

Towards pragmatics of rule-based agent programming language(s)

(on-going work)

Peter Novák

Clausthal University of Technology, Germany

September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS

Problem: pragmatics of programming with APLs

generic programming language for cognitive agents

- mixing heterogeneous KRs: not fixed agent architecture
- non-determinism/reactivity: interleaving behaviours
 - driver apps: cognitive (simulated) robotics

Problem: pragmatics of programming with APLs

generic programming language for cognitive agents

- mixing heterogeneous KRs: not fixed agent architecture
- non-determinism/reactivity: interleaving behaviours
 - driver apps: cognitive (simulated) robotics

specification $\phi \leadsto \operatorname{program} \mathcal{P}$

Support of design process by code templates/idioms/design patterns...

The way to go...

High level code structures have to:

- formally capture meaning of code clearly characterize the encapsulated code
- allow further combination ~> compositionality | structures!

The way to go...

High level code structures have to:

- formally capture meaning of code clearly characterize the encapsulated code
- allow further combination ~> compositionality | structures!

Thesis:

Mixture of Dynamic Logic + Temporal Logic allows for capturing/extraction characterization of implemented code.

Agenda:

- verification step
- 2 refinement with code templates (sketch)

Behavioural State Machines/Jazzyk

Behavioural State Machines/Jazzyk

A lightweight programming framework with clear separation between knowledge representation and agent's behaviours.

reasoning vs. computation model

BSM agent:
$$\mathcal{A} = (\mathcal{M}_1, \dots, \mathcal{M}_n, \mathcal{P})$$

KR module $\mathcal{M} = (\mathcal{S}, \mathcal{L}, \mathcal{Q}, \mathcal{U})$

- \blacksquare S a set of states
- \blacksquare \mathcal{L} a KR language,
- $\blacksquare \mathcal{Q}$ a set of query operators $\models: \mathcal{S} \times \mathcal{L} \to \{\top, \bot\}$,
- \mathcal{U} set of update operators $\oslash : \mathcal{S} \times \mathcal{L} \to \mathcal{S}$.

Behavioural State Machines (cont.)

mental state transformer:

$$\models_i \varphi \longrightarrow \oslash_j \psi$$

when $\operatorname{query}_i \operatorname{module}_i$ [{ φ }] then $\operatorname{update}_j \operatorname{module}_j$ [{ ψ }]

 $\tau_1|\tau_2$ non-deterministic choice, $\tau_1\circ\tau_2$ sequence

Jazzyk BSM semantics (operational view)

A sequence $\sigma_1, \ldots, \sigma_i, \ldots$, s.t. $\sigma_i \to \sigma_{i+1}$, is a trace of BSM. An agent system (BSM), is characterized by a set of all traces

transition system over states $\sigma = \langle \sigma_1, \dots, \sigma_n \rangle$ induced by updates $\oplus \psi$ yielded by the agent program \mathcal{P}

Behavioural State Machines (cont.)

mental state transformer:

$$\models_i \varphi \longrightarrow \oslash_j \psi$$

when query_i module_i [{ φ }] then update_j module_j [{ ψ }]

 $au_1| au_2$ non-deterministic choice, $au_1\circ au_2$ sequence

Jazzyk BSM semantics (operational view)

A sequence $\sigma_1, \ldots, \sigma_i, \ldots$, s.t. $\sigma_i \to \sigma_{i+1}$, is a trace of BSM. An agent system (BSM), is characterized by a set of all traces.

transition system over states $\sigma = \langle \sigma_1, \dots, \sigma_n \rangle$ induced by updates $\oplus \psi$ yielded by the agent program \mathcal{P}

→ (Novák, Dix @ AAMAS'06, ..., ProMAS'08)
September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 5/16


```
/* When the searched item is found, pick it */
when desires<sub>C</sub> [{ task(pick(X)) }] then {
    /* PICK */
    when believes [{ see(X) }] then {
         when believes<sub>R</sub> [{ dir(X,'ahead'), dist(X,Dist) }] then act_{\mathcal{E}} [{ move forward Dist }] |
         when believes \mathcal{B} [{ dir(X, Angle) }] then act \mathcal{E} [{ turn Angle }]
     } . . . |
/* Goal adoption */
when believes \mathcal{B} [{needs(X)}] then add \mathcal{G} [{task(pick(X))}] |
/* Drop the goal */
when desires _{G} [{ task(pick(X)) }] and believes _{B} [{holds(X)}] then remove _{G} [{task(pick(X))}] |
/* When endangered, run away */
when desires<sub>G</sub> [{ maintain(safety) }] and believes<sub>B</sub> [{ threatened }] then {
    /* RUN AWAY */
    when believes [{ random(Angle) }] then {
         act<sub>E</sub> [{ turn Angle }] o
         act [{ move forward 10 }]
```



```
/* When the searched item is found, pick it */
when desires<sub>C</sub> [{ task(pick(X)) }] then {
     /* PICK */
     when believes [{ see(X) }] then {
          when believes<sub>R</sub> [{ dir(X,'ahead'), dist(X,Dist) }] then act_{\mathcal{E}} [{ move forward Dist }] |
          when believes \mathcal{B} [{ dir(X, Angle) }] then act \mathcal{E} [{ turn Angle }]
     } . . . |
/* Goal adoption */
when believes \mathcal{B} [{needs(X)}] then add \mathcal{G} [{task(pick(X))}] |
/* Drop the goal */
when desires<sub>G</sub> [{ task(pick(X)) }] and believes<sub>B</sub> [{holds(X)}] then remove<sub>G</sub> [{task(pick(X))}] |
/* When endangered, run away */
when desires<sub>G</sub> [{ maintain(safety) }] and believes<sub>B</sub> [{ threatened }] then {
     /* RUN AWAY */
     when believes [{ random(Angle) }] then {
          act<sub>E</sub> [{ turn Angle }] o
          act<sub>E</sub> [{ move forward 10 }]
```

```
/* When the searched item is found, pick it */
ACHIEVE('task(pick(X))', 'needs(X)', 'holds(X)', PICK)
/* When endangered, run away */
MAINTAIN('maintain(safety)', 'threatened', RUN_AWAY)
```


DLTL Syntax ... (Henriksen, Thiangarajan @ Ann. Pure Appl. Logic'99)

 Δ - operations, Σ - atomic propositions

 $Plain(\Sigma)$ - propositional formulae: φ , $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$

$DLTL(\Sigma, \Delta)$

- \blacksquare $Plain(\Sigma) \subseteq DLTL(\Sigma, \Delta)$
- $\bullet \varphi \mathcal{U}^{\pi} \psi \in DLTL(\Sigma, \Delta)$

 $\varphi, \psi \in DLTL(\Sigma, \Delta), \pi \in Prg(\Sigma, \Delta)$

$Prq(\Sigma, \Delta)$

 \bullet $\Delta \cup \{\varepsilon\} \subseteq Prg(\Sigma, \Delta)$

(atomic)

 \blacksquare if $\varphi \in Plain(\Sigma)$, then $\varphi? \in Prq(\Sigma, \Delta)$

- (test)
- if $\tau_1, \tau_2 \in Prq(\Sigma, \Delta)$, then $\tau_1 | \tau_2, \tau_1 \circ \tau_2 \in Prq(\Sigma, \Delta)$ (compound)
- \blacksquare if $\tau \in Prg(\Sigma, \Delta)$, then also $\tau^* \in Prg(\Sigma, \Delta)$ (iteration)

Mapping to words: $||\cdot||: Prg(\Sigma, \Delta) \to 2^{\Delta^*}$

Semantics

labeled transition system $K = (S, R, \Delta, \Delta^2, \Phi_S, \Sigma)$

- $\exists \varsigma = \varsigma_1 \bullet \varsigma_2 \subseteq K$, s.t. $head(\varsigma) = \sigma$, $Lbl(\varsigma) \in ||\pi||$

Semantics

labeled transition system $K = (S, R, \overline{\Delta}, \overline{\Delta}, \overline{\Delta}^?, \Phi_S, \Sigma)$

path
$$\varsigma = s_1 \xrightarrow{a} s_3 \xrightarrow{b} s_4 \xrightarrow{t?} s_4 \xrightarrow{a} s_2$$
, $Lbl(\varsigma) = abt?a$

- $\exists \varsigma = \varsigma_1 \bullet \varsigma_2 \subseteq K$, s.t. $head(\varsigma) = \sigma$, $Lbl(\varsigma) \in ||\pi||$

Semantics

labeled transition system $K = (S, R, \Delta, \Delta^2, \Phi_S, \Sigma)$

path
$$\varsigma = \underbrace{s_1 \xrightarrow{a} s_3 \xrightarrow{b} s_4 \xrightarrow{t?} s_4 \xrightarrow{a} s_2}_{C}$$
, $Lbl(\varsigma) = abt?a$

Semantics: $\models: \mathcal{K} \times S \times DLTL(\Sigma, \Delta) \rightarrow \{\top, \bot\}$

$$K, \sigma \models \varphi \mathcal{U}^{\pi} \psi$$
:

- $\exists \varsigma = \varsigma_1 \bullet \varsigma_2 \subseteq K$, s.t. $head(\varsigma) = \sigma$, $Lbl(\varsigma) \in ||\pi||$
 - $last(\varsigma_1) = \sigma' \Longrightarrow K, \sigma' \models \psi$.
 - $\forall \sigma'' \subseteq \varsigma_1 \Longrightarrow K, \sigma'' \models \varphi$.

Derived DLTL modalities

- $\bullet \diamond \varphi \stackrel{def}{\iff} \top \mathcal{U} \varphi$
- $\blacksquare \Box \varphi \stackrel{def}{\iff} \neg \Diamond \neg \varphi$

$$\pi_{\Delta}=p_1|p_2|\cdots|p_n$$
 , $\Delta=\{p_1,\ldots,p_n\}$

 $\mathsf{LTL} \subset \mathsf{DLTL}$

Software engineering problem revisited

$$\phi \in LTL(\Sigma) \qquad [\mathcal{P}]\psi \in DLTL(\Sigma, \Delta)$$
 refinement
$$[?]\phi \qquad [\mathcal{P}]?$$
 characterization
$$\mathcal{P} \in BSM \qquad \mathcal{P} \in BSM$$

DLTL can help us in both directions!

Software engineering problem revisited

DLTL can help us in both directions!

Annotated BSM

Annotated Behavioural State Machine

... is an extension of a BSM $\mathcal A$ with annotated primitive query and update formulae: (Σ atomic propositions, Δ atomic operations)

- $\Phi_S: \mathcal{S}_1 \times \cdots \times \mathcal{S}_n \to 2^{\Sigma}$ state labeling function
- $lack \Phi_{\oslash}: \bigcup_{i=1}^n (\mathcal{U}_1 \times \mathcal{L}_1) \to \Delta \text{ update annotation, i.e. } \oslash \psi \mapsto a$
- $STRIPS : \Delta \rightarrow Plain(\Sigma)$ action characterization, i.e. $a \mapsto \phi_{add} \wedge \phi_{del}$

Translation: heterogeneous KRs → single KR language!

→ similar to (Dastani, Hindriks, Tinnemeyer, Novák @ DALT'08)

Capturing the program meaning

characterization extraction

A BSM program $\mathcal P$ is characterized by a DLTL formula $\mathfrak T(\mathcal P)$:

- 1 mst's:
 - $\blacksquare \mathfrak{T}(\mathbf{skip}) = [\varepsilon] \bigcirc \top$
 - $\mathfrak{T}(\oslash \psi) = [a] \bigcirc STRIPS(a)$
 - $\mathfrak{T}(\tau_1|\tau_2) = [\pi_{\tau_1}|\pi_{\tau_2}]\varphi_{\tau_1} \vee \varphi_{\tau_2}$
 - $\begin{array}{c} \mathcal{Z}(\tau_1|\tau_2) = [\pi_{\tau_1}|\pi_{\tau_2}] \varphi_{\tau_1} \vee \varphi_{\tau_2} \\ \mathcal{T}(\tau_1 \circ \tau_2) = [\pi_{\tau_1}|\pi_{\tau_2}] \varphi_{\tau_1} \vee \varphi_{\tau_2} \\ \end{array}$
 - $\mathfrak{T}(\tau_1 \circ \tau_2) = [\pi_{\tau_1} \circ \pi_{\tau_2}] \varphi_1 \mathcal{U} \varphi_2$

- $a = \Phi_{\emptyset}(\emptyset, \psi)$
- $a = \Psi_{\oslash}(\oslash, \psi)$
- $\mathfrak{T}(\tau_i) = [\pi_i]\varphi_i$
- $\mathfrak{T}(\tau_i) = [\pi_i]\varphi_i$
- $\mathfrak{T}(\tau) = [\pi_{\tau}]\varphi_{\tau}, \, \mathfrak{T}(\phi) = \psi_{\phi}?$
- reasoning about incomplete annotations:
 - choice of an appropriate level of abstraction
 - choice of an aspect of the agent program to verify

Capturing the program meaning

characterization extraction

A BSM program \mathcal{P} is characterized by a DLTL formula $\mathfrak{T}(\mathcal{P})$:

- mst's:
 - $\blacksquare \mathfrak{T}(\mathbf{skip}) = [\varepsilon] \cap \top$
 - $\mathfrak{T}(\oslash \psi) = [a] \bigcirc STRIPS(a)$
 - $\mathfrak{T}(\tau_1|\tau_2) = [\pi_{\tau_1}|\pi_{\tau_2}]\varphi_{\tau_1} \vee \varphi_{\tau_2}$

 - $\mathfrak{T}(\tau_1 \circ \tau_2) = [\pi_{\tau_1} \circ \pi_{\tau_2}] \varphi_1 \mathcal{U} \varphi_2$
 - $\mathfrak{T}(\phi \longrightarrow \tau) = [\psi_{\phi}? \circ \pi_{\tau}]\psi_{\phi}\mathcal{U}\varphi_{\tau}$
- $\mathfrak{T}(\tau_i) = [\pi_i]\varphi_i$
- $a = \Phi_{\emptyset}(\emptyset, \psi)$ $\mathfrak{T}(\tau_i) = [\pi_i]\varphi_i$
- $\mathfrak{T}(\tau) = [\pi_{\tau}]\varphi_{\tau}, \mathfrak{T}(\phi) = \psi_{\phi}?$
- reasoning about incomplete annotations:
 - choice of an appropriate level of abstraction
 - choice of an aspect of the agent program to verify

Software engineering problem again

$$\phi \in LTL(\Sigma) \qquad \qquad \mathfrak{T}(\mathcal{P}) \equiv [\tau] \psi$$
 refinement
$$\vdots [?] \phi \qquad \qquad \vdots$$
 characterization
$$\mathcal{P}$$

verification:
$$[\tau]\psi \stackrel{?}{\Longrightarrow} [\tau^*]\phi \qquad \psi$$
 characterization, ϕ specification

- APLs deliberation cycle: *program iteration*
- model checking(?)
- theorem prover?

decomposition: serie of refining steps down to atomic operations corresponding to primitive mst's

Software engineering problem again

$$\phi \in LTL(\Sigma)$$
 $\mathfrak{T}(\mathcal{P}) \equiv [\tau]\psi$ refinement $[?]\phi$ f characterization \mathcal{P}

verification: $[\tau]\psi \stackrel{?}{\Longrightarrow} [\tau^*]\phi$ ψ characterization, ϕ specification

- APLs deliberation cycle: *program iteration*
- model checking(?)
- theorem prover?

decomposition: serie of refining steps down to atomic operations corresponding to primitive mst's

Decomposition: sketch

gradual refinement of the specification

■ verification ~> compositional semantics for compound structures

Example

- 1 $S_1 \equiv \varphi$
- 2 $S_2 \equiv \phi_1 \land \phi_2 \lor \phi_3$ and $\phi_1 \land \phi_2 \lor \phi_3 \Rightarrow \varphi$
- $S_3 \equiv [ACHIEVE(\pi_1)]\phi_1 \wedge \ldots \vee [MAINTAIN(\pi_3)]\phi_3$
- 4 ...
- $S_5 \equiv [\mathcal{P}](\phi_1 \wedge \ldots \vee \phi_3)$ and $\mathcal{P} \leftrightarrow \pi_1, \ldots, \pi_3$

$$S_5 \Rightarrow S_4 \Rightarrow S_3 \Rightarrow S_2 \Rightarrow S_1 \equiv \varphi$$

Decomposition: sketch

gradual refinement of the specification

■ verification ~> compositional semantics for compound structures

Example

- 1 $S_1 \equiv \varphi$
- 2 $S_2 \equiv \phi_1 \land \phi_2 \lor \phi_3$ and $\phi_1 \land \phi_2 \lor \phi_3 \Rightarrow \varphi$
- 3 $S_3 \equiv [ACHIEVE(\pi_1)]\phi_1 \wedge \ldots \vee [MAINTAIN(\pi_3)]\phi_3$
- 4 ...
- $S_5 \equiv [\mathcal{P}](\phi_1 \wedge \ldots \vee \phi_3)$ and $\mathcal{P} \leftrightarrow \pi_1, \ldots, \pi_3$

$$S_5 \Rightarrow S_4 \Rightarrow S_3 \Rightarrow S_2 \Rightarrow S_1 \equiv \varphi$$

Intuition:

 $[\tau^*] \diamondsuit \varphi$: τ implements *achievement* of φ $[\tau^*] \square \varphi$: τ implements *maintenance* of φ

ACHIEVE(' φ ',...) MAINTAIN(' φ ',...)

Conclusion

DL + *TL can provide insight into development of high level code structures with clear semantics

- from specification to implementation: creative process
 - → prefabricated code structures, patterns, templates

Library of agent-oriented idioms:

- various types of goals/commitment strategies
- control cycle: models of mixing behaviours:
 - (sense ∘ deliberate ∘ act) vs. (sense | deliberate | act) etc.

Practical experience → structuring of larger code bases

Related work:

- *Jason*: code patterns
- GOAL: modules(?)
- Abstract State Machines: refinement

Thank you for your attention.

http://jazzyk.sourceforge.net/