
Programming framework for cognitive
agents

(motivation & overview)

Peter Novák

Computational Intelligence Group

IfI @ TUC

February 22, 2007

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 1/16

Outline

1 Motivation
Scenarios
Problem

2 State of the art
3 Jazyk project

Modular BDI architecture
Jazyk: The language
Higher level programming constructs
Discussion

4 Conclusion

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 2/16

Motivation
Scenarios

Motivation scenarios (Robot contests)

RoboCup Rescue League
team of agents navigating in a fairly complex map

several types of agents

limited communication resources

RoboCup Four-Legged League
2 teams of 4 robots playing soccer

AAAI Robot competition: Integration challenge
Integrate existing components to produce a working robot that is:

robust, fault-tolerant, flexible, easily adaptable to new tasks

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 3/16

Motivation
Scenarios

Motivation scenarios (Robot contests)

RoboCup Rescue League
team of agents navigating in a fairly complex map

several types of agents

limited communication resources

RoboCup Four-Legged League
2 teams of 4 robots playing soccer

AAAI Robot competition: Integration challenge
Integrate existing components to produce a working robot that is:

robust, fault-tolerant, flexible, easily adaptable to new tasks

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 3/16

Motivation
Scenarios

Motivation scenarios (Robot contests)

RoboCup Rescue League
team of agents navigating in a fairly complex map

several types of agents

limited communication resources

RoboCup Four-Legged League
2 teams of 4 robots playing soccer

AAAI Robot competition: Integration challenge
Integrate existing components to produce a working robot that is:

robust, fault-tolerant, flexible, easily adaptable to new tasks

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 3/16

Motivation
Scenarios

Knowledge manipulating autonomous agents

Agent (working definition)
Software entitity embodied in an environment, which acts
autonomously and proactively in order to reach its goals.

Agent with mental states
builds amodel of its environment

explicitely usesmental attitudes keeps track of goals, its
decisions and contexts it is currently in

Hybrid cognitive robotic architectures: e.g. BDI.

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 4/16

Motivation
Scenarios

Knowledge manipulating autonomous agents

Agent (working definition)
Software entitity embodied in an environment, which acts
autonomously and proactively in order to reach its goals.

Agent with mental states
builds amodel of its environment

explicitely usesmental attitudes keeps track of goals, its
decisions and contexts it is currently in

Hybrid cognitive robotic architectures: e.g. BDI.

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 4/16

Motivation
Problem

Challenges

1 reactiveness vs. mental states (deliberation)
2 knowledge representation modularity

Problem
Develop a BDI based programming system for development of
agents with mental states:

architecture

programming language

methodology

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 5/16

State of the art

State of the art
BDI based programming systems

Theoretically driven (AgentSpeak(L), 3APL)

declarative programming language
built from scratch new syntax

no direct integration with 3rd
party/legacy systems

clear theoretical properties easier
verification(?)

declarative KR techniques (currently
rather weak reasoning capabilities)

Engineering approaches (JACK, Jadex)

layer of specialized constructs
over Java easy code re-use,
vast number of 3rd party libraries

easy integration with external
systems/environment

semantics of the underlying
programming language

knowledge representation in
terms of an imperative/object
language

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 6/16

Jazyk project
Modular BDI architecture

Modular BDI architecture

Knowledge Representation:
encapsulate BDI modules allowing only query/update
interface
KR techniques and programming languages
programmer’s decision
treat agent’s capabilities as just another BDI component

Agent System Dynamics:
interaction between BDI modules interaction rules
application of a interaction rule atomic system transition

Interpreter:
select and execute arbitrary applicable interaction rule

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 7/16

Jazyk project
Modular BDI architecture

Modular BDI architecture

Knowledge Representation:
encapsulate BDI modules allowing only query/update
interface
KR techniques and programming languages
programmer’s decision
treat agent’s capabilities as just another BDI component

Agent System Dynamics:
interaction between BDI modules interaction rules
application of a interaction rule atomic system transition

Interpreter:
select and execute arbitrary applicable interaction rule

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 7/16

Jazyk project
Modular BDI architecture

Modular BDI architecture

Knowledge Representation:
encapsulate BDI modules allowing only query/update
interface
KR techniques and programming languages
programmer’s decision
treat agent’s capabilities as just another BDI component

Agent System Dynamics:
interaction between BDI modules interaction rules
application of a interaction rule atomic system transition

Interpreter:
select and execute arbitrary applicable interaction rule

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 7/16

Jazyk project
Modular BDI architecture

Architecture

BDI agent system

beliefs desires intentions

capabilities

Environm
ent

interpreter

interaction rules

query

update

events

actions
QB UD QI UC

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 8/16

Jazyk project
Modular BDI architecture

Example: Espresso machine
Beliefs (Prolog)

ready :− cup_present ,
cup_empty ,
not e r ro r .

Intentions (stack - Lisp)

(de f ine push . . .)
(de f ine pop . . .)
(de f ine top? . . .)

Desires (set of Prolog atoms)

make_espresso .

Capabilities (C)

void mi l l _ s t a r t () ;
void mi l l_s top () ;
int stand_empty () ;
int cup_empty () ;

QC(!stand_empty()&& cup_empty()) −→ UB(assert(cup_present))

QB(ready) ∧QD(make_espresso) −→ UI((push (grind boil pour clean)))

QI((top? grind)) −→ UC(mill_start()) ◦ UI((pop))
Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 9/16

Jazyk project
Modular BDI architecture

Example: Espresso machine
Beliefs (Prolog)

ready :− cup_present ,
cup_empty ,
not e r ro r .

Intentions (stack - Lisp)

(de f ine push . . .)
(de f ine pop . . .)
(de f ine top? . . .)

Desires (set of Prolog atoms)

make_espresso .

Capabilities (C)

void mi l l _ s t a r t () ;
void mi l l_s top () ;
int stand_empty () ;
int cup_empty () ;

QC(!stand_empty()&& cup_empty()) −→ UB(assert(cup_present))

QB(ready) ∧QD(make_espresso) −→ UI((push (grind boil pour clean)))

QI((top? grind)) −→ UC(mill_start()) ◦ UI((pop))
Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 9/16

Jazyk project
Jazyk: The language

Programming language: syntax
declare beliefs as Prolog [{ . . . }]
declare desires as Prolog [{ . . . }]
declare intentions as Lisp [{ . . . }]
declare capabilities as C [{ . . . }]

when query capabilities [{!stand_empty}]
then update beliefs [{assert(cup_present)}];

when query beliefs [{ready}] and query desires [{make_espresso}]
then update intentions [{(push (. . .))}];

when query intentions [{(top? grind)}]
then update capabilities [{mill_start()}], update intentions [{(pop)}];

when query desires(Type) [{make(Type)}] and query beliefs [{ready}]and
query beliefs(Type,Time,Temp,Vol) [{recipe(Type,Time,Temp,Vol)}]

then update intentions(Type,Time,Temp,Vol)
[{(push ((grind Time)(boil Temp)(pour Vol)(done Type)))}];

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 10/16

Jazyk project
Jazyk: The language

Programming language: syntax
declare beliefs as Prolog [{ . . . }]
declare desires as Prolog [{ . . . }]
declare intentions as Lisp [{ . . . }]
declare capabilities as C [{ . . . }]

when query capabilities [{!stand_empty}]
then update beliefs [{assert(cup_present)}];

when query beliefs [{ready}] and query desires [{make_espresso}]
then update intentions [{(push (. . .))}];

when query intentions [{(top? grind)}]
then update capabilities [{mill_start()}], update intentions [{(pop)}];

when query desires(Type) [{make(Type)}] and query beliefs [{ready}]and
query beliefs(Type,Time,Temp,Vol) [{recipe(Type,Time,Temp,Vol)}]

then update intentions(Type,Time,Temp,Vol)
[{(push ((grind Time)(boil Temp)(pour Vol)(done Type)))}];

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 10/16

Jazyk project
Higher level programming constructs

Mental state transformers

Observations
rule (a set of rules) partial function on the set of mental
states

unification of two sets of rules partial function! -
generalization

nested rules partial function again! - specialization

. . . named compound code structures? add macro expansion
facility!

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 11/16

Jazyk project
Higher level programming constructs

Mental state transformers

Observations
rule (a set of rules) partial function on the set of mental
states

unification of two sets of rules partial function! -
generalization

nested rules partial function again! - specialization

. . . named compound code structures? add macro expansion
facility!

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 11/16

Jazyk project
Higher level programming constructs

Example: Stock exchange trading agent
define careful_strategy(TITLE) {
when [{ wants(TITLE) }] then [{ drop_goal(wants(TITLE)) }] ;

}
define opportunistic_strategy(TITLE) {
when [{ wants(TITLE) }] and [{ price(TITLE)<avg(TITLE,12h) }]
then [{ act(issue_order(buy(TTILE,10))) }] ;

when [{ price(TITLE)<max(TITLE,180d) }] and [{ price(TITLE)<avg(TITLE,7d) }]
then [{ introduce_goal(wants(TITLE)) }] ;

}
defineqmarket_turmoil {
[{ news(’overtake’)>2 }] and [{ avg(DOW,5h)<0.70∗avg(DOW,2d) }]

}/∗∗/
whenmarket_turmoil then {
careful_strategy(APPL);
careful_strategy(MSFT);

} else {
opportunistic_strategy(APPL);
opportunistic_strategy(MSFT);

}

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 12/16

Jazyk project
Discussion

Pros and cons

Pro’s:
translational semantics plain program
source code modularity behaviors(?)
integration of heterogenous components under a BDI
umbrella

That’s all nice, but:
how to use it?
mst’s vs. behaviors, roles, etc.
mst’s vs. BDI concepts (goal directed decomposition)
methodology:

how to decompose a problem into mst’s?

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 13/16

Jazyk project
Discussion

Pros and cons

Pro’s:
translational semantics plain program
source code modularity behaviors(?)
integration of heterogenous components under a BDI
umbrella

That’s all nice, but:
how to use it?
mst’s vs. behaviors, roles, etc.
mst’s vs. BDI concepts (goal directed decomposition)
methodology:

how to decompose a problem into mst’s?

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 13/16

Conclusion

Ongoing work and outlooks

Modular BDI architecture
paper published, AAMAS 2006.

Programming language
code modularity higher level programming constructs
(mental state transformers), TR IfI-06-12

Jazyk language interpreter under construction (summer
2007?)

Methodology
experiments, experiments, experiments! bottom-up approach

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 14/16

Conclusion

Ongoing work and outlooks

Modular BDI architecture
paper published, AAMAS 2006.

Programming language
code modularity higher level programming constructs
(mental state transformers), TR IfI-06-12

Jazyk language interpreter under construction (summer
2007?)

Methodology
experiments, experiments, experiments! bottom-up approach

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 14/16

Conclusion

Conclusion

Project
Programming framework for development of BDI agents with
mental states:

architecture

programming language

methodology

Modularity & integration
Different programming languages are suitable for different

knowledge representation tasks.

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 15/16

Conclusion

Question?

THANK YOU FOR YOUR ATTENTION.

Peter Novák · Computational Intelligence Group IfI @ TUC February 22, 2007 16/16

	Motivation
	Scenarios
	Problem

	State of the art
	Jazyk project
	Modular BDI architecture
	Jazyk: The language
	Higher level programming constructs
	Discussion

	Conclusion

