Notes in Computer Science, pages 480–505. Springer, 1994.

[10] K. V. Hindriks. Agent Programming Languages: Programming with Mental
Models. PhD thesis, Utrecht University, 2001.

[11] J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers of Artificial
Intelligence and Applications. IOS Press, 2003.

[12] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. Golog:
A logic programming language for dynamic domains. J. Log. Program.,
31(1-3):59–83, 1997.

[13] P. Novák and J. Dix. Modular BDI architecture. In H. Nakashima, M. P.
Wellman, G. Weiss, and P. Stone, editors, AAMAS, pages 1009–1015.
ACM, 2006.

19 Technical Report IfI-07-10

References

[14] P. Novák and J. Dix. Adding structure to agent programming languages.
In M. Dastani, A. E. Fallah-Seghrouchni, A. Ricci, and M. Winikoff,
editors, ProMAS 2007, Fifth International Workshop on Programming
Multi-Agent Systems, Hawaii, USA, 2007.

[15] A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Com-
putable Language. In W. V. de Velde and J. W. Perram, editors, MAA-
MAW, volume 1038 of Lecture Notes in Computer Science, pages 42–55.
Springer, 1996.

[16] A. S. Rao and M. P. Georgeff. Modeling Rational Agents within a BDI-
Architecture. In KR, pages 473–484, 1991.

[17] A. S. Rao and M. P. Georgeff. An Abstract Architecture for Rational
Agents. In KR, pages 439–449, 1992.

[18] Y. Shoham. Agent-oriented programming. Artif. Intell., 60(1):51–92,
1993.

[19] V. S. Subrahmanian, P. A. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and
R. Ross. Heterogenous Active Agents. MIT Press, 2000.

[20] T. Syrjänen and I. Niemelä. The Smodels System. In T. Eiter, W. Faber,
and M. Truszczynski, editors, LPNMR, volume 2173 of Lecture Notes in
Computer Science, pages 434–438. Springer, 2001.

[21] M. van Lent, J. E. Laird, J. Buckman, J. Hartford, S. Houchard,
K. Steinkraus, and R. Tedrake. Intelligent agents in computer games.
In AAAI/IAAI, pages 929–930, 1999.

[22] M. Wooldridge. Reasoning about rational agents. MIT Press, London,
2000.

DEPARTMENTOF INFORMATICS 20

	Motivation
	Desiderata
	Behavioural State Machines
	Syntax
	Semantics

	Agent oriented programming
	Jazzyk
	BSM and AOP

	Discussion and related work
	Conclusion
	Acknowledgments

