
Code Patterns for Agent-Oriented Programming

Peter Novák and Wojciech Jamroga
Department of Informatics

Clausthal University of Technology
Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany

ABSTRACT
The mainstream approach to design of BDI-inspired agent
programming languages is to choose a set of agent-oriented
features with a particular semantics and their subsequent
implementation in the programming language interpreter.
The language designer’s choices thus impose strong con-
straints on the architecture of the implemented agents as
well as only a limited toolbox of high-level language con-
structs for encoding the agent program.

As an alternative, we propose a purely syntactic approach
to designing an agent programming language. On the sub-
strate of Behavioural State Machines (BSM), a generic mod-
ular programming language for hybrid agents, we show how
an agent designer can implement high-level agent-oriented
constructs in the form of code patterns (macros). To ex-
press the semantics of agent programs in the logic-agnostic
programming language of BSM, we propose LTL program
annotations and subsequently introduce DCTL*, an exten-
sion of the CTL* logic with features of dynamic logic, for
reasoning about traces of BSM program executions. We
show how DCTL* specifications can be used to prove rele-
vant properties of code patterns. Moreover, DCTL* allows
for natural verification of BSM agent programs.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages; I.2.5 [Artificial Intelligence]:
Programming Languages and Software; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Intelli-
gent Agents

General Terms
Focus: Agent programming languages; Inspiration source:
Robotics, AI; Description level: Methodologies and Lan-
guages

Keywords
Agent-oriented programming, code patterns, temporal logic

Cite as: Code Patterns for Agent-Oriented Programming, Peter Novák
and Wojciech Jamroga, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sich-
man, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hun-
gary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Since the Shoham’s seminal paper on agent-oriented pro-

gramming [20], one of the high ambitions of the agents pro-
gramming community is development of a theoretically foun-
ded programming framework enabling creation of cognitive
agents, i.e. agents with mental states [20], also coined know-
ledge-intensive agents [12]. A programming language is an
engineering tool in the first place and thus it has to pro-
vide a toolbox for development of practical systems. On the
other hand, to support the design process, as well as to allow
a deeper insight into system functionality, it is desirable to
establish a tight relationship of the language with a formal
framework for reasoning about programs written in it.

To bridge the gap between pragmatics of software engi-
neering and theoretical foundations, BDI-inspired agent pro-
gramming languages (such as AgentSpeak(L)/Jason, 3APL,
GOAL, etc., cf. e.g. [1, 2] for more details), provide a par-
ticular set of agent-oriented features and bind them to a
rule-based computational model of reactive planning. The
language designer’s choices thus impose constraints on the
resulting design of agent applications. The state-of-the-art
languages enforce a fixed internal architecture of the agent,
usually a fixed set of knowledge bases with a fixed knowledge
representation (KR) technology, as well as a fixed implemen-
tation of language constructs for agent’s beliefs and/or goals,
and their mutual relationships. The main benefit from con-
straining agent designers in so many ways is usually a clear,
theoretically sound Plotkin style [16] operational semantics
of the language, traditionally provided in terms of compu-
tation runs (traces) in a transition system over the agent’s
mental states. However, a tight formal relationship with a
reasoning framework for agent behaviours, such as that by
Rao and Georgeff [18] or Cohen and Levesque [4], is only
rarely established (see Section 6 for a discussion).

In this paper, we put forward an alternative approach to
design of agent-oriented programming languages. On the
level of a generic language for programming reactive sys-
tems, we propose development of a library of code patterns
(macros, templates) whose semantics refers to various agent-
oriented concepts, such as an achievement goal or a mainte-
nance goal. The generic language of choice is the framework
of Behavioural State Machines (BSM) [14] allowing for an
application-specific architecture of an agent system in terms
of knowledge representation modules exploiting the poten-
tial of heterogeneous KR technologies. In the BSM frame-
work, an agent program is encoded in terms of mental state
transformers, i.e., nested sub-programs connected by com-
position operators. The hierarchical structure of subpro-

grams allows to define and instantiate macros which imple-
ment encapsulated and clearly defined agent-oriented con-
cepts, such as a specific type of a goal. For proving that
the execution of instances of such macros indeed satisfies
properties of agent-specific concepts, we introduce Dynamic
CTL* (DCTL*), a novel extension of the full branching
time temporal logic CTL* [9] with features of Harel’s Dy-
namic Logic [10]. Finally, to bridge the gap between the
flexible but logic-agnostic programming framework of Be-
havioural State Machines and DCTL*, the logic for verifica-
tion of BSM programs, we propose program annotations in
the form of formulae of Linear Time Temporal Logic (LTL)
[17]. Since DCTL* is a proper extension of LTL, we in fact
suggest that it is often convenient to reason about programs
in a richer language than the one used for specification of
program behaviour.

The contribution of this work is twofold: 1) we demon-
strate an alternative approach to design of an agent-oriented
programming language equipped with a library of high-level
agent-oriented constructs, which an agent developer can fur-
ther extend according to the specific application needs; and
2) to enable reasoning about programs in the BSM frame-
work, we introduce a logic for their verification and proving
their properties.

We begin with a brief description of the framework of Be-
havioural State Machines in Section 2. In Section 3, we
discuss logics LTL and DCTL* with an interpretation over
the semantic structures of BSM programs. Program anno-
tations, introduced in Section 4, bridge the gap between the
logic-agnostic programs of the BSM framework and the tem-
poral logics for reasoning about their executions. Section 5
introduces a number of code patterns implementing agent-
oriented notions of achievement and maintenance goal simi-
lar to the concept of persistent relativised goal (P-R-GOAL)
by Cohen and Levesque [4]. Section 6 concludes the paper
with a discussion and a brief overview of the relevant work.

2. BEHAVIOURAL STATE MACHINES
In [14], we introduced the framework of Behavioural State

Machines (BSM). Because of the generic and modular na-
ture of its computational model, the framework is particu-
larly suitable to study code patterns in programming lan-
guages. BSM draws a clear distinction between the knowl-
edge representation and behavioural layers within an agent.
It thus provides a programming framework that clearly sep-
arates the programming concerns of how to represent an
agent’s knowledge about, for example, its environment and
how to encode its behaviours. Below, we briefly introduce
the language of BSM ’s without variables. For the complete
formal description of the BSM framework, see [14].

2.1 Syntax
BSM agents are collections of one or more so-called knowl-

edge representation modules (KR modules), typically de-
noted by M, each representing a part of the agent’s knowl-
edge base. KR modules may be used to represent and main-
tain various mental attitudes of an agent, such as knowledge
about its environment, or its goals, intentions, obligations,
etc. Transitions between states of a BSM result from apply-
ing so-called mental state transformers (mst), typically de-
noted by τ . Various types of mst’s determine the behaviour
that an agent can generate. A BSM agent consists of a set
of KR modulesM1, . . . ,Mn and a mental state transformer

P, i.e. A = (M1, . . . , Mn,P); the mst P is also called an
agent program.

The notion of a KR module is an abstraction of a par-
tial knowledge base of an agent. In turn, its states are to
be treated as theories (i.e., sets of sentences) expressed in
the KR language of the module. Formally, a KR module
Mi = (Si,Li,Qi,Ui) is characterized by a knowledge repre-
sentation language Li, a set of states Si ⊆ 2Li , a set of query
operators Qi and a set of update operators Ui. A query op-
erator ��� ∈ Qi is a mapping ��� : Si ×Li → {>,⊥}. Similarly
an update operator ⊕ ∈ Ui is a mapping ⊕ : Si × Li → Si.

Queries, typically denoted by ϕ, can be seen as operators
of type ��� : Si → {>,⊥}. A primitive query ϕ = (���φ) con-
sists of a query operator ��� ∈ Qi and a formula φ ∈ Li of the
same KR module Mi. We will use Q(A) =

Sn
i=1Qi × Li

to denote the set of primitive queries of BSM A. Complex
queries can be composed by means of conjunction ∧, dis-
junction ∨ and negation ¬.

Mental state transformers enable transitions from one state
to another. A primitive mst �ψ, typically denoted by ρ and
constructed from an update operator � ∈ Ui and a formula
ψ ∈ Li, refers to an update on the state of the correspond-
ing KR module. We use U(A) =

Sn
i=1 Ui × Li to denote

the set of primitive mst’s of A. Conditional mst’s are of the
form ϕ −→ τ , where ϕ is a query and τ is a mst. Such a
conditional mst makes the application of τ depend on the
evaluation of ϕ. Syntactic constructs for combining mst’s
are: non-deterministic choice | and sequence ◦.

Definition 1 (mental state transformer). Let M1,
. . . ,Mn be KR modules of the form Mi = (Si,Li,Qi,Ui).
The set of mental state transformers is defined as below:

1. skip is a primitive mst,

2. if � ∈ Ui and ψ ∈ Li, then �ψ is a primitive mst,

3. if ϕ is a query, and τ is a mst, then ϕ −→ τ is a
conditional mst,

4. if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s
(choice, and sequence respectively).

2.2 Denotational Semantics
The yields calculus, summarised below after [14], specifies

an update associated with executing a mental state trans-
former in a single step of the language interpreter. It for-
mally defines the meaning of the state transformation in-
duced by executing an mst in a state, i.e., a mental state
transition.

Formally, a mental state σ of a BSM A = (M1, . . . ,Mn, τ)
is a tuple σ = (σ1, . . . , σn) of states σ1 ∈ S1, . . . ,
σn ∈ Sn, corresponding to modules M1, . . . ,Mn, respec-
tively. S = S1 × · · · × Sn denotes the space of all mental
states over A. A mental state can be modified by apply-
ing primitive mst’s on it, and query formulae can be eval-
uated against it. The semantic notion of truth of a query
is defined through the satisfaction relation |=. A primitive
query ���φ holds in a mental state σ = (σ1, . . . , σn), written
σ |= (���φ), iff ���(φ, σi); otherwise we have σ 6|= (���φ). Given
the usual meaning of Boolean operators, it is straightforward
to extend the query evaluation to compound query formu-
lae. Note that evaluation of a query does not change the
mental state σ.

For an mst �ψ ∈ U(A), we use (�, ψ) to denote its seman-
tic counterpart, i.e., the corresponding update (state trans-
formation). Sequential application of updates is denoted by

•, i.e. ρ1 • ρ2 is an update resulting from applying ρ1 first
and then applying ρ2. The application of an update to a
mental state is defined formally below.

Definition 2 (applying an update). The result of ap-
plying an update ρ = (�, ψ) to a state σ = (σ1, . . . , σn) of
a BSM A = (M1, . . . ,Mn,P), denoted by s

L
ρ, is a new

state σ′ = (σ1, . . . , σ
′
i, . . . , σn), where σ′i = σi�ψ and σi, �,

and ψ correspond to one and the same Mi of A. Applying
the empty update skip on the state σ does not change the
state, i.e. σ

L
skip = σ.

Inductively, the result of applying a sequence of updates
ρ1 • ρ2 is a new state σ′′ = σ′

L
ρ2, where σ′ = σ

L
ρ1.

σ
ρ1•ρ2→ σ′′ = σ

ρ1→ σ′
ρ2→ σ′′ denotes the corresponding com-

pound transition.

The meaning of a mental state transformer in state σ, for-
mally defined by the yields predicate below, is the update
set it yields in that mental state.

Definition 3 (yields calculus). A mental state trans-
former τ yields an update ρ in a state σ, iff yields(τ, σ, ρ)
is derivable in the following calculus:

>
yields(skip,σ,skip)

>
yields(�ψ,σ,(�,ψ))

(primitive)

yields(τ,σ,ρ), σ|=φ
yields(φ−→τ,σ,ρ)

yields(τ,σ,θ,ρ), σ 6|=φ
yields(φ−→τ,σ,skip)

(conditional)

yields(τ1,σ,ρ1), yields(τ2,σ,ρ2)
yields(τ1|τ2,σ,ρ1), yields(τ1|τ2,σ,ρ2)

(choice)

yields(τ1,σ,ρ1), yields(τ2,σ
L
ρ1,ρ2)

yields(τ1◦τ2,σ,ρ1•ρ2)
(sequence)

We say that τ yields an update set ν in a state σ iff
ν = {ρ|yields(τ, σ, ρ)}.

The mst skip yields the update skip. Similarly, a primi-
tive update mst �ψ yields the corresponding update (�, ψ).
In the case the condition of a conditional mst φ −→ τ is
satisfied in the current mental state, the calculus yields one
of the updates corresponding to the right hand side mst τ ,
otherwise the no-operation skip update is yielded. A non-
deterministic choice mst yields an update corresponding to
either of its members and finally a sequential mst yields a
sequence of updates corresponding to the first mst of the
sequence and an update yielded by the second member of
the sequence in a state resulting from application of the first
update to the current mental state.

Definition 4 (BSM semantics). A BSM A = (M1,
. . . ,Mn, τ) can make a step from state σ to a state σ′, if the
mst τ yields a non-empty update set ν in σ and σ′ = σ

L
ρ,

where ρ ∈ ν is an update. We also say, that A induces a

(possibly compound) transition σ
ρ→ σ′.

2.3 Operational View
The underlying semantics of BSM can be seen in terms of

traces within a labeled transition system over agent’s mental
states. Mental state transformers are interpreted as traces
in a transition system over agent’s mental states and tran-
sitions induced by updates. The notion of a behavioural
frame formally captures the semantic structure induced by
the set of KR modules of a BSM agent. In particular, it
encapsulates the set of all mental states constructed from
local states of the KR modules and applications of the cor-
responding update operators between them.

Definition 5 (behavioural frame). Let A = (M1,
. . . ,Mn,P) be a BSM over a set of KR modules Mi =
(Si,Li,Qi,Ui). The behavioural frame of A is a labeled
transition system LTS(A) = (S,R), where S = S1×· · ·×Sn
is the set of mental states of A, and the transition relation
R is defined as follows:

R ={σ ρ→ σ′ ∈ S × U(A)× S | σ′ = σ
M

ρ}∪

{σ skip→ σ ∈ S × U(A)× S}

A tuple of KR modules A = (M1, . . . ,Mn), which is es-
sential for constructing the behavioural frame is also called
behavioural template. We will sometimes write LTS(A) in-
stead of LTS(A) since the mst P in A plays no role in the
construction of the corresponding frame.

Note that LTS(A) is finite (resp. enumerable) iff all the
modules in A have finite (resp. enumerable) state spaces,
languages, and repertoires of query and update operators.

The operational semantics of an agent is defined in terms
of all possible computation runs induced by the iterated ex-
ecution of the corresponding BSM. Let λ = σ0σ1σ2 . . . be
a trace (finite or infinite). Then, λ[i] = σi denotes the ith
state on λ, and λ[i..j] = σi . . . σj denotes the “cutout” from
λ from position i to j. The ith prefix and suffix of λ are
defined by λ[0..i] and λ[i..∞], respectively.

Definition 6 (traces and runs of a BSM). Let
A = (A, τ) be a BSM. T (A) denotes the set of (complete)

traces σ0σ1 . . . σk, such that σ0
ρ1→ σ1

ρ2→ . . .
ρk→ σk, and τ

yields ρ = ρ1 • . . . • ρk in σ0.
A possibly infinite sequence of states λ is a run of BSM
A iff:

1. There is a sequence of positions k0 = 0, k1, k2, . . . such
that, for every i = 0, 1, 2, . . ., we have that λ[ki..ki+1] ∈
T (A), and

2. Weak fairness (cf. [13]): if an update is enabled in-
finitely often, then it will be infinitely often selected
for execution.1

The semantics of an agent system characterized by BSM
A = (A, τ) is the set of all runs of A, denoted T (A, τ∗).

3. LOGICS FOR BSM
To enable reasoning about executions of BSM we need a

logic tightly bound to the same semantic model as that of the
BSM framework. This section presents the standard Linear
Time Temporal Logic (LTL), and subsequently introduces
Dynamic CTL* (DCTL*), an extension of the branching
time temporal logic CTL* [9] with features of Harel’s Dy-
namic Logic [10]. While LTL provides a tool for relating
mental state transformers to formulae of temporal logic,
DCTL* allows for expressing and reasoning about proper-
ties of executions of agent programs.

3.1 LTL
A mental state transformer, or a BSM program, speci-

fies a set of traces in the corresponding behavioural frame

1This condition rules out traces where, for some nondeter-
ministic choice τ1|τ2 in program τ , always the same option
is selected during the iterated execution of τ – and the other
option is neglected.

(i.e., a labeled transition system over the space of mental
states of the corresponding behavioural template). Mental
states of a BSM are composed of theories in KR languages
of the corresponding KR modules. What is important, we
do not assume any relationship between these languages and
mathematical logic (that is why we call the languages logic-
agnostic). For example, the interface of one module can be
based on Java, another on Prolog, while queries and mst’s
of yet another module can be given in the assembly lan-
guage. This section shows how a relationship between such
KR modules and logical formulae can be obtained by means
of LTL annotations. But first, we will extend behavioural
frames with an interpretation of basic logical statements.

Definition 7 (behavioural model). Let LTS(S,R)
be the behavioural frame of a behavioural template A = (M1,
. . . ,Mn). The behavioural model of A is defined as LTS(A)
= (S,R,Π, π), where LTS(A) = (S,R) is the behavioral
frame of A, Π = {pφ | φ ∈ Q(A)} is the set of atomic propo-
sitions, and π : Π→ 2S defines their valuations so that they
correspond to primitive queries: π(pφ) = {σ ∈ S | σ |= φ}.

Behavioural model of a BSM is defined as the behavioural
model of the underlying behavioural template: LTS(A,P) =
LTS(A).

LTL [17] enables reasoning about properties of execution
traces by means of temporal operators f (in the next mo-
ment) and U (until). Additional operators 3 (sometime in
the future) and 2 (always in the future) can be defined as
3ϕ ≡ >U ϕ and 2ϕ ≡ ¬3¬ϕ. We will use a version of
LTL that includes the “chop” operator C [19] because of the
nature of sequential composition of mental state transform-
ers: when constructing an aggregate annotation for τ1 ◦ τ2,
we need a way of enforcing that the part that refers to τ1
is fulfilled before the execution of τ2 begins. Formally, our
version of LTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | fϕ | ϕU ϕ | ϕ C ϕ.
Other Boolean operators (disjunction ∨, material implica-
tion →, etc.) are defined in the usual way. The semantics is
defined through the clauses below (where A is a BSM and
λ is a trace in T (A)):

A, λ |= p iff λ[0] ∈ π(p) in LTS(A);

A, λ |= ¬ϕ iff A, λ 6|= ϕ;

A, λ |= ϕ1 ∧ ϕ2 iff A, λ |= ϕ1 and A, λ |= ϕ2;

A, λ |= fϕ iff A, λ[1..∞] |= ϕ;

A, λ |= ϕ1 U ϕ2 iff there exists i ≥ 0, such that A, λ[i..∞] |=
ϕ2, and A, λ[j..∞] |= ϕ1 for every 0 ≤ j < i;

A, λ |= ϕ1 C ϕ2 iff there exists i ≥ 0, such that A, λ[0..i] |=
ϕ1 and A, λ[i..∞] |= ϕ2.

LTL formula ϕ is valid in A (written A |= ϕ) iff ϕ holds on
every trace λ ∈ T (A).

3.2 DCTL*
Since each annotation is assigned to a particular mst,

there is no point in referring to the mst in the object lan-
guage. However, we will need a richer logic for reasoning
about programs and their relationships: namely one which
allows to address a particular program explicitly. To this
end, we propose an extension of the branching-time logic

CTL* [9] with explicit quantification over program execu-
tions. In the extension, [τ] stands for “for all executions of
τ”; “there is an execution of τ” can be defined as 〈τ〉ϕ ≡
¬[τ]¬ϕ. As the agenda of the logic resembles that of “dy-
namic LTL”from [11], we will call our logic“Dynamic CTL* ”,
DCTL* in short. The syntax of DCTL* is defined as an ex-
tension of LTL by the following grammar:

θ ::= p | ¬θ | θ ∧ θ | [τ]ϕ

ϕ ::= θ | ¬ϕ | ϕ ∧ ϕ | fϕ | ϕU ϕ | ϕ C ϕ
where τ is a program or an iterated program. The semantics
extends that of LTL by the clauses below:

A, λ |= θ iff A, λ[0] |= θ;

A, σ |= p iff σ ∈ π(p);

A, σ |= ¬θ iff A, σ 6|= θ;

A, σ |= θ1 ∧ θ2 iff A, σ |= θ1 and A, σ |= θ2;

(A,P), σ |= [τ]ϕ iff for every λ ∈ T (A, τ), s.t. λ[0] = σ, we
have that (A, τ), λ |= ϕ.

DCTL* formula θ is valid in A (written A |= θ) iff A, σ |= θ
for every state σ of A.

The following proposition shows the relationship between
LTL and DCTL* (the proof is straightforward):

Proposition 1. For every BSM A = (M1, . . . ,Mn, τ)
and LTL formula ϕ, we have: A |=ltl ϕ iff A |=

dctl*
[τ]ϕ.

When reasoning about code patterns in Section 5, we will
use the following notion of semantic consequence.

Definition 8 (semantic consequence). Formula ψ is
a semantic consequence of ϕ (written: ϕ⇒ ψ) iff, for every
BSM A, A |= ϕ implies A |= ψ.

Usually, we will use the notion to state that [τ]ϕ⇒ [τ∗]ψ,
that is, if formula ϕ correctly describes possible executions of
program τ , then ψ holds for all possible iterated executions
of the program.

4. TEMPORAL ANNOTATIONS FOR BSM
The BSM framework allows us to encode agent programs

in terms of compound mst’s interpreted in a behavioural
model over a behavioural template (a set of KR modules).
Our idea is to use LTL and DCTL* for reasoning about ex-
ecution traces in such models. To bridge the gap between
the mental states of a BSM and interpreted states of be-
havioural models, we introduce Annotated Behavioural State
Machines: BSM enriched with LTL annotations of primitive
queries and updates occurring in the corresponding agent
program. The basic methodological assumption behind our
proposal is as follows: a KR module supplies a set of primi-
tive queries and updates, i.e., a repository of basic tests and
procedures for agent programming. Annotations provide an
interpretation of these from logic-agnostic programming KR
languages into a single language for reasoning about prop-
erties of agent programs. The interpretation of compound
programs can be derived from the basic annotations by using
a predefined scheme.

Definition 9 (Annotated BSM). Annotated BSM is
a tuple AA = (M1, . . . ,Mn,P,A), where A = (M1, . . . ,Mn,
P) is a BSM and A : (U(A) ∪ Q(A))→ LTL is an annota-
tion function assigning an LTL annotation to each primitive
query and update occurring in A.

Technically, it suffices to annotate only the queries and
mst’s that occur in the program P of the BSM that we
implement or plan to reason about. Annotations of prim-
itive queries and mst’s are provided by agent developer(s),
according to their insight and expertise.

Given a complex mst τ , its annotation is determined by
combining the annotations of its subprograms w.r.t. the
outermost operator in τ .

Definition 10 (Aggregation of annotations). Let
AA be an annotated BSM. We extend the function A to pro-
vide also LTL annotations for compound queries and mst’s
recursively as follows:

• let φ, φ′ be queries, then A(¬φ) = ¬A(φ), A(φ ∧ φ′) =
A(φ) ∧ A(φ′), and A(φ ∨ φ′) = A(φ) ∨ A(φ′),

• let φ be a query and τ be an mst, then A(φ −→ τ) =
A(φ)→ A(τ),

• let τ1, τ2 be mst’s, then A(τ1|τ2) = A(τ1) ∨ A(τ) and
A(τ1 ◦ τ2) = A(τ1) C A(τ).

Annotations are not intended to be just arbitrary logical
formulae; they should capture the relevant aspects of the
queries and programs that they are assigned to. To this
end, we require that the annotations in AA are sound in the
following sense:

Definition 11 (Soundness of annotations). Let AA

= (M1, . . . ,Mn,P,A) be an annotated BSM.

1. A is sound in AA w.r.t. a query ϕ iff A(ϕ) holds in
exactly the same mental states of LTS(A) as ϕ;

2. A is sound in AA w.r.t. a program τ iff A(τ) holds for
all traces from T (M1, . . . ,Mn, τ).

A is sound in AA iff it is sound w.r.t. program P in AA.
Note that A is sound in AA iff A |= [P]A(P).

Proposition 2. If A is sound for every primitive query
and update in AA, then A is sound in AA.

Proof. For every mst τ (resp. query ϕ), the soundness
of A w.r.t. τ (resp. ϕ) follows by induction on the structure
of τ (resp. ϕ): it is sufficient to show that the aggregation
rules in Definition 10 preserve soundness.

Provided an LTL specification and an annotated Behaviour-
al State Machine, we are usually interested whether the runs
generated by the machine satisfy the specification.

Definition 12 (BSM verification). Let AA = (M1,
. . . ,Mn,P,A) be an annotated BSM and ϕ ∈ LTL be a spec-
ification. We say that the iterated execution of AA satisfies
the specification ϕ iff A |= [P∗]ϕ.

The following proposition turns out to be helpful in veri-
fication of BSM consisting of a non-deterministic choice of
mst’s:

Proposition 3. Let A be a behavioural template, A be
a sound annotation function w.r.t. A and τ1, τ2 be mst’s.
Then, [(τ1|τ2)∗]2

`
3(A(τ1) C >) ∧3(A(τ2) C >)

´
.

Proof. Follows immediately from the weak fairness con-
dition.

The formula in Proposition 3 is a DCTL* correspondent
of the weak fairness condition. It also describes how char-
acteristics of finite programs “propagate” to their iterations.
This is why it includes the “chop” operators after the an-
notations of A(τ1) and A(τ2): we want the annotations of
the component mst’s to be evaluated against finite chunks
of the iterated executions, while the executions themselves
can be as well infinite.

5. CODE PATTERNS
The relationship between the programming framework of

Behavioural State Machines and DCTL* allows us to fi-
nally consider several code patterns useful in agent-oriented
programming. They allow encoding agent’s functionality in
terms of a web of inter-dependencies between agent’s beliefs,
goals and behaviours without being bound to a specific KR
language of the underlying KR modules. The main result of
this section is introduction of code templates formalizing the
notions of achievement and maintenance goals. A running
example accompanies the introduced code templates. We do
not provide detailed proofs of properties of the introduced
code patterns; however, their validity can be easily derived
from Proposition 3.

5.1 Agent System Architecture
We consider embodied BDI-inspired agent systems. Since

the BSM framework does not impose constraints on the
number of KR modules of an agent, we assume an architec-
ture including the following: belief base B, goal base G and an
interface to an environment E in which the agent acts. Ad-
ditionally, we assume the basic interfaces for the belief and
goal bases: query operators ���B, ���G and update operators
⊕B, ⊕G , 	B, 	G for a KR language formula assertion/re-
traction respectively. We also assume the following code
annotation function A: A(⊕iϕ) ≡ ©ϕ, A(iϕ) ≡ ©¬ϕ and
A(���iϕ) ≡ ϕ for i ∈ {B,G}, where ϕ ∈ Li. We emphasize
that the annotations of basic programs refer only to KR sen-
tences from Li, and not to structural properties of execution
traces (like finiteness/termination of a trace). This allows us
to omit the “chop” operator in the following examples, and
renders our exposition easier to read. Soundness of query
and update annotations follows immediately from the above
definition of function A.

To improve readability, we use the mixed mathematical
notation of Jazzyk [14], a programming language implemen-
tation of the BSM framework.2 In Jazzyk, when ... then ...

encodes a conditional mst, while ; and , stand for the non-
deterministic choice (|) and sequence (◦) operators respec-
tively. Mst’s can be grouped into blocks enclosed in curly
braces {. . .}. Additionally, macros are defined by the key-
word ‘define’ followed by a macro identifier, an ordered
list of named arguments and the macro body ended by the
keyword ‘end’.

Example 1 (running example). Consider a robot act-
ing in a physical environment.3 It consists of a KR module
E interfacing to its physical body, a belief base B and a goal
base G, for simplicity both implemented in a Prolog-like pro-
gramming language. The robot’s main task in the environ-
ment is to find and pick up an item located somewhere in the

2See also http://jazzyk.sourceforge.net/.
3Example adapted from the Jazzbot case study [15].

environment, while at the same time appropriately reacting
to threats occurring in the environment, such as for example
an unfriendly agent in its vicinity.

Capabilities. An agent acts in its environment by execut-
ing primitive updates of the KR module representing the
interface to the environment. Its capabilities are therefore
determined by the range of well formed formulae in the cor-
responding KR language, together with the set of update
operators of the module. Capabilities are a set of mst’s con-
structed from this universe, primitive or compound, that en-
capsulate standalone, meaningful and reusable behaviours of
the agent. Moreover, we assume that the meaning of these
capabilities is well described by program annotations cap-
turing their intended effects.

The problem of designing a BSM agent performing a spec-
ified range of behaviours, at least partially captured by some
formal specification ϕ, can be seen as the problem of man-
aging activation, deactivation and interleaving of the capa-
bilities. In each step of its execution, the agent performs a
selection of a reactive behaviour to execute. In the remain-
der of this section, we argue that the notion of goal provides
a technical basis for management and programming of this
selection.

Example 2 (running example cont.). Our robot must
be able to manage interactions of two concurring behaviours:
one for searching and picking up an item called ‘item42 ′, and
the second for handling a potential interruption in the form
of a threat. Two compound mst’s encoded as macros FIND
and RUN AWAY provide the corresponding capabilities of the
bot. While we do not discuss their detailed implementations,
we assume the following about their annotations:

[FIND]A(FIND)⇒ [FIND∗]3holds(item42)
[RUN AWAY]A(RUN AWAY)⇒ [RUN AWAY∗]3safe

That is, FIND, when iterated, eventually brings about a state
in which the robot found and picked up the item42 ; simi-
larly, repeated RUN AWAY eventually brings about a state
in which the agent is safe. Additionally, we assume that the
capabilities already implement parts of the agent’s perception
relevant to their specified functionality.

5.2 Goal-oriented behaviours
To allow for an explicit management (activating/deacti-

vating) of agent’s capabilities, each capability mst should
be triggered only when appropriate. The behaviour acti-
vation then becomes purposeful: a behaviour is triggered
because an agent has a goal and it is supposed to take the
agent closer to the goal achievement. The explicit represen-
tation of a goal is a formula derived from the agent’s goal
base. The code pattern for an agent’s capability τ triggered
by derivation of a goal formula ϕG from agent’s goal base
looks as follows:

define TRIGGER(ϕG, τ)
when ���GϕG then τ

end

The code pattern allows for conditional activating and de-
activating of the capability τ , depending on the derivability
of the condition ϕG w.r.t. the agent’s goal base. In the
following, we assume that execution of τ does not change

validity of the associated goal formula ϕG, i.e., the follow-
ing independence condition holds:

[τ]A(τ)⇒ (A(���GϕG)→ [τ∗]2A(���GϕG)).

It can be shown that when the agent has a goal ϕG, then
iterated execution of TRIGGER always eventually leads to
satisfaction of the annotation of τ . Formally, if τ is a capa-
bility and ϕG a goal formula, then we have:

[τ]A(τ)⇒ (A(���GϕG)→ [TRIGGER(ϕG, τ)∗]3A(τ)).

Example 3 (running example cont.). The agent
should search for the ‘item42 ′ only when it has a goal to get
it. Similarly, it runs away, only when it’s goal is to maintain
its own safety. The following instances of TRIGGER re-
formulate the macros FIND and RUN AWAY as goal oriented
behaviours:

TRIGGER(has(item42), FIND)

TRIGGER(keep safe, RUN AWAY)

Goal commitment strategies. Explicit goal representation
allows for conditional activation or deactivation of behaviours.
However, to directly manage when such a goal formula should
be derivable, a programmer must choose an explicit algo-
rithm: a goal commitment strategy.

A goal commitment strategy explicitly encodes the rea-
sons for a goal adoption and dropping of it. When an agent
believes it can adopt a goal, it should also add the explicit
representation of it (a goal formula) to its goal base. Simi-
larly when it believes the goal can be dropped, it should also
remove the corresponding goal formula from its goal base.
The following two code patterns ADOPT and DROP provide
a toolbox for encoding an appropriate commitment strategy
for a given goal formula.

define ADOPT(ϕG, ψ⊕)
when ���Bψ⊕ and not ���GϕG then ⊕GϕG

end
define DROP(ϕG, ψ)

when ���Bψ	 and ���GϕG then 	GϕG

end

Provided ϕG is a goal formula and ψ⊕, ψ	 are adopt/drop
conditions on agent’s beliefs, we can formulate the following
property of the ADOPT and DROP macros (that is, the
following formula is valid in every annotated BSM):

A(���Bψ⊕)→ [ADOPT(ϕG, ψ⊕)∗]3A(���GψG) ∧
A(���Bψ)→ [DROP(ϕG, ψ)∗]3¬A(���GψG).

Goal oriented behaviour, together with an associated com-
mitment strategy forms a particular goal. The goal formula
thus becomes an explicit representation (a placeholder) for
the goal. In the following, we discuss two code patterns for
particularly useful goal types.

Achievement goals. The notion of an achievement goal is
one of the central constructs of agent-oriented programming.
Provided an agent does not believe that a goal satisfaction
condition ϕB is true in a given point of time, an achievement
goal ϕG specifies that the agent desires to eventually make
it true. After having satisfied the goal, it can be dropped.
Moreover, if the agent believes the goal is unachievable (ϕ),
it can retract its commitment to it. ACHIEVE GOAL code
template formalizes this type of goal:

define ACHIEVE GOAL(ϕG, ϕB, ψ⊕, ψ	, τ)
TRIGGER(ϕG, τ) ;

ADOPT(ϕG, ψ⊕) ;
DROP(ϕG, ϕB) ;
DROP(ϕG, ψ)

end

The code template for an achievement goal combines a
goal oriented behaviour with a corresponding commitment
strategy, so that in a single execution step, either the agent
handles the goal commitment, or it enables the behaviour
for its achievement. Provided TRIGGER(ϕG, τ) is a goal
oriented behaviour, ψ⊕, ψ	 are goal adoption and drop con-
ditions respectively, and assuming that during iterated exe-
cution of τ an agent will eventually believe that the goal is
satisfied, ACHIEVE GOAL makes the agent stick to the goal
until it is satisfied:

([τ]A(τ) ∧ [τ∗]3ϕB) ⇒
[ACHIEVE GOAL(ϕG, ϕB, ψ⊕, ψ	, τ)∗]

A(���GϕG)U A(���BϕB ∨ ���Bϕ).

The provided implementation of the achievement goal im-
plements a commitment strategy similar to that of the spec-
ification of persistent relativized goal P-R-GOAL, defined by
Cohen and Levesque in [4]. P-R-GOAL is to be dropped
also when the agent believes the goal cannot be achieved.
In our case, however, this constraint must be implemented
by a programmer and formulated as an explicit goal drop
condition ϕ	. In the basic setup of an agent architecture
discussed here, we do not assume introspective capabilities
of an agent.

Example 4 (running example cont.). The robot
should start searching for the ‘item42 ′, only when it believes
it needs it. Otherwise, when either it does not need it any-
more, or already holds it, or the item does not exist anymore,
it should drop the goal and thus deactivate the searching be-
haviour. The following code pattern reformulates the goal
oriented behaviour for the FIND capability as an instance of
the achievement goal:

ACHIEVE GOAL(
has(item42),
holds(item42),
needs(item42),
¬needs(item42) ∨ ¬exists(item42),
FIND)

Maintenance goals. A particularly useful commitment strat-
egy for a goal is persistent maintenance of a certain condi-
tion of the agent’s beliefs. Provided that a belief condi-
tion ϕB is an intended consequence of a capability τ (i.e.
[τ]A(τ) ⇒ [τ∗]3A(���BϕB)), its violation should trigger the
behaviour τ supposed to maintain its validity. Moreover, in
our implementation of the maintenance goal it should never
be dropped, i.e., in the case it cannot be derived from the
goal base, it should be re-instantiated. The following code
pattern implements the notion of a maintenance goal:

define MAINTAIN GOAL(ϕG, ϕB, τ)
when not ���BϕB then TRIGGER(ϕG,τ) ;
ADOPT(ϕG, >)

end

Let TRIGGER(ϕG, τ) be a goal oriented behaviour and
ϕB be a maintenance condition. The code pattern MAIN-
TAIN GOAL satisfies the following property:

([τ]A(τ) ∧ [τ∗]3A(���BϕB))⇒
(A(���GϕG)→ [MAINTAIN GOAL(ϕG, ϕBτ)∗]2

(¬A(���BϕB)→ 3A(���BϕB))).

Example 5 (running example cont.). The robot de-
sires to maintain its safety. If it feels threatened, it attempts
to restore the feeling of safety by running away from the
dangerous situation. The following mst formulates the cor-
responding maintenance goal:

MAINTAIN GOAL(keep safe, safe, RUN AWAY)

We finish this section by completing the running example
of the robot with a sketch of a final agent program imple-
menting its specified behaviour.

Example 6 (running example finish). The original
intended behaviour of the agent system was to promptly react
to interruptions it faces (potential threats), while still main-
taining the contexts of the other active goals (searching for
an item). The following program combines the previously
developed code chunks:

PERCEIVE ,
{ MAINTAIN GOAL(keep safe, safe, RUN AWAY) ;

ACHIEVE GOAL(
has(item42),
holds(item42),
needs(item42),
¬needs(item42) ∨ ¬exists(item42),
FIND)

}

To realistically model a real robot, we assume PERCEIVE,
a macro implementing querying the environment and updat-
ing the agent’s belief base B accordingly. The robot first ex-
tracts perceptory input from its interface to the environment
and subsequently selects an appropriate reactive behaviour to
be performed.

The DCTL* characterizations of macros ACHIEVE GOAL
and MAINTAIN GOAL, presented earlier in this section, en-
sure that the program in Example 6 indeed implements the
right behaviour.

6. DISCUSSION & CONCLUSIONS
Source code modularity and reusability are one of the

principal concerns of pragmatic software engineering. To
support reusability, especially in teams of programmers, the
code must provide clear interfaces and crisp semantic char-
acterization of its functionality. The maxim of such se-
mantic characterization is a non-ambiguous formal language.
Therefore a tight relationship between a programming frame-
work and a logic for reasoning about programs created in it
is vital for a formal study of engineering non-trivial agent
systems.

In this paper we introduce DCTL*, a temporal branch-
ing time logic with features of propositional dynamic logic,
as a formal vehicle for reasoning about Behavioural State
Machines. Logic agnostic BSM programs are linked to the
formal logic by means of annotations provided by the code
designer. Capturing and extracting semantic characteriza-
tions of BSM mental state transformers allows us to describe
two orthogonal aspects of code modularity. First, given
a KR module interfacing with an environment, program-
mers can provide and subsequently annotate compound be-
haviours, capabilities, that an agent can perform. These can
be reused in various agent systems which employ the same
type of a physical body of an agent, i.e., the KR module in-
terfacing with the agent’s environment. Second, we demon-
strate development of application domain-independent code

patterns for implementing a modular, BDI-inspired agent
system architecture. The patterns we provide allow for en-
coding agent’s internal functionality in terms of a web of
interdependent mental attitudes and capabilities. The cen-
tral piece of the architectural sketch is the notion of a goal
formula stored in an agent’s goal base. Moreover, the pro-
vided patterns are completely decoupled from actual KR
technologies that the programmer has chosen for implement-
ing agent’s individual mental categories, like beliefs or goals.

Mainstream programming languages for BDI-inspired cog-
nitive agents with formal semantics, such as AgentSpeak(L)/
Jason [3], 3APL [5], and GOAL [7], choose a set of agent-
oriented concepts and provide their particular implementa-
tion. In consequence, the concrete choices of a feature set
and its implementation constrain extensibility of the lan-
guage itself: with each newly introduced feature, the lan-
guage interpreter has to be modified accordingly. The pre-
sented approach provides an alternative paradigm for de-
sign of agent-oriented programming languages. Instead of
a choice of features provided by a language designer, we
present a generic programming language for reactive systems
integrating heterogeneous KR technologies that enables ex-
tensions by code patterns implementing user defined agent-
oriented concepts.

Additionally, providing a temporal logic tightly associated
with the programming framework allows us to tackle the
two sides of the software engineering process. First, given
a formal specification of an agent system in terms of goals
and temporal properties, the creative process of refining and
decomposing the specification to sub-problems (divide-and-
conquer) and designing an implemented system satisfying
the specification can be supported by a library of seman-
tically well characterized agent-oriented code patterns. On
the other hand, provided an implementation of an agent sys-
tem, we can relate it to the original system specification by
extracting its semantic characterization.

Except for some recent efforts for the language Gwen-
dolen by Dennis et al. [8] and for GOAL by de Boer et
al. [7], a tight relationship of an agent programming lan-
guage with a formal logic enabling verification of programs
remains largely unexplored. Both these languages are yet to
be applied in a non-trivial application domain. Moreover,
their close relationship with a logic-based knowledge repre-
sentation presents a serious limitation for implementation
of domain specific cognitive agents requiring also non-logic
based forms of reasoning, e.g., mobile robots which need to
reason about topology of their environment. Finally, Bor-
dini et al. in [3] made an attempt to propose several design
patterns in the programming language Jason. However, they
introduce code patterns only informally as an auxiliary tool,
potentially useful in recurring pattern in agent programs de-
velopment, rather than a basis for further extending of the
language.

7. REFERENCES
[1] Rafael H. Bordini, Lars Braubach, Mehdi Dastani,

Amal El Fallah Seghrouchni, Jorge J. Gomez-Sanz,
João Leite, Gregory O’Hare, Alexander Pokahr, and
Alessandro Ricci. A survey of programming languages
and platforms for multi-agent systems. Informatica,
30:33–44, 2006.

[2] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and
Amal El Fallah Seghrouchni. Multi-Agent

Programming Languages, Platforms and Applications,
volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations. Kluwer, 2005.

[3] Rafael H. Bordini, Jomi Fred Hübner, and Michael
Wooldridge. Programming Multi-agent Systems in
AgentSpeak Using Jason. Wiley Series in Agent
Technology. Wiley-Blackwell, 2007.

[4] Philip R. Cohen and Hector J. Levesque. Intention is
choice with commitment. Artificial Intelligence,
42(2-3):213–261, 1990.

[5] Mehdi Dastani, M. Birna van Riemsdijk, and
John-Jules Meyer. Programming Multi-Agent Systems
in 3APL, chapter 2, pages 39–68. Volume 15 of
Multiagent Systems, Artificial Societies, and Simulated
Organizations [2], 2005.

[6] Mehdi Dastani, M. Birna van Riemsdijk, and
John-Jules Ch. Meyer. A grounded specification
language for agent programs. In Proceedings of
AAMAS’07, pages 578–585, 2007.

[7] Frank S. de Boer, Koen V. Hindriks, Wiebe van der
Hoek, and John-Jules Ch. Meyer. Agent programming
with declarative goals. CoRR, cs.AI/0207008, 2002.

[8] Louise A. Dennis and Berndt Farwer. Gwendolen: A
BDI language for verifiable agents. Logic and the
Simulation of Interaction and Reasoning, 2008.
AISB’08 Workshop.

[9] E. Allen Emerson. Temporal and modal logic. In
Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics, pages 995–1072. 1990.

[10] David Harel, Dexter Kozen, and Jerzy Tiuryn.
Dynamic logic. In Handbook of Philosophical Logic,
pages 497–604. MIT Press, 1984.

[11] Jesper G. Henriksen and P. S. Thiagarajan. Dynamic
linear time temporal logic. Annals of Pure and Applied
Logic, 96(1-3):187–207, 1999.

[12] Randolph M. Jones and Robert E. Wray III.
Comparative analysis of frameworks for
knowledge-intensive intelligent agents. AI Magazine,
27(2):45–56, 2006.

[13] Zohar Manna and Amir Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer, 1992.

[14] Peter Novák. Jazzyk: A programming language for
hybrid agents with heterogeneous knowledge
representations. In Proceedings of ProMAS’08, pages
72–87. LNAI 5442, Springer, 2008.

[15] Peter Novák and Michael Köster. Designing
goal-oriented reactive behaviours. In Proceedings of
CogRob’08, pages 25–31, 2008.

[16] Gordon D. Plotkin. A Structural Approach to
Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

[17] A. Pnueli. The temporal logic of programs. In
Proceedings of FOCS, pages 46–57, 1977.

[18] Anand S. Rao and Michael P. Georgeff. An Abstract
Architecture for Rational Agents. In Proceedings of
KR’92, pages 439–449, 1992.

[19] Roni Rosner and Amir Pnueli. A choppy logic. In
Proceedings of LICS’86, pages 306–313. IEEE
Computer Society, 1986.

[20] Yoav Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51–92, 1993.

