&YW TU Cla\\t!l’s“‘t"hal

Clausthal Universi

Towards pragmatics of rule-based
agent programming language(s)

(on-going work)

Peter Novak

Clausthal University of Technology, Germany

September 4th, 2008
Dagstuhl Seminar 08361 - ProMAS

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 1/16

e TU Clausthal Votwtion

Problem: pragmatics of programming with APLs
generic programming language for cognitive agents

m mixing heterogeneous KRs: not fixed agent architecture
m non-determinism/reactivity: interleaving behaviours
m driver apps: cognitive (simulated) robotics

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 2/16

6 TU Clausthal Votwtion

Clausthal University of Technology

Problem: pragmatics of programming with APLs

generic programming language for cognitive agents

m mixing heterogeneous KRs: not fixed agent architecture
m non-determinism/reactivity: interleaving behaviours
m driver apps: cognitive (simulated) robotics

specification ¢ ~» program P

¢ ¢

- &
decomposition ! : verification

~ [

P Pvs. ¢

Support of design process by
code templates/idioms/design patterns...

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 2/16

6 TU Clausthal Hoteten

Clausthal University of Technology

The way to go...

High level code structures have to:
formally capture
meaning of code

B clearly characterize the encapsulated code
structures!

m allow further combination ~~ compositionality

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 3/16

6 TU Clausthal Votwtion

Clausthal University of Technology

The way to go...

High level code structures have to:
formally capture
meaning of code

B clearly characterize the encapsulated code
structures!

m allow further combination ~~ compositionality

Thesis:

Mixture of Dynamic Logic + Temporal Logic allows for
capturing/extraction characterization of implemented code.

Agenda:

verification step
refinement with code templates (sketch)

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 3/16

NKH‘ TU Clausthal Behavioural State Machines/Jazzyk

Clausthal University of Technology

Behavioural State Machines/Jazzyk
Behavioural State Machines/Jazzyk

A lightweight programming framework with clear separation
between knowledge representation and agent’s behaviours.

reasoning vs. computation model

{ BSM agent: A = (My,...,M,,P) }
KR module M = (S, L, Q,U)

m S - a set of states

m L -aKRlanguage,

m Q- asetof query operators =: S x L — {T, 1},
m U - set of update operators © : S x L — S.

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 4/16

@Kw TU Clausthal Behavioural State Machines/Jazzyk

Clausthal University of Technology

Behavioural State Machines (cont.)

mental state transformer:
i — 2yl
when query; module; [{ ¢ }] then update; module; [{ ¢ }]

71|72 non-deterministic choice, 7 o 75 sequence

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 5/16

Behavioural State Machines/Jazzyk

ﬂm TU Clausthal

Clausthal University of Technology

Behavioural State Machines (cont.)

mental state transformer:
i — @Y
when query; module; [{ ¢ }] then update; module; [{ ¢ }]

71|72 non-deterministic choice, 7 o 75 sequence

Jazzyk BSM semantics (operational view)

Asequenceoy,...,0;,..., S.t. 0; — 0441, is a trace of BSM.
An agent system (BSM), is characterized by a set of all traces.

transition system over states 0 = (04, ...,0,) induced by updates ©v
yielded by the agent program P

~+ (Novak, Dix @ AAMAS’06, . . ., ProMAS’08)

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 5/16

NKH‘ TU Clausthal Behavioural State MachineEsx/;ar;;yll;

Clausthal University of Technology

/* When the searched item is found, pick it x/
when desiresg [{ task(pick(X)) }] then {
/= PICK x/
when believes [{ see(X) }] then {
when believes [{ dir(X,’ahead’), dist(X,Dist) }] then acte [{ move forward Dist }] |
when believes [{ dir(X, Angle) }] then actg¢ [{ turn Angle }]

bood
H
/* Goal adoption */
when believes 3 [{needs(X)}] then addg [{task(pick(X))}] |
/* Drop the goal */
when desiresg [{ task(pick(X)) }] and believes g [{holds(X)}] then removeg [{task(pick(X))}] |

/* When endangered, run away */
when desiresg [{ maintain(safety) }] and believes 3 [{ threatened }] then {
/* RUN_AWAY x/
when believes [{ random(Angle) }] then {
acte [{ turn Angle }] o
actg [{ move forward 10 }]

H

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 6/16

NKH‘ TU Clausthal Behavioural State MachineEsx/;ar;;yll;

Clausthal University of Technology

/* When the searched item is found, pick it x/
when desiresg [{ task(pick(X)) }] then {
/= PICK x/
when believes [{ see(X) }] then {
when believes [{ dir(X,’ahead’), dist(X,Dist) }] then acte [{ move forward Dist }] |
when believes [{ dir(X, Angle) }] then actg¢ [{ turn Angle }]

bood
H
/* Goal adoption */
when believes 3 [{needs(X)}] then addg [{task(pick(X))}] |
/* Drop the goal */
when desiresg [{ task(pick(X)) }] and believes g [{holds(X)}] then removeg [{task(pick(X))}] |

/* When endangered, run away */
when desiresg [{ maintain(safety) }] and believes 3 [{ threatened }] then {
/* RUN_AWAY x/
when believes [{ random(Angle) }] then {
acte [{ turn Angle }] o
actg [{ move forward 10 }]

H

/* When the searched item is found, pick it =/
ACHIEVE(‘task(pick(X))’, ‘needs(X)’, ‘holds(X)’, PICK)

/* When endangered, run away */
MAINTAIN(‘maintain(safety)’, ‘threatened’, RUN_AWAY)

~ code adapted from (Novak, Késter @ CogRob’08)

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 6/16

bt TU Clausthal S
DLTL Syntax ~ (Henriksen, Thiangarajan @ Ann. Pure Appl. Logic’99)
A - operations, ¥ - atomic propositions
Plain(X) - propositional formulae: ¢, ~¢, @ A, o V9

DLTL(%,A)
m Plain(X) C DLTL(S, A)
m @U™y € DLTL(S, A) 0,4 € DLTL(E, A), 7 € Prg(S, A)
Prg(3, A)
m AU{e} C Prg(%,A) (atomic)
m if ¢ € Plain(X), then ¢?€ Prg(%, A) (test)
m if 7,7 € Prg(X,A), then 71|72, 71 0 o€ Prg(X,A) (compound)
m if 7 € Prg(X,A), then also 7€ Prg(3, A) (iteration)
Mapping to words: || - || : Prg(2, A) — 227

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 7/16

K Te ds closi th
hd TU Clausthal Dynarmic Linge ords closing the gzp

Clausthal University of Technology

Semantics

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 8/16

ﬁuﬁ‘ Towards closing the gap
[TU Clausthal Dynamic Linear Time Temporal Logic
Clausthal University of Technology

Semantics
labeled transition system K = (S, R, A, A7, &g, %))

K

2

a b t? a
path ¢ =s; — s3 — 54 — s4 — 52

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 8/16

] " Te ds closi th
6 TU Clausthal Dynarmic Linge ords closing the gzp

Clausthal University of Technology

Semantics
labeled transition system K = (S, R, A, A7, &g, %))

b t7
path ¢ = 51 5 53 = 54— 84 — So, Lbl(¢) = abt?a
S1 G2

Semantics: =: K x S x DLTL(3,A) — {T, 1}

K,o0 = oU™:

B3I =¢ eq CK,s.t. head(s) = o, Lbl(s) € ||n]|

B last(s1) =0’ = K,0' =1 .
BYo'Cqg =K, o' Ep.

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 8/16

Towards closing the ga
ﬁuﬁ‘ TU Clausthal Dynamic Linear Time Tem‘;)gral ngig

Clausthal Uni of Technology

Derived DLTL modalities

(rho 4L Ty
def

[Tl = =(m)~p
def

O¢ < Vpeap)¥

def .
U S5 QUTAY A = pilp2| - [Puy A = {p1,. .., D0}
Op < &, Tl/lcp
D‘,O —|<>—|g0

LTL C DLTL

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 9/16

6 TU Clausthal Towards closing the gap

Clausthal University of Technology

Software engineering problem revisited

¢ € LTL(Y) [Pl € DLTL(S, A)

0

refinement E mqb [P]? E characterization

P e BSM PGIBSM

DLTL can help us in both directions!

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 10/16

6 TU Clausthal Towards closing the gap

Clausthal University of Technology

Software engineering problem revisited

[Pl € DLTL(E, A)

0

[73]? E characterization

PGIBSM

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 10/16

R TU Clausthal o o ericanon

Clausthal University of Technology

Annotated BSM
Annotated Behavioural State Machine

... is an extension of a BSM A with annotated primitive query and
update formulae: (X atomic propositions, A atomic operations)

m dg:8; x--- xS, — 2% state labeling function
m O UL (Q1 x £1) — Plain(X) query annotation, i.e.
F e ¢?
m O, JL, (U x L£1) — A update annotation, i.e. @y — a
m STRIPS : A — Plain(X) action characterization, i.e.
a = Padd N Pdel

Translation: heterogeneous KRs ~~ single KR language!
~ similar to (Dastani, Hindriks, Tinnemeyer, Novak @ DALT’08)

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 11/16

R TU Clausthal o o ericanon

Clausthal University of Technology

Capturing the program meaning

characterization extraction

A BSM program P is characterized by a DLTL formula T(P):
mst’s:
m I(skip) =[] O T
m T(o¢) =[a] O STRIPS(a) a=Dy(0,9)
w I(na|re) =[m7, |77,)r, V pry (i) = [mi]ps
m T(m 0 7mp) =[mr, 0 7, J1l oo Umi) = [milps
mI(p—1) [%? © WT]%U% (1) = [7-]or, T(P) = 1/)¢?‘

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 12/16

R TU Clausthal o o ericanon

Clausthal University of Technology

Capturing the program meaning

characterization extraction

A BSM program P is characterized by a DLTL formula T(P):
mst’s:
m I(skip) =[] O T
m T(o¢) =[a] O STRIPS(a) a=Py(0,v)
B E(7|72) =[rr [Tr]or Voer, T(mi) = [m]s
m I(71 072) =, o7, Jp1lp2 T(mi) = [milps
mZ(p—1) [1/’45? © Wr]%uwr (1) = [7-]or, T(P) = 1/)¢?A

reasoning about incomplete annotations:

m choice of an appropriate level of abstraction
m choice of an aspect of the agent program to verify

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 12/16

KM‘H‘ TU Clausthal Towards closing the gap

Decomposition
Clausthal University of Technology

Software engineering problem again

verification: [7]y N [7*]¢ 1 characterization, ¢ specification

m APLs deliberation cycle: program iteration
m model checking(?)
m theorem prover?

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 13/16

] { ds closir h
6 TU Clausthal Towards cosing the gap

Clausthal University of Technology

Software engineering problem again

¢ € LTL(X)
refinement i (7]

P

verification: [7]y N [7*]¢ 1 characterization, ¢ specification
m APLs deliberation cycle: program iteration
m model checking(?)
m theorem prover?

decomposition: serie of refining steps down to atomic operations
corresponding to primitive mst’s

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 13/16

6 TU Clausthal Towards closing the gap

Clausthal University of Technology

Decomposition: sketch
gradual refinement of the specification
B verification ~» compositional semantics for compound structures

Example
Si1=o
So =1 N2 Vezand g1 A2V d3 = ¢
S3 = [ACHIEVE(m1)|¢1 A ...V [MAINTAIN (m3)] 3
Ss=[Pl(¢p1 A...Vg3)and P < 7y, ..., 73

S5$S4:>53:>52$515(‘0

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 14/16

6 TU Clausthal Towards closing the gap

Clausthal University of Technology

Decomposition: sketch
gradual refinement of the specification
B verification ~» compositional semantics for compound structures

Example
Si1=o
So =1 N2 Vezand g1 A2V d3 = ¢
S3 = [ACHIEVE(m1)|¢1 A ...V [MAINTAIN (m3)] 3
Ss=[Pl(¢p1 A...Vg3)and P < 7y, ..., 73

S5$S4:>53:>52$515(‘0

[T*]Cw: T implements achievement of ACHIEVE(‘¢’,...)
[7*]0¢: T implements maintenance of ¢ MAINTAIN(‘¢’,...)

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 14/16

6 TU Clausthal Conclusin

Clausthal University of Technology

Conclusion

DL + *TL can provide insight into development of
high level code structures with clear semantics

m from specification to implementation: creative process
~ prefabricated code structures, patterns, templates

Library of agent-oriented idioms:
m various types of goals/commitment strategies
m control cycle: models of mixing behaviours:
m (sense o deliberate o act) vs. (sense | deliberate | act) etc.

Practical experience ~~ structuring of larger code bases

Related work:

B Jason: code patterns
B GOAL: modules(?)
B Abstract State Machines: refinement

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 15/16

ﬂm TU Clausthal conelusion

Clausthal University of Technology

Thank you for your attention.

http://jazzyk.sourceforge.net/

Peter Novak - Clausthal University of Technology, Germany September 4th, 2008 Dagstuhl Seminar 08361 - ProMAS 16/16

	Motivation
	Behavioural State Machines/Jazzyk
	Example
	Pragmatics: a software engineering gap

	Towards closing the gap
	Dynamic Linear Time Temporal Logic
	DLTL vs. BSM
	
	

	Conclusion

