
IFI TECHNICAL REPORTS
Institute of Computer Science,

Clausthal University of Technology

IfI-05-04

Clausthal-Zellerfeld 2005

Stable Model Semantics Algorithm: Approach Based on
Relation of Blocking Between Sets of Defaults

Peter Novák

Institute of Computer Science, Clausthal University of Technology, Germany
peter.novak@in.tu-clausthal.de

Abstract
In the last years computational logic, and particularly non-monotonic reasoning,
was introduced as a theory suitable for specification and implementation of multi-
agent systems. In this context, fast algorithms for reasoning in computational logics
are vitally important to support an industrial applications of such systems.
In this paper we investigate the properties of sets of default assumptions with re-
spect to the stable model semantics of normal logic programs. At first, we introduce
the notion of generating set, a set of default assumptions we have to accept in order
to infer particular atom of the program.
Subsequently we introduce a construction of canonical program of a given normal
logic program, which is syntactically much simpler, but preserves all the informa-
tion of the original program w.r.t. stable model semantics. Based on the semantical
relation between the original normal logic program and its canonical counterpart,
we introduce an alternative definition of strong semantical equivalence, which we
believe, is equivalent to standard definition.
Finally we show how a relation of blocking between generating sets can be ex-
ploited in order to convert the problem of search for stable models of normal logic
program to the problem of graph coloring, what finally leads to a new algorithm of
stable model search. The idea of our algorithm is based on the observation that ac-
cepting a generating set of default assumptions into the partial interpretation forces
other generating sets to excluded from it. The brief descriptions of the prototype
implementation, and first results of experiments with it, are also included in this
paper.
Our approach is in many ways very simillar to some already published works (e.g.
[Dimopoulos and Torres, 1996]).

1 Introduction

1.1 Motivation
In recent years, stable model semantics [M. Gelfond, 1988] and its extensions to sys-
tems evolving in time ([J. J. Alferes, 2000] and [J. A. Leite, 2001]) proved their powers

1

2 Peter Novák

in the field of knowledge representation and non-monotonic reasoning as an underlying
theory for multi-agent systems [J. J. Alferes, 2001][J. A. Leite and Pereira, 2000][J. Dix, 2002].
To use theoretical results of these research directions in industrial applications, fast and
efficient algorithms for stable model semantics are needed.

In the course of last decade various implementations of stable model semantics were
developed, in order to prove the usefulness of this kind of non-monotonic reasoning not
only in theory, but also in practice. Although in the meantime, the utilization of such
tools is mainly in the academic scope, attempts to use stable semantics as an underlying
engine for industrial prototypes were made (e.g. [de Lima Nogueira, 2003]). However,
we believe that this paradigm has the ability to evolve into a powerful industrial tool
in the future. Therefore fast and efficient implementations and optimizations of stable
model semantics have to be developed. The aim of this paper is to introduce an original
algorithm for computing stable model semantics of normal logic programs, based on
properties of sets of default assumptions extracted from a given normal logic program.

The most recognized implementations of stable model semantics algorithms are cur-
rently DLV, by Nicola Leone et. al. [Eiter, 2000] and smodels, by Ilkka Niemelä et. al.
[I. Niemelä, 1997]. Although designed for generation of extensions of default theories,
DeReS system described in [P. Cholewinski, 1996] is also capable to compute stable
models of normal logic programs. Comprehensive compilation of algorithms for sta-
ble model semantics, together with description of some implementation techniques, is
provided by [Baral, 2003], or [Simons, 2000].

According to [Baral, 2003], the common feature of algorithms used by DLV and
smodels is, that given a partial interpretation, they first try to extend it either by using
a form of derivation based on algorithms computing well-founded semantics, or using
some properties of stable models with respect to a given partial interpretation and the
syntax of the program. If that fails, then they arbitrarily select a default literal, or use a
heuristic to decide on a default literal to be included to the current partial interpretation
and then iteratively extend the resulting partial interpretation. These attempts to extend
the partial interpretation continue until a stable model is found, or a contradiction is
obtained (what forces an employment of some backtrack strategy). As it is obvious,
the most important points during the computation, are choices of default literals, when
the extension process was unable to add new literals into the partial interpretation. The
naive algorithm computing stable models, would have to enter such a branching point
for each default literal in the program. Such an approach results into the exploration of
the whole search space, which can be huge even for relatively small logic programs. We
claim, that a preprocessing step, in which relations between sets of default literals are
analyzed, can help to boost the computation of stable models of given logic programs.

Example 1

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 3

b← not a. g ← not h. a← g, not f.
c← b. h← not g.
e← c, not d.
f ← e.
⊥← e.

For the purpose of this example, the program above is divided into three parts. The
first two columns contain two disjoint programs, which are finally semantically inter-
connected by the clause in the third column. The program has one stable model {a, g}
(which can also be written as {a, g, not b, not c, not d, not e, not f, not h}).

There are few important observations which can potentially boost the computation
of a stable model:

1. No stable model of program P can contain any of the following sets of default
literals: {not a, not d}, {not a, not h, not f} and {not g, not h}.

2. Because the atom d cannot be inferred from the given program, the only way to
avoid accepting the set of default literals{not a, not d} into a partial interpreta-
tion and thus cause a conflict in it, is to infer the atom a, by accepting default lit-
erals not h and not f in the early stage of the computation. This, in one step also
avoids accepting of the set {not a, not h, not f} and later also {not g, not h},
which also cause conflict in a partial interpretation.

3. Accepting a set {not h, not f} leads to inference of atoms g and a. And because
consistent accepting of any other default literals doesn’t produce any new atom,
which could cause a conflict, the set {a, g} is a good candidate for a stable model
(which it actually is).

The example 1 illustrates that there are dependencies between sets of default literals
with respect to their inclusion into some stable model of a given program. These are
based on the notion of blocking. Accepting the set of literals {not h, not f} blocks
accepting of the set {not a, not d}, which inevitably leads to a conflict, in any partial
interpretation.

A naive algorithm, employing the iterative two-step strategy of extension of actual
partial interpretation and subsequent random choice of a default literal will need the
depth of about five branching points, where it will choose the default literal for ex-
haustive traversal of a search space. An algorithm exploiting the relation of blocking
between sets of default literals could be able to rule out a number of default literals
from the possibility of inclusion into a stable model, because they are present only in
sets which are blocked by some already accepted set. In the case of the example 1, such
a literal was not d, which as itself is harmless, but together with not a causes a conflict.

Another important observation regarding the computation of stable models of nor-
mal logic programs is, that a set of default literals unambiguously corresponds with a
set of positive atoms. Given a set of default literals A of a program P accepted in some

Technical Report IfI-05-04

4 Peter Novák

unknown partial interpretation, we can directly extend this partial interpretation by em-
ploying the idea used in a Gelfond-Lifschitz transformation (i.e. compute the minimal
model of a reduct created using only default literals from A).

Using bits mentioned above, we can turn the idea of search for a stable model upside-
down by not looking for a consistent set of atoms of a given program, but simply looking
for a consistent set of default literals which are generating a searched stable model. To
find a consistent set of such default literals, we need a relation between such sets, which
will say us when the set of default literals induces consistent partial interpretation and
when it does not.

1.2 Contributions and Organization of the Paper
In this paper we introduce a relation of blocking between sets of default literals and
later we show how it can be exploited, in order to convert the problem of a search
for stable models of a given normal logic program to the problem of coloring the
graph constructed according to this relation. As an important byproduct, we intro-
duce an alternative definition of strong semantical equivalence between two normal
logic programs, which we believe is equivalent to the standard definition introduced
in [Vladimir Lifschitz,]. This particular issue will be investigated in the future. Fi-
nally we describe our prototype implementation of a system computing stable models
of grounded normal logic programs, which we developed as a proof of the concept for
the purposes of this paper.

2 Preliminaries
Before introducing our results, let us recall some basic definitions and notions.

Let A be a finite set (alphabet) of propositional symbols including ⊥ (atoms). Let
a be an atom. A literal (usually denoted as L) is either an atom (L = a), or an atom
preceded by a default negation symbol not (L = not a). From this point on, we will
usually denote atoms by indexed lower case letters a, b, c and general literals by indexed
upper case letter L. Literals of the form L = not a will be called default assumptions,
or simply defaults. Set of all default literals will be denoted as D. Set of all literals is
defined as Lit = A ∪D. Let A be a set of atoms, then not(A) = {not a|a ∈ A}.

Rule r is a formula of the form L ← L1, . . . , Ln, where n ≥ 0, L is an atom and
L1, . . . , Ln are literals. Literal L is called the head of the rule (denoted as head(r)),
while the set of literals {L1, . . . , Ln} is called the body of the rule r (denoted as
body(r)). body(r) can be split in two parts body(r) = body+(r) ∪ body−(r), where
body+(r) ⊆ A and body−(r) ⊆ D.

A normal logic program P (program) is a finite set of rules over an alphabet A.
From this point on, when the context will be clear, we will use A,Lit and D w.r.t. to an
alphabet of the given program P . The set of all default assumptions of a program P is
defined as D(P) =

⋃
r∈P body−(r).

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 5

We say that a set of literals A = A+ ∪ not(A−), where A+, A− ⊆ A is said to be
consistent iff A+ ∩ A− = ∅ and ⊥6∈ A. A partial interpretation1 of a normal logic
program P is a consistent set of literals over alphabet A w.r.t. P . A total interpretation
(interpretation) I = I+ ∪ not(I−) is a partial interpretation, where I+ ∪ I− = A. We
say that an interpretation I satisfies a literal L (I |= L) iff L ∈ I . The set of literals
is satisfied (I |= L1, . . . , Lk), iff I |= L1, . . . , I |= Lk. Finally the rule r = L ←
L1, . . . , Ln is satisfied w.r.t. to an interpretation I iff, whenever L1, . . . , Ln is satisfied
by I , then L is also satisfied by I . We say that the an interpretation M is a model of a
program P , iff ∀r ∈ P : M |= r.

Let the least model of a program be defined as usually (see [M. van Emden, 1976]).
The original definition of stable model semantics was introduced in [M. Gelfond, 1988]
as follows:

Definition 1 (Gelfond-Lifschitz operator) Let P be a program and I be a partial in-
terpretation. The GL-transformation of P w.r.t. I (called also reduct and denoted as
P
I) is obtained from P by performing the following operations:

• remove from P all rules containing a default literal not a, such that a ∈ I+;

• remove from all remaining rules all default literals.

Since the resulting program P
I is a definite program, it has a unique minimal model

least(P
I) ([M. van Emden, 1976]). Hence a stable model is defined by the following

definition.

Definition 2 (Stable model semantics) A total interpretation M is a stable model of a
program P , iff M = least(P

M).
Let M be a partial interpretation of a normal logic program P.

Corollary 1 M is a stable model of a program P if, and only if for each a ∈M+, there
exists a minimal set of rules Pa ⊆ P , such that a ∈ least(Pa

M) and for each a′ ∈ M−,
there’s no Pa′ ⊆ P , such that a′ ∈ least(Pa′

M).

PROOF. The corollary follows from the definition of a stable model of a normal logic
program.

=⇒: Let’s realize that, given a stable model M , not all the rules of program P
participate on the inference of each a ∈M+, thus there has to be a minimal set of rules
Pa ⊆ P , which is sufficient to consider (in a worst case let P = Pa) in order to infer a
w.r.t. a stable model M . For the second part of the implication assume that there exists
some Pa′ ⊆ P , such that for some a′ ∈M− holds that a′ ∈ least(Pa′

M). Then because
Pa′ ⊆ P , also a′ ∈ least(P

M), what is a conflict with the assumption, that a′ ∈M−.

1For the purposes of this paper, we will use a rather non-standard definition of interpretation, where default
literals appear explicitly.

Technical Report IfI-05-04

6 Peter Novák

⇐=: Let M = M+ ∪ not(M−) be a set of literals such, that for each a ∈ D(P)
holds, that if there exists Pa ⊆ P , such that a ∈ least(Pa

M), than a ∈ M+. Otherwise
a ∈M−. M is a total interpretation of P .

Now for each a ∈ M+, exists Pa ⊆ P , such that a ∈ least(Pa

M), therefore also
a ∈ least(P

M). And because for no a′ ∈ M−, there’s no Pa′ ⊆ P , such that a′ ∈
least(Pa′

M), we also have that a′ 6∈ least(P
M). Therefore M = least(P

M), thus M must
be a stable model of P .

3 Generating Sets
The corollary 2 from the Sect. 2 shows two important observations. The first is, that not
all the rules of the normal logic program P contribute to the inference of a particular
atom, thus for each positive literal in the final stable model, there is a subprogram of
the program P , which models this atom. The second is hidden in the construction
of the reduct of the given logic program, with respect to some partial interpretation.
Particularly the observation is, that given a subprogram Pa ⊆ P modeling an atom a
w.r.t. to some partial interpretation, the partial interpretation must contain the set of all
default literals from Pa, in order to introduce the atom a in a positive form using this
subprogram. This leads us to the idea of a generating set of default literals for a given
atom a.

Definition 3 (Generating set) Let P be a normal logic program and let a be an atom.
We say that Sa is a direct generating set of atom a, iff there exists Pa ⊆ P , such that
Sa = D(Pa), a ∈ least(Pa

D(Pa)) and ∀P ′
a ⊂ Pa : a 6∈ least(P ′

a

D(P ′
a)).

We say, that the set Sa′ is an indirect generating set of atom a, iff there exists a′ 6= a,
such that Sa′ is a direct generating set of a′ and there exists a direct generating set Sa

of atom a, such that Sa ⊂ Sa′ (i.e. a ∈ least(Pa′
Sa′

)).
The set of all generating sets of an atom a is defined as follows:

GSetsP (a) = {S|S is a direct or indirect generating set of a w.r.t. P}

Simply said, a direct generating set of an atom a is a minimal set of atoms, which must
be accepted in negative form , in order to infer this atom from the program P . Indirect
generating set of an atom a is a direct generating set of some different atom, which, as a
byproduct, forces inference of atom a. Direct and indirect generating sets will generally
be referred to as generating sets.

As it is obvious, there can be more generating sets for one particular atom a. This is
because there may be several different rules which trigger inference of a (i.e. head(r) =
a).

Note also the special meaning of the sets from GSetsP (⊥). Such sets, can be called
conflict triggers, because accepting such a set in a negative form in some partial inter-
pretation, causes inconsistency (or conflict) ⊥.

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 7

In the following we show how generating sets of a given program P can be used to
construct another normal logic program P ◦, which, indeed syntactically different, has
the same properties as P w.r.t. stable semantics as the original program.

Definition 4 (Canonical logic program) Let P be a normal logic program over an al-
phabetA. We construct canonical logic program P ◦ of P by the following construction:

P ◦ = {r|∃a ∈ A : ∃S ⊆ A : head(r) = a ∧ body(r) = not(S)⇔ S ∈ GSetsP (a)}

Corollary 2 Let P be a normal logic program and P ◦ be its canonical logic program.
Finally let a be an atom of the program P . Then GSetsP (a) = GSetsP◦

(a).

Each generating set of an atom a is a direct generating set of some (possibly different)
atom a′. Each direct generating set Sa ∈ GSetsP◦

(a) is defined by exactly one rule
r ∈ P ◦, so P ◦

a = {r}, is minimal w.r.t. set inclusion such, that a ∈ least(P◦
a

Sa
). Finally,

from the construction of P ◦ we have, that there exists Pa ⊆ P , such that a ∈ least(Pa

Sa
).

This holds in both directions of equivalence, therefore Sa is a generating set of both P
and P ◦.

Theorem 1 Let P be a normal logic program and P ◦ be its canonical logic program.
The following holds

S is a stable model of P ⇐⇒ S is a stable model of P ◦

PROOF. At first realize that in order to produce the reduct P
M of some program P , the

GL-transformation can only use defaults fromD(P) as a reason for removing some rule
r ∈ P from the reduct. And if the program P is minimal set of rules, such that atom
a is still present in the minimal model of its reduct, no rule from P could be removed
from it, in order to obtain the reduct P

M , what means that D(P) ⊆M−. Therefore both
P
M = P

D(P) and least(P
M) = least(P

D(P)) hold for such program P .
Now the proof of the theorem itself follows in subsequently equivalent steps, which

prove the equivalence in both directions:
M is a stable model of the program P .

1. According to corollary 2, for each a ∈ M+, there exists a minimal set of rules
Pa ⊆ P , such that a ∈ least(Pa

M) and for each a′ ∈ M− holds that ∀Pa′ ⊆ P :
a′ 6∈ least(Pa′

M).

2. From the remark at the beginning of this proof and the definition 3 we have, that
Pa is precisely the set of rules defining some direct generating set Sa of an atom
a (i.e. D(Pa) = Sa ∈ GSetsP (a)). Therefore, for each a ∈ M+, there is a
generating set Sa ∈ GSetsP (a) induced by the set Pa (i.e. Sa = D(Pa)), such
that Sa ⊆ M− and because for each a′ ∈ M−there’s no Pa′ ⊆ P , such that
a′ ∈ least(Pa′

M), there also cannot be such Sa′ = D(Pa′) ∈ GSetsP (a) for
which a′ ∈ least(Pa′

Sa′
) for any Pa′ .

Technical Report IfI-05-04

8 Peter Novák

3. From the construction of the canonical program P ◦ we have, that P ◦ contains
rules with bodies corresponding to all generating sets of P . Thus for each a ∈
M+, there exists Sa ∈ GSetsP (a), such that Sa ⊆M−. Thus there also exists a
set of rules P ◦

a = {r◦} ⊆ P ◦, such that head(r◦) = a and body(r◦) = not(Sa).
Finally because Sa = D(Pa) = D(P ◦

a) ⊆ M−, for each a ∈ M+ also a ∈
least(P◦

a

Sa
). And from what was mentioned above and the corollary 2, we have

that for each a′ ∈ M−there cannot be P ◦
a′ ∈ P ◦ and Sa′ = D(Pa′) = D(P ◦

a′),
such that a′ ∈ least(P◦

a′
Sa′

).

4. Now if for some a ∈ M+ holds that a ∈ least(P◦
a

Sa
) and Sa ⊆ M−, then

also a ∈ least(P◦
a

M) and if for no a′ ∈ M−, there exists P ◦
a′ ⊆ P ◦, such that

a′ ∈ least(P◦
a′

Sa′
), where Sa′ = D(P ◦

a′) ⊆M−, then also a′ 6∈ least(P◦
a′

M).

5. Finally from the corollary 2, we conclude that, M is a stable model of P ◦.

Theorem 1, is the most important result of this section, because it shows us, that for the
purpose of computing stable models of a given program P , we can use syntactically
much simpler canonical program P ◦. Note, that the canonical program P ◦ does not
contain chains of rules like {b ← not c. a ← b.}. Thus in order to introduce the
positive literal a into a partial interpretation during the computation of stable models of
program P ◦, only one rule is needed (a ← not c.). By contrast, such inference would
need two steps during the computation of stable models of P . At first we would have to
infer the atom b and then, finally body of the rule a ← b will be satisfied, what would
lead directly to inference of a.

The remark above leads to a corollary:

Corollary 3 M is a stable model of canonical program P ◦ of some normal logic pro-
gram P if, and only if for each a ∈ M+, there exists a rule r ∈ P ◦, such that
head(r) = a ∧ M |= body(r) and for no a′ ∈ M−, there’s a rule r′ ∈ P ◦, in
which head(r′) = a′ and M |= body(r′).

Example 2 Let program P be:
e← not c. a← not c.
d← not b. b← not d.
c← not a, d. f ← .

Generating sets for each atom occurring in the head of some clause of program P
are as follows:

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 9

GSetsP (a) = {{c}}
GSetsP (b) = {{d}}
GSetsP (c) = {{a, b}}
GSetsP (d) = {{b}, {a, b}}
GSetsP (e) = {c}
GSetsP (f) = {∅}

Generally, the semantical equivalence between two normal logic programs w.r.t. sta-
ble model semantics, is a relation based on the equality of the set of stable models of
these programs. In recent years, when more attention was dedicated to investigation
of modifications of knowledge bases represented by logic programs, problems with the
definition of semantical equivalence arose. It was observed (e.g. in [J. J. Alferes, 2000],
or [Leite, 2003]), that although two logic programs share the same set of stable models,
their behavior with respect to modification of the knowledge base can be completely dif-
ferent, even sometimes leading to counter-intuitive results. We believe, that the stronger
notion of semantical equivalence is needed and we propose one based on the equiva-
lence of generating sets. The notion of strong semantic equivalence was first introduced
in [Vladimir Lifschitz,]. In this paper we introduce an alternative definition of this no-
tion without a comparison of them. We believe that the two definitions are related and
probably even equivalent. These issues will be investigated in the future.

Definition 5 (Strong semantic equivalence) Let P1 and P2 be normal logic programs
over an alphabet A. We say that P1 is strongly semantically equivalent to P2 (w.r.t.
stable semantics) iff for each a ∈ A holds GSetsP1(a) = GSetsP2(a).

Corollary 4 Normal logic programs P1 and P2 are strongly semantically equivalent iff
P ◦

1 = P ◦
2 .

4 Blocking Graph
In the motivation example 1 in Sect. 1, we already touched the idea, that there exists
a relation between generating sets which could help to boost the computation of stable
models of a given normal logic program P .

Let us consider a naive algorithm for computing stable model, which is used as a
blueprint in the core of systems like DLV and smodels. In each branching point, such
algorithms are considering only one default literal at a time, although there may be a
dependency between different literals.

The example 1 shows us, that it is worthless to consider a choice of literal not d alone
at the beginning of the computation, because this literal itself is useless. Only together
with the literal not a, the computation can move further. This is because there’s only
one generating set ({a, d} ∈ GSetsP (e)) in which the atom d occurs in the program
from the example 1. Therefore we can either consider accepting the whole set of de-
fault assumptions {not a, not d} into a given partial interpretation, or we have to find a
reason for not including this set into that partial interpretation.

Technical Report IfI-05-04

10 Peter Novák

Including the set {not a, not d} into a partial interpretation, directly leads to an ob-
servation, that the set {not h, not f} cannot be subset of any stable model which in-
cludes the resulting partial interpretation. This is because {a, d} ∈ GSetsP (f).

Contrary, if a stable model does not contain the set {not a, not d}, it must contain
the set {not h, not f}, because the only way of introducing the positive literal a into
any stable model, is to accept the set of default assumptions {not h, not f}.

As it is obvious, there’s a direct correspondence between the sets of default literals
discussed above and generating sets. What was informally discussed above are conse-
quences of the following relation between sets of default literals:

Definition 6 (Blocking) Let P be a normal logic program over an alphabet A. Let
also a, a′ ∈ A be atoms.

We say that the generating set S1 ∈ GSetsP (a) blocks the generating set S2 ∈
GSetsP (a′), iff a ∈ S2.

Simply, when the set not(S1) is included in some stable model of the program P , the
set not(S2) cannot be a subset of this same stable model, because inconsistency would
arise from the presence of both a and not a in it. The relation of blocking creates a
network of dependencies between generating sets which can be exploited in the process
of computation of stable models of a program P . This network is embodied in the
construction of the blocking graph.

Definition 7 (Blocking graph) Let P be a normal logic program over an alphabet A.
The oriented graph GP = (V, E) is called the blocking graph of the program P iff

• set of nodes of GP is V = {S|∃a ∈ A : S ∈ GSetsP (a)};

• set of edges of GP is E = {(S1, S2)|S1 blocks S2}.

In other words, there’s an edge e = (S1, S2) between two generating sets S1 and S2 in
the graph GP , whenever the acceptation of a set of default assumptions S1 in a partial
interpretation leads to inference of an atom a, which is presented in the set S2. Thus
sets S1 and S2 cannot be accepted at the same time in any stable model of the program
P . We also say, that accepting the set S1 blocks accepting the set S2 in any stable model
of the program P .

Now we are prepared to define the algorithm for computing stable models of the
program P using the graph GP .

Theorem 2 (Coloring the blocking graph) Let P be a normal logic program and GP =
(V, E) be its blocking graph. Let the color be the coloring of the graph GP by two
colors, with the following properties:

Then M = M+ ∪ (D \ not(M+)) is a stable model of P if, and only if exists a
coloring color of the blocking graph GP , such that

1. if V ∈ V and color(V) = blue, then ∀W ∈ V : ((V,W) ∈ E ∨ (W,V) ∈ E)⇒
color(W) = red

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 11

2. if V ∈ V and color(V) = red, then ∃W ∈ V : (W,V) ∈ E ∧ color(W) = blue

3. for each V ∈ V , if V ∈ GSetsP (⊥), then color(V) = red

and M+ = {a|∃S ∈ GSetsP (a) ∧ color(S) = blue}.

At first, note that if the union of all blue nodes stands for a partial interpretation, then
blue nodes are those which are included in this partial interpretation and red nodes are
those, which are not subsets of the particular partial interpretation. Hence the condition
1 says, that if a generating set S is a part of a partial interpretation I (in the form
of not(S)), then none of the generating sets which are either blocking the set S, or are
blocked by this set, is also a part of the partial interpretation I . The condition 2 similarly
says, that there always must be a reason for exclusion of some generating set S from
the partial interpretation (i.e. there must be some generating set S1, already included in
the partial interpretation, which is blocking the set S). Finally the condition 3 ensures,
that the conflict⊥ cannot be a part of a partial interpretation (i.e. body of no rule r with
head(r) =⊥ is satisfied).

Now the proof of Thm. 2 follows:

PROOF. From Thm. 1, we have that M being a stable model of P is equivalent to being
a stable model of P ◦, so we can operate here with P ◦ instead of P . Also note, that for
each rule r of P ◦, there’s a node V = Shead(r) in the graph GP = (V, E), such that
Shead(r) |= body(r) ∈ GSetsP (head(r)). We will also denote M− = D \ not(M+).

• ⇐=: Let M be a set induced by some coloring satisfying conditions 1, 2 and 3
of Thm. 2.
M is obviously a consistent set, because M cannot contain ⊥ (due to condition
3 all generating sets of ⊥ are red) and M = M+ ∪ (D \ not(M+)), thus M is a
partial interpretation of P . Each blue node, forces body of some rule r of P ◦, to
be satisfied, hence from the definition of M we have that ∀a ∈ M+ : ∃r ∈ P ◦ :
head(r) = a ∧M |= body(r).
To complete this part of the proof using the corollary 3, we have to show, that the
body of no other rule r′ ∈ P ◦, such that head(r′) ∈ M−, is satisfied w.r.t. M .
Let the body of a rule r′ ∈ P ◦, such that a′ = head(r′) ∈ M− be satisfied in
M . Because a′ 6∈ M+, all nodes Sa′ ∈ V , such that Sa′ ∈ GSetsP◦

(a′) must
be colored to red color. According to the condition 2, for each such node Sa′ ,
there has to be a blue node Sb ⊆ M−, blocking Sa′ , what means that, there is
an atom b ∈ Sa′ for which Sb ∈ GSetsP◦

(b). The inclusion Sb ⊆ M− and
the fact that Sb is a generating set of b, forces b ∈ M+, but this, together with
b ∈ Sa′ ⊆ M− causes a contradiction with the consistency of M (a blue node
contains an atom, which is satisfied in M+). Therefore the body of no rule r′,
such that head(r′) ∈M− can be satisfied in M .
Hence from the corollary 3, M is a stable model of P ◦.

Technical Report IfI-05-04

12 Peter Novák

• =⇒: Let M be a stable model of the program P ◦. Let color be coloring of the
blocking graph GP◦

= (V, E), such that each node V ∈ V , such that V ⊆ M−

is colored to blue color. Let all other nodes, to be colored to red color. We will
show, that all nodes of the graph GP satisfy the coloring conditions 1, 2 and 3.

1. Because M is a stable model of P ◦, it does not contain ⊥. Thus for all
sets S⊥, such that S⊥ ∈ GSetsP◦

(⊥) holds, that S⊥ 6⊆ M−. From the
construction of the coloring color we have that al such S⊥ must therefore
be red, by what the condition 3 is satisfied.

2. To satisfy the condition 1 let Sblue ∈ V be a blue node of the graph GP .
Let V in = {U ∈ V|(U, Sblue) ∈ E} be a set of nodes with edges leading
to Sblue. From the definition of blocking 6 and the definition of blocking
graph 7 we have that for each U ∈ V in, there exists a ∈ Sblue, such that
U ∈ GSetsP◦

(a). Because a ∈ Sblue ⊆ M−, for all such sets U holds,
that U 6⊆M− (otherwise a ∈M+) , thus color(U) must be red.
Similarly let V out = {U ∈ V|(Sblue, U) ∈ E} be set of nodes to which
there are edges leading from Sblue. Again from definitions 6 and 7 each U ∈
V out must contain some atom a ∈ M+, such that Sblue ∈ GSetsP◦

(a).
Therefore no such U is a subset of M−, so it must be colored to red color.

3. Let Sred ∈ V be a red node of the graph GP . From the construction of
the coloring color we have that Sred 6⊆ M−, thus there must be an atom
a ∈ Sred, such that a ∈ M+. But that means that there exists a generating
set Sa ∈ GSetsP◦

(a), such that Sa ⊆ M−. Therefore the node Sa ∈ V
must be colored to blue color by what the condition 2 is satisfied.

The theorem 2, straightforwardly leads to an algorithm for computation of the stable
models of the program P . The graph contains only generating sets, which are min-
imal sets which lead to inference of new positive information in a given point of a
computation. Algorithm can also benefit from the fact, that accepting a set of default
assumptions into a partial interpretation automatically rules out many other generating
sets from the possible considering, whether they can be part of defaults of any stable
model, or not.

We conclude this section with two examples illustrating the relation between the
colorings of the blocking graph and the set of stable models of some normal logic
program.

Example 3 Let P be the program from the example 2 from the Sect. 3.
The blocking graph of this program is depicted in Fig. 1.
The program P has three stable models characterized by corresponding colorings of

the blocking graph2:
2We give only set of blue nodes. All non-blue nodes are indeed red.

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 13

Figure 1: Blocking graph for the example 3.

coloring stable model
blue = {{c}, {d}, ∅} M1 = {a, b, e, f}
blue = {{a, b}, {b}, ∅} M2 = {d, c, f}
blue = {{c}, {b}, ∅} M3 = {a, d, e, f}

There’s one valuable observation following from the example 3. Note that the node
{∅} was always colored to blue. This was because there was no generating set blocking
the set ∅, thus it could always be accepted in any stable model. This observation can
be generalized in order to further optimize the search for valid colorings of blocking
graph.

Claim 1 Let GP be a blocking graph of some normal logic program P . Nodes without
any incoming edges (i.e. the set of nodes Vblue = {V ∈ V| 6 ∃W ∈ V : (W,V) ∈ E})
must be colored to blue color in all valid colorings satisfying conditions 1 and 2 of the
theorem 2.

Example 4 The following example was inspired by examples used in [J. J. Alferes, 2000].
Let a program P be:
sleep← nightT ime, tired. tvOn← nightT ime, not powerFailure, not tired.
sleep← not tvOn. tired← nightT ime, not tvOn.
watchTv ← tvOn. tired← not sleep.
nightT ime← .

Generating sets of this program are as follows:
GSetsP (sleep) = {{tvOn}, {sleep}}
GSetsP (watchTv) = {{powerFailure, tired}}
GSetsP (tvOn) = {{powerFailure, tired}}
GSetsP (tired) = {{tvOn}, {sleep}}
GSetsP (nightT ime) = {∅}

There’s just one valid coloring of the blocking graph of the program P (depicted in
Fig. 2), therefore the program P has just one stable model M = {nightT ime, tired, sleep}
generated by the generating set {tvOn}. In this example we can see that the node
{sleep} is blocking itself, thus it is forced to be of red color and because there’s no
other incoming edge to it than the one from the node {tvOn}, this node is forced to be

Technical Report IfI-05-04

14 Peter Novák

Figure 2: Blocking graph for the example 4.

blue, thus forcing the node {powerFailure, tired} to be also red. Finally the node
{∅} is forced to be blue because it has no incoming edges.

Also from this example, there follows a general observation embodied in the following
claim:

Claim 2 Let GP be a blocking graph of some normal logic program P . All nodes with
an edge leading to themselves (i.e. Vred = {V ∈ V|∃(V, V) ∈ E}) are colored to red
color in all valid colorings according to conditions of the theorem 2.

5 Prototype
Based on the result stated and proved in the theorem 2, we developed a prototype of
an algorithm for computation of all stable models of normal logic programs. The aim
of this section is to briefly describe it and sketch future directions in the development
of it. In this paper, we want to show and proof new base of possible algorithm for
stable model semantics, what we already did in the previous sections. The algorithm
proposed in this section served us only as a proof of concept and prototype, therefore
we do not want to comprehensively compare the proposed algorithm with today’s most
recognized systems like smodels, or DLV.

Our prototype algorithm consists of two main steps:

1. Preprocessing step in which all generating sets of atoms of a given normal logic
program P are computed and blocking graph is constructed.

2. Search for all colorings of the blocking graph of a normal logic program P satis-
fying conditions of the theorem 2.

We do not show here all the details of the preprocessing step. In our prototype, we
used an algorithm which, given an atom a and a rule r ∈ P recursively computed all
generating sets for all atoms from body+(r), unified them with atoms from body−(r)

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 15

and thus created some generating set for an atom a. If a rule r was a fact (i.e. body(r) =
∅), the generating set was ∅. This process was performed as a backtrack on rules of a
given program P . Surprisingly, the algorithm was not as slow as we expected. The
details are given later in description of tests.

In this section we dedicate more attention to the second step of the algorithm which,
given a blocking graph GP of a normal logic program P , computes all the colorings
satisfying conditions 1, 2 and 3 of the theorem 2. However, we want to stress, that this
algorithm was just a prototype, and any other algorithm for coloring the blocking graph
could be employed. No optimizations were employed.

The main algorithm, implemented as a procedure findColoring, performs a backtrack
search for all valid colorings of a blocking graph GP .

procedure findColoring()
{Performs a main backtrack search for all colorings satisfying conditions of theorem
2.}
INVARIANT CONDITION: {
- for each node V ∈ V , such that color(V) = blue holds, that all nodes with incom-
ing, or out-coming edges to/from V are either red, or uncolored.
- for each node V ∈ V , such that color(V) = red holds, that there is at least one
node with an edge incoming to V , which is either blue, or uncolored.}
if ∀W ∈ V : color(W) 6= uncolored then

StableModel = {a|∃GSetblue ∈ GSetsP (a) ∧ color(GSetblue) = blue}
print StableModel
return

end if
choose node V ∈ V such, that color(V) = uncolored;
{Try to color V to blue color:}
color(V) = blue
if checkBlueNodeAndColorNeighbors(V,ColoredNodes) then

findColoring()
end if
{Now tidy up all nodes colored during the attempt to color V to blue.}
for all W ∈ ColoredNodes do

color(W) = uncolored
end for
{Try to color V to red color:}
color(V) = red
if checkRedNodeColoring(V) then

findColoring()
end if
color(V) = uncolored
end procedure.

At the beginning of the procedure findColoring, the invariant condition is listed.

Technical Report IfI-05-04

16 Peter Novák

Without a formal proof we claim, that if this invariant condition is satisfied always
when the algorithm reaches its position, any coloring, which includes all the nodes of
the blocking graph, is valid according to conditions in theorem 2.

The algorithm itself is simple. In any valid coloring, each node must be colored
either to blue, or red color. Therefore the algorithm arbitrarily chooses uncolored node
from GP , tries at first to color it to blue and subsequently to red color. If the invariant
condition is still satisfied after this coloring step, the algorithm recursively calls itself
until all nodes of the blocking graph are colored, or it is not possible to color some node
either to blue, or red, what causes a backtrack.

When we are coloring a chosen node V ∈ V to red color, we only have to check,
whether for all red nodes of the blocking graph GP it still has at least one incoming
edge from some either blue, or uncolored node. Because relevant nodes are only those,
to which there is an edge from the currently colored node, we only have to check these.
If this condition is not satisfied in some red node Vred ∈ V , the condition 2 from the
theorem 2 won’t be satisfied in any coloring. The code chunk implementing the try to
color a given node to red color is the function checkRedNodeColoring.

function checkRedNodeColoring(V)
{Returns true if it is possible to color the node V without a violation of the algorithm
invariant condition.}
InNeighbors = {W ∈ V : (W,V) ∈ E}
if for all W ∈ InNeighbors holds, that color(W) = red then

return false
end if
return true
end function.

Checking whether a chosen node can be colored to blue color and the invariant con-
dition still satisfied, is a bit more complicated issue because coloring a node V ∈ V to
blue color , enforces coloring all nodes with an edge connecting them with V to red
color. For all these enforced red nodes, the function checkRedNodeColoring has to be
performed. Because these red nodes can be connected with each other, the safe strategy
is to first color all of them to red and then check whether their coloring is still correct
w.r.t. invariant condition of the algorithm. During the backtrack from either a success-
ful, or unsuccessful coloring to blue, the algorithm has to uncolor all the red colored
nodes enforced to red during the attempt to color some node to blue. Algorithm for
coloring a node to blue and enforcing its neighbors to red is implemented as a function
checkBlueNodeAndColorNeighbors.

function checkBlueNodeAndColorNeighbors(V,ColoredNodes)
{Returns true if it is possible to color the node V to blue without a violation of
the algorithm invariant condition. In ColoredNodes returns all nodes which were
forced to be red.}
Neighbors = {W ∈ V|(V,W) ∈ E ∨ (W,V) ∈ E}

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 17

ColoredNodes = {W ∈ Neighbors|color(W) = uncolored}
for all W ∈ ColoredNodes do

color(W) = red
end for
goodColoringF lag = true
for all W ∈ Neighbors do

goodColoringF lag = checkRedNodeColoring(W) && goodColoringF lag
end for
return goodColoringF lag
end function.
As we already mentioned, our prototype algorithm works on already grounded nor-

mal logic programs. For grounding, we used the lparse system developed by Syrjänen
[Syrjänen, 1998], which was also employed by authors of smodels system. The proto-
type of the proposed algorithm was implemented in XSB Prolog 2.6 system in Linux
operating system. Results of experiments with simple test cases are very promising.
The grounded program for the block world problem had 132 atoms and 629 rules. The
smodels system computed all the 6 solutions in about 0.6 sec., while our prototype al-
gorithm needed 95 seconds in average to print all stable models. The preprocessing step
took in average 5.5 seconds. To complete the picture, the blocking graph consisted of
252 nodes and 2120 edges.

6 Related work and discussion results
At the end of this paper we would like discuss results of our work in the broader context
of works we later found to be simillar, or even almost identical to our approach. On this
place we would like to add, that the work described above was done independently
without any information on simillar results and only later we recognized that simillar
approaches were proposed and described much earlier.

The most relevant and related work to our approach was done by Dimopoulos and
Torres published in mid-nineties. In [Dimopoulos and Torres, 1996] authors show the
stable model semantics can be expressed in terms on notions emerging from graph the-
ory, namely that stable models, partial stable models, and the well founded semantics
correspond respectivelly to kernels, semikernels and the initial acyclic part of an associ-
ated graph. Particularly for stable models, they show that given negative logic program
(logic program containing only default literals in bodies of rules) set of stable models
corresponds to kernels of the rule dependency graph of this program. In fact, notion
of blocking graph corresponds to the notion of dependency graph of a given negative
logic program3 conditions on coloring of a blocking graph in our work (see Theorem
2) obviously correspond with conditions for kernel of a dependency graph (where blue
nodes form the kernel of dependency graph).

3Note that if a logic program P ◦ is canonical logic program then it is also a negative logic program.

Technical Report IfI-05-04

18 Peter Novák

Having said this we can say that from this point of view, our work describes same
results as [Dimopoulos and Torres, 1996], although our approach was more on engi-
neering side (we described concrete algorithms, while the work by Dimopoulos and
Torres is more on theoretical side). Our approach was also driven more by implemen-
tation of ASP solver, than by previous theoretical study of a problem.

Other relevant study was done by Torsten Schaub et. al. (e.g. [Konczak et al., 2003])
on exploring possibilities of using graph coloring of dependency graphs of logic pro-
grams for computing stable models. However this approach is simillar to our work only
in a using a proprietary graph coloring as an algorithm for computation of stable mod-
els. For example, authors of this approach propose coloring a kind of dependency graph
with two types of edges while algorithms proposed in this work are working above sim-
ple dependency (blocking) graph constructed from logic program transformed into a
canonical program.

7 Conclusion
In this paper we introduced a simple theory, on which the simple algorithm for com-
putation of stable model semantics of normal logic programs was built. There are two
main results of this paper. The first is an introduction of the notion of generating sets
together with a notion of canonical logic program. We believe that such canonical logic
programs could be used as a form into which normal logic programs could be compiled
and stored, because their simple form allows easy manipulations, while preserving all
semantical properties of the original normal logic program.

The second major result of this paper is a theorem 2, according to which, the problem
of search for stable models of normal logic programs can be converted to a problem of
search for all valid colorings of a graph constructed using already mentioned generating
sets. To prove this concept, simple algorithm prototype was implemented.

INSTITUT FÜR INFORMATIK

STABLE MODEL SEMANTICS ALGORITHM 19

References
[Baral, 2003] Baral, C. (2003). Knowledge Representation, Reasoning and Declarative

Problem Solving. Cambridge University Press.

[de Lima Nogueira, 2003] de Lima Nogueira, M. (2003). Building Knowledge Systems
in A-Prolog. PhD thesis, Computer Science Department, The University of Texas,
El Paso.

[Dimopoulos and Torres, 1996] Dimopoulos, Y. and Torres, A. (1996). Graph theoret-
ical structures in logic programs and default theories. Theor. Comput. Sci., 170(1-
2):209–244.

[Eiter, 2000] Eiter, Faber, G. e. a. (2000). The dlv system. In Minker, J., editor, Pre-
prints of Workshop on Logic-Based AI.

[I. Niemelä, 1997] I. Niemelä, P. S. (1997). Smodels - an implementation of the stable
model and well-founded semantics for normal logic programs. In J. Dix, U. F. and
Nerode, A., editors, Proc. 4th international conference on Logic programming and
non-monotonic reasoning, pages 420–429. Springer.

[J. A. Leite and Pereira, 2000] J. A. Leite, J. J. A. and Pereira, L. M. (2000). Multi-
dimensional dynamic logic programming. In F. Sadri, K. S., editor, Proceedings
of the CL-2000 Workshop on Computational Logic in Multi-Agent Systems, pages
17–26, London, England. CLIMA’00.

[J. A. Leite, 2001] J. A. Leite, J. J. Alferes, L. M. P. (2001). Multi-dimensional logic
programming. Technical report, Dept. de Informatica, Faculdade de Ciencias e Tec-
nologia, Universidade Nova de Lisboa.

[J. Dix, 2002] J. Dix, J. A. Leite, K. S., editor (2002). Proceedings of the 3rd In-
ternational Workshop on Computational Logic in Multi-Agent Systems, number 93
in Datalogiske Skrifter (Writings on Computer Science), Roskilde University, Den-
mark. CLIMA’02.

[J. J. Alferes, 2001] J. J. Alferes, P. Dell’Acqua, E. J. A. L. L. M. P. F. R. (2001). A
logic based approach to multi-agent systems. The Association for Logic Program-
ming Newsletter. Invited paper.

[J. J. Alferes, 2000] J. J. Alferes, J. A. Leite, L. M. P. H. P. T. C. P. (2000). Dynamic
updates of non-monotonic knowledge bases. The Journal of Logic Programming.

[Konczak et al., 2003] Konczak, K., Linke, T., and Schaub, T. (2003). Graphs and
colorings for answer set programming: Abridged report. In Vos, M. D. and Provetti,
A., editors, Proceedings of the Second International Workshop on Answer Set
Programming (ASP’03), volume 78, pages 137–150. CEUR Workshop Proceedings.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-78/.

Technical Report IfI-05-04

20 Peter Novák

[Leite, 2003] Leite, J. A. (2003). Evolving Knowledge Bases, volume 81 of Frontiers
of Artificial Intelligence and Applications. IOS Press.

[M. Gelfond, 1988] M. Gelfond, V. L. (1988). The stable model semantics for logic
programming. pages 1070–1080. 5th International Conference on Logic Program-
ming, MIT Press.

[M. van Emden, 1976] M. van Emden, R. K. (1976). The semantics of predicate logic
as a programming language. Journal of ACM, 4(23):733–742.

[P. Cholewinski, 1996] P. Cholewinski, V. W. Marek, M. T. (1996). Default reasoning
system DeReS. In Proceedings of KR-96. Morgan Kaufmann.

[Simons, 2000] Simons, P. (2000). Extending and Implementing the Stable Model Se-
mantics. PhD thesis, Helsinki University of Technology, Helsinki, Finland.

[Syrjänen, 1998] Syrjänen, T. (1998). Implementation of local grounding for logic
programs with stable model semantics. Technical Report B18, Digital Systems Lab-
oratory, Helsinki University of Technology.

[Vladimir Lifschitz,] Vladimir Lifschitz, David Pearce, A. V. Strongly equivalent
logic programs.

INSTITUT FÜR INFORMATIK

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Contact: wjamroga@in.tu-clausthal.de

URL: http://www.in.tu-clausthal.de/∼wjamroga/techreports/

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. habil. Torsten Grust (Databases)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Kai Hormann (Computer Graphics)
Dr. Michaela Huhn (Economical Computer Science)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Agent Systems)
Prof. Dr.-Ing. Dr. rer. nat. habil. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Virtual Reality)

