
How to Repair Multi-agent Plans: Experimental Approach

Antonín Komenda1 and Peter Novák2 and Michal Pěchouček1

{komenda|pechoucek}@agents.fel.cvut.cz, P.Novak@tudelft.nl
1Dept. of Computer Science and Engineering, Faculty of Electrical Engineering,

Czech Technical University in Prague, Czech Republic
2Dept. of Software and Computer Technology, Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology, The Netherlands

Abstract

Deterministic domain-independent multi-agent planning is an
approach to coordination of cooperative agents with joint
goals. Provided that the agents act in an imperfect environ-
ment, such plans can fail. The straightforward approach to
recover from such situations is to compute a new plan from
scratch, that is to replan. Even though, in a worst case, plan
repair or plan re-use does not yield an advantage over replan-
ning from scratch, there is a sound evidence from practical
use that approaches trying to repair the failed original plan
can outperform replanning in selected problems. One of the
possible plan repairing techniques is based on preservation of
the older plans.
This work experimentally studies three aspects affecting ef-
ficiency of plan repairing approaches based on preservation
of fragments of the original plan in a multi-agent setting. We
focus both on the computational, as well as the communi-
cation efficiency of plan repair in comparison to replanning
from scratch. In our study, we report on the influence of the
following issues on the efficiency of plan repair: 1) the num-
ber of involved agents in the plan repairing process, 2) inter-
dependencies among the repaired actions, and finally 3) par-
ticular modes of re-use of the older plans.

Motivation
Consider a team of heterogeneous robots working together
so as to execute a mission in an environment. Since the
robots feature heterogeneous capabilities, it might well be
that none of them is able to complete the mission on its
own, however by a careful coordination and teamwork, they
should be able to reach the joint objective. The team of phys-
ical robots is embodied in a dynamic environment in which
various events and plan execution interruptions occur and
most importantly, in which actions of the agents can fail. To
execute their mission, the agents must be able to cope with
such a dynamics on both, the individual, as well as the coor-
dination level. Here we focus on the problem of multi-agent
plan repair which tackles such issue.

There are several approaches capable to drive multi-agent
team activities in an environment with an a priori unknown
dynamics. Firstly, there is a body of literature dealing with
and extending models of decentralized partially observable

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Markov decision processes (Dec-POMDPs) (Bernstein et al.
2002). A Dec-POMDP model leads to computation of a pol-
icy for the agents in the environment ensuring that by follow-
ing it, the team reaches the joint goal. The model assumes
only partial observability of the environment, a feature ca-
pable to capture various eventualities which could occur in
the environment. These, however, have to be known a pri-
ori, so that a probabilistic model of action outcomes can be
constructed before planning. Secondly, single-agent contin-
gency (Fu et al. 2011) and conformant (Palacios and Geffner
2009) planning techniques facilitate classical-style planning
for domains with non-probabilistic uncertainty in either ac-
tion outcomes or state the system happens to be in. How-
ever, again, in order to plan for actions in such domains,
the possible contingencies and action models in the environ-
ment must be known before the planning phase. The above
discussed approaches do not scale well to larger domains,
especially when the model of run-time action failures and
events which could occur is a priori unknown.

Recently, in (Komenda, Novák, and Pěchouček 2012) the
authors proposed an approach of multi-agent (MA) plan re-
pair (MA-REPAIR), based on multi-agent planning (MA-
STRIPS) as introduced in (Brafman and Domshlak 2008).
MA-STRIPS is an approach to planning for teamwork and
coordination extending the classical STRIPS-based planning
techniques. According to the MA-REPAIR approach, the
multi-agent team computes a team plan using a fully decen-
tralized MA-STRIPS planning algorithm, and subsequently
executes the plan, while at the same time monitoring of pos-
sible failures of plan execution. Upon an occurrence of such
a failure, the team stops execution and invokes a plan repair
algorithm and fixes the failed joint plan in order to reach a
joint goal state from the state in which the failure occurred.

It can be argued that plan re-use in a single-agent context
does not yield much advantage with respect to the compu-
tational complexity in the worst case (Nebel and Koehler
1995), since costly attempts to fix a failed plan sometimes
lead to replanning from scratch anyway. In multi-agent and
multi-robot settings, such as those involving teams of under-
water or aerial robots, where communication is unreliable
and costly, however, it is often the communication which is
of higher priority than the computational complexity.

In (Komenda, Novák, and Pěchouček 2013), the authors
proposed prefix and suffix-based approaches to MA plan re-

pair. Their work showed that these repairing approaches
save communication in contrast to replanning from scratch
in tightly coupled problems with action failures, however a
research question which plan repairing techniques are more
appropriate for which planning domains and problems re-
mained unanswered. In this work, we generalize the prefix
and suffix-based approaches from their work and present a
study on how particular multi-agent plan repair techniques
and particular parametrizations perform in different plan-
ning domains.

Multi-agent planning & repair
The problem of multi-agent plan repair as defined
in (Komenda, Novák, and Pěchouček 2013) is a tuple Σ =
(Π,P, sf , k), where

1. Π = (L,A, s0, Sg) is a MA-STRIPS multi-agent planning
problem over

(a) a set of agents A = α1, . . . αn, each characterized
by a set of STRIPS actions (over a propositional lan-
guage L) it can perform in an environment the agents
operate in. I.e., αi =

{
〈pre(a), add(a), del(a)〉 |

pre(a), add(a), del(a) ⊆ L
}

; and
(b) an initial state s0 ∈ 2L the agents start to operate in,

together with a specification of a set of final states Sg ⊆
2L characterizing their joint objective(s).

2. an original multi-agent plan P solving the problem Π, ex-
ecution of which failed; and finally

3. a state sf ∈ 2L which the system happens to be in, unex-
pectedly after the plan execution failure occurrence of the
plan execution step k ∈ 1..|P|.

A solution to the MA plan repair problem Σ = (Π,P, sf , k)
is a multi-agent plan P ′ solving a modified planning prob-
lem Π′ = (L,A, sf , Sg). A multi-agent plan is a sequence
of n-tuples, joint actions, with n = |A| corresponding to
the number of agents in the team A. Thereby a multi-agent
plan is a sequence of synchronized actions of the individual
agents. In order to constitute a valid multi-agent plan for a
planning problem Π, firstly, each agent executing its corre-
sponding sub-sequence of primitive actions must be capable
to perform them, that is, ai ∈ αi ∈ A for each individ-
ual action in every joint action (a1, . . . , an) constituting the
k-th step of the plan. Secondly, synchronized execution of
the sequence of joint actions must lead from the initial state
to some final state prescribed by the planning problem def-
inition. That means all the inter-dependencies between the
actions of the individual agents imposed by their precondi-
tions must be satisfied along the plan execution.

In a case there are several plans repairing the original
failed plan P , the idea is to prefer those solutions, which
preserve, that is re-use, parts of the original plan as much as
possible. More formally, given two plans P1,P2 repairing
the same multi-agent plan P , we say that P1 is more pre-
serving than P2 iff diff (P1,P) ≤ diff (P2,P), where diff
denotes the edit distance, i.e., the Levensthein distance (Lev-
enshtein 1966) between the two plans given as arguments.
Edit distance of two strings equals the minimal number of

primitive edits. The adaptation to multi-agent plans corre-
sponds to primitive edits being joint action addition, joint ac-
tion deletion and a primitive action replacement operations.
For further details, refer to the original papers (Brafman and
Domshlak 2008; Komenda, Novák, and Pěchouček 2013).

Besides considering straightforward replanning from
scratch, that is invoking the underlying multi-agent planner
at the point of a failure and then executing the computed plan
right away, in (Komenda, Novák, and Pěchouček 2012), the
authors present two main approaches to solving multi-agent
plan repair problems coined back-on-track and lazy repair
respectively. Informally, the back-on-track approach tries to
fix the prefix of the failed plan by computing a plan from
the state in which the system happens to be right after the
detection of a plan execution failure to some state along an
ideal failure-free execution of the original plan. The result-
ing multi-agent plan re-uses some suffix of the original plan,
if possible, and extends the plan at its beginning. The idea
underlying the lazy repair is complementary. Lazy repair
takes the remainder of the original plan, re-uses all its ac-
tions which still can be executed according to their precon-
ditions regardless of the outcome and completes the plan to
some goal state of the planning problem. This way, the re-
sulting plan is composed of re-used prefix parts of the origi-
nal plan with an appended suffix of some new repaired plan.

They also experimentally show that in some domains,
these approaches lead to significant savings of communica-
tion, as well as computational resources in comparison to re-
planning from scratch in selected problems. Both algorithms
first formulate a modified multi-agent planning problem and
rely on the underlying multi-agent planner to compute a plan
fragment used for re-composition into a solution plan repair-
ing the original failed one.

A straightforward extension of the approach is to consider
re-use of different parts of the original failed plan by com-
bining parts of the prefix vs. suffix appending plan repair.
Consider e.g., a repairing strategy according to which the
back-on-track algorithm would not return back to an arbi-
trary state along the original plan’s failure-free execution,
but rather would consider only returning to the next few
states presumed after the point of failure—this is approxi-
mately the way GPS navigation devices tend to fix a route
after a missed junction point. Clearly, in some domains, this
can be a beneficial approach, however not in all. An alterna-
tive idea would be to select only a minimal relevant subset
of agents which should participate in the plan repair process,
thereby constraining the inter-agent communication only to
a subset of the agent team involved. In result, further reduc-
tion of communication needed for planning can be achieved.

Given the two above intuitions, we formulate first two hy-
potheses tackled in this paper.

Hypothesis 1 Repairing algorithms minimizing the number
of agents involved in the plan repairing process tend to gen-
erate lower computational and communication overheads
than other strategies.

Hypothesis 2 Repairing algorithms reusing the original
plan as a suffix generate lower computational and communi-
cation overheads than the repairing algorithms reusing the

Algorithm 1 MA plan execution process with generalized
multi-agent plan repairing algorithm.
Input: A MA planning problem Π = (L,A, s0, Sg).
Input: Parameters f and g bounding the maximal length for

reusing of the original plan as prefix and suffix.
1: P = MA-Plan(Π)
2: if P = ∅ then return fail
3: k = 1
4: repeat
5: agents perform P[k]
6: if failure detected then
7: retrieve the current state s from the environment
8: // begin: plan repairing Σ = (Π,P, s, k)
9: f∗ = f ; g∗ = g

10: repeat
11: Ppre = ExecReminder(P[k..(k + f∗)], s)
12: Psuf = P[(|P| − g∗)..|P|]
13: P∗ = MA-Plan((L,A,s⊕ Ppre, Sg	Psuf))
14: if P∗ 6= ∅ then
15: P = Ppre · P∗ · Psuf

16: break
17: end if
18: until tested all pairs of f∗ ∈ f..0 and g∗ ∈ g..0
19: if P = ∅ then return fail
20: // end
21: k = 1
22: else
23: k = k + 1
24: end if
25: until k > |P|

original plan as a prefix in domains featuring actions with
long-term dependencies.

A long-term dependency can be visualized as a tree of con-
secutively dependent actions. If an action in the root of such
tree has to be repaired, intuitively, it is a better idea to try to
fix it as soon as possible, because not doing so can cause a
snowball effect of increasing number of failing actions.

Further, we define the used algorithm, formulate last hy-
pothesis and treat the hypotheses with three experiments.

Generalized repair algorithm
As outlined in the previous section, the algorithm used

in the following experiments is a generalization of the lazy
and back-on-track approaches with a number of additional
modifications described in detail in the respective sections.
The algorithm with the complete plan execution, monitoring
and repair scheme is outlined in Algorithm 1.

The algorithm takes a multi-agent planning problem Π
and two integer parameters f and g limiting the number of
actions, which upon a detection of a failure can be reused
during plan repair process from the currently executed plan
P as a prefix or a suffix of the repairing plan. The process
starts with a computation of the initial plan, which is subse-
quently executed. k denotes the counter of the current step
in the plan execution. As the plan execution proceeds, in

each step, all the agents perform their individual actions pre-
scribed by the k-th joint action in the plan P , denoted P[k].

In the case a failure is detected by the team, current state
after the failure is retrieved and the plan repairing algorithm
for the plan repairing problem Σ = (Π,P, s, k) is invoked.
In each plan repairing attempt a modified multi-agent plan-
ning problem is formulated according to the current values
of f∗ and g∗ prescribing the length of the re-used prefix and
suffix of the original plan. In the case a repairing plan is
found, the repairing process finishes, otherwise another at-
tempt with a different combination of f∗ and g∗ is carried
out. The resulting repairing plan consists of three compo-
nents: the preserved prefix of the original plan Ppre reusing
P[k..(k + f∗)], a newly computed infix P∗ and suffix part
Psuf reusing P[(|P| − g∗)..|P|], again preserving a part of
the original plan P .

The preserved prefix part of the original plan cor-
responds to an executable reminder fragment of P ,
ExecReminder(P, s), a selection of still applicable joint
actions given the failure which occurred. The actions with
unmet preconditions are simply omitted. Additionally, the
prefix Ppre is based only on a part of the original plan effec-
tively re-using f∗ actions beginning after the k-th action of
the original plan P . The suffix part Psuf is obtained as the
last g∗ actions of the original plan P .

Finally, the infix part of the plan is computed by invoca-
tion of the underlying multi-agent planner algorithm MA-
Plan proposed by Nissim, et al. (Nissim, Brafman, and
Domshlak 2010). The initial state of the modified plan-
ning problem is the state in which a failure-free execution
of the repairing prefix Ppre would result in starting from
the state s and it is denoted as s ⊕ Ppre. The set of goal
states corresponds to a back-propagation of effects of the
preserved suffix component Psuf from the set of original
goals Sg . More formally, the back-propagation operator
	 : 2L ×

⋃
a∈α∈A

a → 2L for a single action is defined as

s 	 a = s ∪ del(a) \ add(a). It extends to sequences of
actions as follows.
Definition 1 (proposition back-propagation) Let S′ be a set
of propositions back-propagated from a set of propositions
S using a MA plan P denoted as	 operator extension S′ =
Sg	P iff S′ = (· · · ((S	P[m])	P[m−1])	· · ·)	P[0].
In the case a multi-agent planner finds a plan for the mod-
ified planning problem, the repairing plan takes the form
Ppre · P∗ · Psuf and gets executed from that point on. In
the case no repairing plan can be found, the algorithm at-
tempts the repair for a different combination of f∗ and g∗
until either a repairing plan is found, or it turns out that no
repair for the failure exists.

The parametrization of the repairing process based on
the f and g parameters opens an interesting research ques-
tion, how do different combinations of the prefix and suffix
preservation parameters influence the efficiency of the plan
repairing process. Let m be the length of the re-usable part
of the original plan P , i.e., m = |P| − k. Obviously, for
f + g < m there will be a gap, which has to be filled by a
result of the inner planning process, in other words the orig-
inal plan was underused. Reversely, for f + g > m there

102

103

104

105

106

107

108

109

101 102 103 104 105 106 107 108 109 1010

C
om

m
un

ic
at

io
n

[B
]

Time [ms]

Relation of time and communication complexity

Coop. pathfinding
Logistics

Rovers
Satellites

Figure 1: Relation between communicated bytes and com-
putation time for solving the plan repairing problems.

will be an overlap, which has to be reverted, i.e., the origi-
nal plan was overused. Intuitively, these cases are in a sense
pathological. In a consequence, we propose the third, final
hypothesis of this paper.

Hypothesis 3 Repairing algorithms overusing or underus-
ing the original plan tend to generate higher computational
overheads than other algorithms.

Experimental setup
The experiments were conducted in a synthetic setting, a
simulated world with a group of agents using the plan ex-
ecution, monitoring and repair loop. The world is fully ob-
servable for the agents. All failures of plan execution were
generated by the simulator according to a uniform distribu-
tion over time and parametrized by a probability p of failure
occurrence in each step for each experiment. A failure is
generated only if there exists a plan to a goal state, which
obviates problems with irreversible actions. The failures are
handled by the agents immediately upon detection.

A failure is simulated by not-execution of some of the
agent actions from the actual plan step. The individual ac-
tion is chosen according to an uniform probability distribu-
tion over the individual actions within a joint action. As
showed in (Komenda, Novák, and Pěchouček 2013), failure
models with more radical impacts on the environment (e.g.,
state perturbations) decrease usability of the plan repairing
approaches. Our motivation in this work is to study types of
plan repairing, therefore we stick only to action failures.

For the implementation of the experimental setup and the
repairing algorithms, we used a centralized world simula-
tor integrating the multi-agent domain-independent planner
MA-Plan (Nissim, Brafman, and Domshlak 2010). Each
agent runs in its own thread and they deliberate asyn-
chronously. The experiments were executed on 8-core pro-
cessor at 3.6GHz with Java VM limited to 2.5GB of RAM.

For the experiments, we used four planning domains.
Three of them originate in the standard single-agent IPC

planning benchmarks. Similarly to the evaluation of the MA-
Plan algorithm in (Nissim, Brafman, and Domshlak 2010;
Komenda, Novák, and Pěchouček 2013), we chose domains,
which are straightforwardly modifiable to a multi-agent set-
ting: LOGISTICS, ROVERS, and SATELLITES. Additionally,
we have extended the set of benchmarks by COOPERATIVE
PATHFINDING coordination domain on a grid.

The experimental measurements were based on two met-
rics focusing on the target efficiencies: cumulative time con-
sumed by the particular plan repairing algorithms during a
single run of the simulation, i.e., the overall time spent in
the algorithm (incl. the underlying planning process) exclud-
ing the initial planning phase of the scheme (Algorithm 1).
The second metric was communication complexity of the
process, that is the volume of communicated information in
bytes among the involved agents during the plan repairing
processes. Those are mainly the messages generated by the
DisCSP solver in the MA-Plan planner and an additional
synchronization processes minimizing the number of agents
involved in the plan repairing process.

To account for differences in essential computational and
communication complexity of the domains, we conducted a
relationship experiment between these two measures. Fig-
ure 1 depicts the results and demonstrates that there is no
essential discrepancy between the computational and com-
munication complexity of the plan repairing solutions. That
means, the following results are not biased by problems ex-
tremely hard in time and simple in communication and vice
versa.

The number of repairing agents
Regardless of the theoretical results presented in (Brafman
and Domshlak 2008), showing that the computational com-
plexity of DisCSP-based multi-agent planning is not expo-
nentially dependent on the number of the agents, in practical
experiments, we faced a non-negligible dependence of the
this number and required communication and computational
effort. The first set of experiments analyzes this relation.

Used algorithms To validate Hypothesis 1, we have pre-
pared an extensive set of plan repairing algorithms stemming
from the Generalized repair algorithm. They can be divided
into three main groups: one without agent count minimiza-
tion, and two with agent minimization. First of the mini-
mization groups reuse the original plan as a suffix and the
other one as a prefix.

The difference among the algorithm instances within one
of the groups lies in preference between agent minimiza-
tion, size of preservation of the original plan and bound on
the maximal length of the newly generated repairing plan
component P∗. This approach restrain bias prospectively
caused by unbalanced influences of the agent minimization
on various types of plan repair.

The approach used to minimize the number of involved
agents was based on the notion of a set of supporting agents.
The iterative process from Algorithm 1 was extended with
an iteration starting only with a set of agents providing at
least one action, which can contribute to the repairing plan
by a required proposition(s), i.e., support part of Sg 	 Psuf .

Figure 2: Comparison of various plan repairing algorithms in proportion to replanning (black line at y = 1) with failure
probability p = 0.3. Each point represent a mean of several runs of one of the particular repairing algorithms. The red group
contains plan repairing algorithms using only the full set of agents involved in the original planning problem, the green group
contains algorithms using various techniques to minimize number of agents involved and preserving suffix of the original plan
and the blue group contains algorithms also minimizing number of agents and preserving prefix of the original plan.

If such team of agents is not able to solve the plan repair-
ing problem, the team is extended by additional agents sup-
porting any of the current agents in the team by means of
contributing to prepositions in their preconditions. If such
additional agent does not exist and the team is still not con-
taining all the agent from A, a random agent is added into
the team and the process continues.

Results and Discussion The experiments were conducted
in all presented experimental domains and for all combina-
tions of agent counts, i.e., two to four agents giving twelve
domain and problem instances. Each of the group contained
six variances of the algorithms giving with the problem in-
stances 216 experiments. Each of the experiments was aver-
aged over 5 measurements with different random seeds.

Figure 2 shows results of the first batch of experiments.
The first group of repairing algorithms not minimizing num-
ber of involved agents (red color) is in most measurements
in both computational and communication metrics worse
than the baseline replanning algorithm. The suffix preserv-
ing algorithms minimizing numbers of agents (green color)
is on the other hand nearly in all measurements better in
both metrics than the baseline algorithm with an exception
in the simplest COOPERATIVE PATHFINDING problems. The
group of plan repairing algorithms minimizing the number
of involved agents and preserving prefix part of the original
plan (blue color) is on tie or better with the replanning in
rather loosely coupled domains decreasing the communica-

tion and computational overheads with decreasing coupling
of the domains. However in tighter coupled domains the
algorithms fall behind the replanning baseline. In LOGIS-
TICS domain, only 33% of the algorithms are better by com-
munication overheads and only 18% by means of compu-
tational overheads. With increasing coupling the approach
lose more. These results support the first hypothesis.

Additionally, the results revealed that the prefix-based ap-
proaches, as not the best in all agent minimizing approaches,
in most of the experiments has one of the best approaches
outperforming the best suffix-based approach. In LOGIS-
TICS domain the separation between the best prefix-based
and best suffix-based plan repairing algorithm is about a half
an order of magnitude in favor of the one prefix preserving
approach. On the other hand, in COOPERATIVE PATHFIND-
ING, suffix-approaches gain an order and more.

Repairing of long-term dependencies
The intuition behind the second hypothesis can be rephrased
as follows: If an action fails and it has potentially a lot of
future dependencies, possibly of other agents or even in the
goal, trying to fix it as soon as possible is rather better idea,
than ignore it and try to repair it later. The experiments in
this section were conducted to validate this concept.

Used algorithms The most straightforward approach here
is to compare the two plan repairing algorithms re-using the
whole original plan either as a prefix or as a suffix. These

A :
T1 :
T2 :

 ε ε ε l(p, a1) f(a1, a2) u(p, a2) ε ε ε

l(p, d1) m(d1, a1) u(p, a1) ε ε ε ε ε ε

m(d2, a2) ε ε ε ε ε l(p, a2) m(a2, d2) u(p, d2)

8 7 6 5 4 3 2 1

Figure 3: A multi-agent plan solving the initial LOGISTICS problem used in the experiments. Empty actions are denoted as ε.
The overlines mark public actions. The numbers in the last row represent particular counts of steps, i.e., number of actions m,
to the end of the plan.

Figure 4: Comparison of success ratio against replanning between prefix-based (blue) and suffix-based (green) plan repairing.

algorithms are again modification of the plan repairing part
of Algorithm 1 such that there is no iteration over various f∗
and g∗, but only two fixed values. The pure prefix algorithm
uses fixation f∗ = m, g∗ = 0 and the pure suffix algorithm
uses only one parameter pair f∗ = 0, g∗ = m.

Furthermore, to be able to demonstrate the behavior and
to explain the results, we have to present more details on
LOGISTICS. The problem used in the experiments contains
three agents controlling two trucks T1 and T2 and one air-
plane A. There are two cities, each with one storage depot
(d1 and d2) and one airport (a1 and a2). The trucks can move
m(from, to) only within their cities, i.e., between one de-
pot and one airport. The airplane can fly f(from, to) among
all airports in the environment, but cannot land at the de-
pots. All vehicles can load l(package, location) and unload
u(package, location) a package at a location. Initially, there
is one package p at one of the depots and the goal is to trans-
port it to the other depot in the other city. The trucks start
at the depots and the airplane starts at one of the airports.
A typical multi-agent plan solving this particular instance
is depicted in the matrix form, see (Komenda, Novák, and
Pěchouček 2013) for more detail, in Figure 3.

Results and Discussion To validate Hypothesis 2, we run
the pure prefix-based and pure suffix-based repairing algo-
rithms in all the testing domains. We have measured ratio of
successful repairs of these two repairing algorithms against
replanning by means of computation time. In Figure 4, we
summarize the results of these experiments.

In the ROVERS and SATELLITE domains, the plans solving
the problem do not contain any significant actions by means
of number of future dependencies to the overall count of ac-
tions in the plan. In SATELLITES, all actions are private,
therefore actions of one agent depend only on other actions

of the same agent. Additionally, the individual plans of the
agents are relatively short (three to four actions), therefore
the private dependencies are never longer than four actions.

Multi-agent plans for the ROVER problems contain sev-
eral public actions at the end of the plan, representing al-
ways only one rover communicating at one time point. Al-
beit the plans solving the ROVERS problems contain pub-
lic actions, there are again no long dependencies among the
actions. The dependencies in the private part of the plan
contain three components, each containing three to four pri-
vate actions. Consequently, the private dependencies are,
similarly to the SATELLITE problems, maximally four ac-
tions long. The dependencies among the public actions are
even shorter, as there is the same number of public actions
as agents, which means maximally three-action public de-
pendencies for three agents. The dependency link between
one public action and one dependent private component in-
creases the maximal dependent length to maximally seven
actions (four private actions of the component bound to three
public actions successively dependent on each other).

In such repairing problem, even if one of the leading
actions in a private component fails, lazy approach solves
nearly the complete problem only by re-using the original
plan. More precisely, it re-uses the original solution for the
rest of the private components and all the public actions ex-
cept one of the failed agent. The results show, the prefix-
based repair is always better then the suffix-based and the
ratio between these two is stable over different points in the
plan. The situation changes in the LOGISTICS domain.

In LOGISTIC with three agents and one package, there is
a chain of dependent actions. Particularly, u(p, d2) depends
on l(p, a2), which depends on u(p, a2) and so on to the first
action of the plan l(p, d1). The dependency chain has six

Figure 5: Scheme of a two-dimensional space representing
plan repairing algorithms preserving different parts of the
original plan and reusing it in different ways. The blue seg-
ments represent prefix-based re-usage and the green ones the
suffix-based re-usage. The notable states are: initial state
s0, last achieved state sk induced by the original plan, ex-
ceptional state sf after a failure and the last anticipated state
sm ∈ SG, provided that the original plan would be executed
without a failure.

actions in the experimented plan and occupy the complete
length of it. As the results show in Figure 4, there are two
distinctive peaks where the suffix repair outperforms the pre-
fix repair, additionally with an increasing trend. The first one
is for repairing plans of lengthm = 3 and the other one is for
m = 6. As we can see in Figure 3, these lengths correspond
to the package hand-off points in the plan, more precisely
repair of failing unloads u(p, a1) and u(p, a2). Ignoring a
failure of unloading by a lazy approach causes the package
is left in the last vehicle and the rest of the team finishes the
executable remainder of the plan, which effectively means
the vehicles are moving, but they are not transporting the
package. Under such circumstances, the suffix repair only
repeats the unload action and successfully continues with
the rest of the original plan ending in a goal state.

One can argue that the complement load actions should
be repaired more efficiently using this same argumentation
as well. This is very true, however this phenomenon is not
captured in the results, because of a particular implemen-
tation of the MA-Plan planner. The explanation is based
on the fact the used planner efficiency is more dependent
on small differences in number of involved agents, than the
number of planned actions. In the case of m = 3, i.e., the
u(p, a2) action, we need 2 agents to do lazy repair, because
firstly we reuse executable reminder of the original plan to
the last state without the package and than we have to use the
planner to generate repairing plan P∗reverting all the moves
and planning again to one of the goal states. Such plan has
to firstly unload the package from the airplane A and then
transport it successfully by the truck T2 to the goal destina-
tion d2. On the other hand, the back-on-track algorithm only
generates a plan repeating the unload action u(p, a2) and af-
terward continues with the original plan as a suffix. This
planning problem involves only one agent, in particular, the
airplane A carrying out unload of the package. The same
principle can be applied to m = 6, but with all three agents
for pure lazy repair but only 2 agents for pure back-on-track.

In the last problem of COOPERATIVE PATHFINDING, the

length of a sequence of dependent actions correspond to the
length of the plan, as all the actions in such plan are pub-
lic and inter-dependent. Nevertheless, this is quite different
“order of dependency”, than in SATELLITES for example.
In SATTELITES, all the actions are dependent as well, but
only within one agent, whereas here, the actions are depen-
dent across the agents. In the experimental results of the
COOPERATIVE PATHFINDING a trend arises. In such dense
types of inter-dependent problems, the longer are the re-
paired plans, the more the suffix repairing algorithm gains
against the prefix one. Unfortunately with the current avail-
able implementation of the multi-agent planner, we were
not able to conduct experiments with bigger grid sizes, i.e.
longer repaired plans, thus the validation if the trend would
continue is left for future work at this point.

The results of these experiments, namely of LOGISTICS
and COOPERATIVE PATHFINDING, moderately support the
second hypothesis of the paper.

Repair appropriately reusing the original plan
A fundamental principle behind a large group for repairing
algorithms, firstly proposed in (Nebel and Koehler 1995),
can be described as action ordering preservation or, in other
words, re-usage of parts from former plans. This very prin-
ciple stands also behind the two multi-agent plan repairing
algorithms proposed in (Komenda, Novák, and Pěchouček
2013). It is not intuitively clear what is a good strategy for
reusing the original plan, moreover related to a particular
planning domain. The experiments conducted in these sec-
tions provide several insights into this issue.

Used algorithms A battery of plan repairing algorithms
was prepared to validate Hypothesis 3. We modify how and
how much the algorithms reuse the original plan. Such mod-
ifications lead to a two-dimensional discrete space of differ-
ent plan repairing algorithms, as depicted in Figure 5, repre-
senting a structure of the repaired plan.

Each of the nine diagrams in the figure describes a varia-
tion on a resulting plan repaired by one particular modifica-
tion of the algorithm in the context of execution of the origi-
nal plan. The execution starts with a world in the initial state
s0 and it is anticipated to continue with help of the original
plan to the last state sm, which is one of the goal states, i.e.,
sm ∈ SG. However during execution of an action following
a state sk, execution failed and the state of the world ends up
not in the state sk+1, but in a state sf , out of the anticipated
sequence of states and actions. To fulfill the goal, the agents
use one of the plan repairing algorithms, which under the
condition of perfect execution, would transform the world
from sf to a sm ∈ SG.

In Figure 5, there are two dimensions depicted. One of
the dimensions represent the number of actions which has
to be reused from beginning of the original plan as a prefix
corresponding to fixation of the iteration parameter f∗ =
f . The other dimension represents number of actions re-
used as suffix of the final repairing plan, i.e., fixed iteration
parameter g∗ = g. In the presented scheme, Ppre from the
Algorithm 1 is denoted as a blue line, Psuf as a green line
and P∗as a black thick arrow. Since both the dimensions

Figure 6: The maps present prefix (f on y-axis) vs. suffix (g on x-axis) preserving repairing algorithms by a success rate against
replanning in the repair time for all domains with three agents and p = 0.3. Red color represents algorithms more often faster
then replanning. The top-left to bottom-right diagonal represent algorithms neither overusing or underusing the original plan.

reuse the same original plan, the space is always a square
with a side of the length m.

There are four extremes in the algorithm space. The
algorithm at position (0, 0) effectively degenerates from
Ppre · P∗ · Psuf to P∗. Such process correspond to replan-
ning from the scratch. The algorithms at positions (m, 0)
and (0,m) represent pure repairs Ppre · P∗ and P · Psuf

respectively. The last extreme at (m,m) represent an al-
gorithm, which firstly uses the executable reminder of the
original plan, then using a newly generated plan P∗ returns
to the anticipated state after execution of the failed action
and than reuses the original plan again to get to the goal
state, i.e., the algorithm generates a full overlap of the prefix
and suffix plans.

Beside the extremes, also the (0,m), (1,m− 1), ..., (m−
1, 1), (m, 0) diagonal in the space is important from per-
spective of the ongoing discussion. All the algorithms lying
on this diagonal re-use exactly all the actions of the origi-
nal plan in the original order. Meaning, the original plan is
neither overused nor underused. Formally, we define:

Definition 2 (m-normal plan repair) Let Σ = (Π,P, sf , k)
be a multi-agent plan repairing problem, then an algorithm
R is a m-normal plan repair, iff R solves the problem Σ by a
multi-agent planP with decompositionPpre·P∗·Psuf and at
the same time (|Ppre|, |Psuf |) ∈{(0,m), (1,m−1), ..., (m−
1, 1), (m, 0)}.

Results and Discussion To validate the third and last hy-
pothesis, we used a randomized sampling of the algorithm
space and searched for more successful algorithms lying on
the m-normal repairing diagonal by the hypothesis. The re-
sults are present in Figure 6.

The sampling experimental process measured for each en-
countered repairing problem the computation time of the
replanning algorithm. After this base-line measurement, a
tested repairing algorithm was run with a bound on the com-
putation time based on the replanning run-time. If the al-
gorithm performed better, a cell in the result map was incre-
mented by one. In effect, this process rendered the presented
normalized results. During the experimental execution and
plan repairing, we used different lengths of the original plan,
i.e., the repair was done for various m. Therefore, the re-

sulting maps depict a continuous space, as the results with
higher and lower m values were merged into the most rep-
resentative m value corresponding to the initial multi-agent
plan generated.

As the maps show, the hypothesis clearly holds for cou-
pled domains with longer plans (LOGISTICS, and ROVERS).
In the coupled domain of COOPERATIVE PATHFINDING, the
diagonal is also present, but because of shorter repaired
plans, it degenerated considerably. In the experiment with
SATELLITES, the diagonal is not present.

These results support Hypothesis 3 with an auxiliary ob-
servation, that the effect is decreasing as the coupling of the
domain decreases.

Final remarks
Based on the experimental results, we can come up with
a summary of heuristic approaches in form of simply us-
able advices decreasing computation and/or communication
overheads during repairing of multi-agent plans. These ad-
vices can be used for various plan repairing approaches tar-
geting systems with planning agents. The results were ver-
ified for plan repairing techniques utilizing preservation of
the original plan and using an DisCSP-based multi-agent
planner to fill prospective discontinuities in the repairing
plan. The advices are:

1. Prefer smaller numbers of involved agents in the plan re-
pairing process.

2. Prefer prefix repairing techniques when repairing failures
with long dependencies among different agents.

3. Prefer m-normal plan repairing algorithms.

This work opens several interesting questions left for the fu-
ture work. Most notably, how would another implementa-
tion of the underlying multi-agent planner affect the results
and would it be possible to integrate principles from single-
agent search effort estimation approaches, e.g., as in (Korf,
Reid, and Edelkamp 2001) to provide more precise hints
how to repair during the execution and repairing process.

Acknowledgments This work was supported by the U.S.
Air Force EOARD grant no. FA8655-12-1-2096.

References
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
Decision Processes. Math. Oper. Res. 27(4):819–840.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-
ceedings of ICAPS, 28–35.
Fu, J.; Ng, V.; Bastani, F. B.; and Yen, I.-L. 2011. Sim-
ple and fast strong cyclic planning for fully-observable non-
deterministic planning problems. In Proceedings of IJCAI,
1949–1954.
Komenda, A.; Novák, P.; and Pěchouček, M. 2012. De-
centralized multi-agent plan repair in dynamic environments
(Extended Abstract). In Proceedings of AAMAS, 1239–
1240.
Komenda, A.; Novák, P.; and Pěchouček, M. 2013. Domain-
independent multi-agent plan repair. Journal of Network and
Computer Applications. DOI: 10.1016/j.jnca.2012.12.011.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artif. Intell. 129(1-
2):199–218.
Levenshtein, V. I. 1966. Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet Physics
Doklady 10:707.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan
generation: a theoretical and empirical analysis. Artificial
Intelligence 76(1-2):427–454.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
Proceedings of AAMAS, 1323–1330.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
J. Artif. Int. Res. 35(1):623–675.

