
The Second Contest on Multi-Agent Systems
based on Computational Logic

Mehdi Dastani1, Jürgen Dix2 and Peter Novák2

1Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

mehdi@cs.uu.nl
2Clausthal University of Technology

Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
dix@tu-clausthal.de, peter.novak@in.tu-clausthal.de

Abstract. The second edition of the contest on Multi-Agent Systems
based on computational logic was held in conjunction with the CLIMA
’06 workshop in Hakodate, Japan. Based on the experiences from the
first edition of this contest ([8]), we decided to improve the setting of the
first edition. In particular, we built a server to simulate the multi-agent
system environment in which the agents from different groups can sense
the environment and perform their actions. In this way, different multi-
agent systems can compete with each other for the same resources. This
allows for much more objective evaluation criteria to decide the winner.
Three groups from Brazil, Spain and Germany did participate in this
contest. The actual contest took place prior to the CLIMA workshop
and the winner, the group from Brazil, was announced during CLIMA
’06.

1 Introduction

Multi-agent systems are a promising paradigm in software engineering. Vari-
ous multi-agent system development methodologies have been proposed each of
which focuses on specific stages of the software development process. For exam-
ple, Gaia focuses on the specification and design stages assuming that other stages
such as requirement and implementation are similar to corresponding stages of
other software development paradigms. Therefore, the designers of Gaia propose
models to specify and design multi-agent systems, but they ignore the imple-
mentation models.

Moreover, there is a growing number of agent-oriented programming lan-
guages that are proposed to facilitate the implementation of multi-agent systems.
These programming languages introduce programming constructs that can facil-
itate efficient and effective implementation of multi-agent systems. On the other
hand, many aspects involved in multi-agent systems require logical representa-
tion and reasoning: to represent agent’s knowledge and actions and to reason
about them. In the last decades, research on computational logic has resulted

in numerous implementable methods and techniques that can be used to model
such aspects.

The development of multi-agent systems requires efficient and effective solu-
tions for different problems which can be divided into three classes: the problems
related to

1. the development of individual agents,
2. the development of mechanisms to manage the interactions between individ-

ual agents, and
3. the development of the shared environment in which agents perform their

actions.

Typical problems related to individual agents are how to specify, design and
implement issues such as autonomy, pro-active/reactive behaviour, perception
and update of information, reasoning and deliberation, and planning. Typical
problems related to the interaction of individual agents are how to specify, de-
sign and implement issues such as communication, coordination, cooperation and
negotiation. Finally, typical problems related to the development of their envi-
ronment are how to specify, design and implement issues such as resources and
services, agents’ access to resources, active and passive sensing of the environ-
ment, and realizing the effects of actions.
This competition is an attempt to stimulate research in the area of multi-agent
systems by

1. identifying key problems during MAS development, and
2. evaluating state-of-the-art techniques and approaches from both computa-

tional logic and multi-agent systems.

While there already exist several competitions in various areas of artifi-
cial intelligence (theorem proving, planning, Robo-Cup, etc.) and, lately, also
in specialized areas in agent systems (Trading Agent Competition (TAC) [1]
and AgentCities competitions [2]), the emphasis of this contest is on the use of
computational logic in the development of multi-agent systems. We believe that
approaches and techniques of computational logic are essential for the develop-
ment of multi-agent systems ([3,7,4] for at least two reasons:

1. logical approaches have proven to be very useful for specifying and modeling
multi-agent systems in a precise manner, and

2. the specification and models can be executed.

We tried to encourage participants to use existing methods and techniques
from computational logic research, as well as existing development methodolo-
gies and programming languages for multi-agent systems. However, in order to
evaluate how computational logic based implementations will perform in a head-
to-head competition with other systems, we decided to open the contest also to
non-logic based submissions.

2 Scenario Description

The competition task consisted of developing a multi-agent system to solve a
cooperative task in a dynamically changing environment. The environment of
the multi-agent system was a grid-like world where agents could move from one
cell to a neighbouring cell if there was no agent or obstacle already in that cell. In
this environment, gold could appear in the cells. Participating agent teams were
expected to explore the environment, avoid obstacles and compete with another
agent team for the gold. The agents of each team could coordinate their actions
in order to collect as much gold as they could and to deliver it to the depot where
the gold can be safely stored. Agents had only a local view on their environment,
their perceptions could be incomplete, and their actions could fail. The agents
were able to play different roles (such as explorer or collector), communicate and
cooperate in order to find and collect gold in an efficient and effective way.

Each team competed against all other teams in a series of matches. Each
match between two competing teams consisted of five simulations. A simulation
between two teams was a competition between them with respect to a certain
starting configuration of the environment. Winning a simulation yielded three
points for the team, a draw was worth one point and a loss resulted in zero
points. The winner of the whole tournament was evaluated on the basis of the
overall number of collected points in the matches during the tournament.

2.1 Technical Description of the Scenario

In this contest, the agents from each participating team were executed locally
(on the participant’s hardware) while the simulated environment, in which all
agents from competing teams performed their actions, was run on the remote
contest simulation server. The interaction/communication between agents from
one team had to be managed locally, but the interaction between individual
agents and their environment (run on the simulation server) was done via Inter-
net. Participating agents had to connect to the simulation server that provided
the information about the environment. Each agent from each team did connect
and communicate to the simulation server using one TCP connection.

After the initial phase1, during which agents from all competing teams con-
nected to the simulation server, identified themselves and got a general match
information, the competition started. The simulation server controlled the com-
petition by selecting the competing teams and managing the matches and sim-
ulations. In each simulation, the simulation server provided in a cyclic fashion
sensory information about the environment to the participating agents and ex-
pected agent’s reaction within a given time limit. Each agent had to react to
the received sensory information by indicating which action (including the skip
action) it wanted to perform in the environment. If no reaction was received
from the agent within the given time limit, the simulation server assumed that

1 The contest organizers contacted participants before the actual tournament and
provided them the IDs necessary for identification of their agents for the tournament.

the agent has performed the skip action. After a finite number of steps the sim-
ulation server stopped the cycle and participating agents received a notification
about the end of a match.

2.2 Team, Match, and Simulation

An agent team consisted of four software agents with distinct IDs. There were
no restrictions on the implementation of agents, although we encouraged the
use of computational logic based approaches. The tournament consisted of three
matches. Each match was a sequel of five simulations during which two teams of
agents competed in several different settings of the environment. For each match,
the server 1) picked two teams to play it and 2) started the first simulation of
the match. Each simulation in a match started by notifying the agents from the
participating teams and distributing them the details of the simulation. These
included for example the size of the grid, depot position, and the number of steps
performed by the simulation. A simulation consisted of a number of simulation
steps. Each step consisted of 1) sending a sensory information to agents (one
or more) and 2) waiting for their actions. In the case that an agent had not
responded within a timeout (specified at the beginning of the simulation) by a
valid action, it was considered to perform the skip action in the given simulation
step.

2.3 Environment objects

The (simulated) environment was a rectangular grid consisting of cells. The size
of the grid was specified at the start of each simulation and was variable (not
more than 100x100 cells). The [0,0] coordinate of the grid was in the top-left
corner (north-west). The simulated environment contained one depot, which
served for both teams as a location of delivery of gold items. The environment
could contain the following objects in its cells:

– obstacle (a cell with an obstacle could not be visited by an agent),
– gold (an item which could be picked from a cell),
– agent,
– depot (a cell to which gold items were to be delivered in order to earn a

point in a simulation), or
– mark (a string data with a maximum of 5 characters which could be read /

written / rewritten / removed by an agent)

There could be only one object in a cell, except that an agent could enter cells
containing gold, depot or mark, and a gold item could be in a marked cell visited
by an agent. At the beginning of a simulation the grid contained obstacles, gold
items and agents of both teams. Distribution of obstacles, gold items and initial
positions of agents could be either hand crafted for the particular scenario, or
completely random. During the simulation, gold items could appear randomly
(with a uniform distribution) in empty cells of the grid. The frequency and
probability of gold generation was simulation specific, however not known to
neither agents, nor participants.

Perception Agents were located in the grid and the simulation server provided
each agent with the following information:

– absolute position of the agent in the grid,
– the content of the cells surrounding the agent and the content of the cell in

which the agent was currently standing in (9 cells in total).

If two agents were standing in each other’s field of view, they could recognize
whether they were an enemy, or whether they belong to the same team. However
an agent was not able to recognize whether the other agent carries a gold item
or not. If there was a mark in a cell, which was in an agent’s field of view, it
received also the information about its content.

Actions Agents were allowed to perform one action in a simulation step. The
following actions were allowed:

– skip: The execution of the skip action does not change the state of the
environment (under the assumption that other agents do not change it).

– movements (east, north, west, south): An agent can move in four di-
rections in the grid. The execution of move east, move north, move west, and
move south changes the position of the agent one cell to the left, up, right,
and down, respectively. A movement action succeeds only when the cell to
which an agent is about to move does not contain another agent or obstacle.
Moving to and from the depot cell is regulated by additional rules described
later in this description.

– pick, drop: An agent can carry only one gold item which it successfully
picked up before. An agent can pick up a gold item if 1) the cell in which
an agent stands in contains gold, and 2) the agent is not carrying another
gold item. An agent can drop the gold item it is carrying only in the cell
it is standing in. The result of a successful pick action is that in the next
simulation step the acting agent was considered to carry a gold item and
the cell, it is standing in, does not contain the gold item any more. The
result of a drop action is that the acting agent is not carrying the gold item
anymore and that the cell it is standing in contains the gold item in the next
simulation step. Dropping a gold item to a depot cell does increase the score
of the agent’s team by one point. The depot cell does never contain a gold
item that can be picked by an agent.

– mark, unmark: An agent is allowed to mark a cell it is standing in by a
string data with a maximum of 5 characters. The result of a mark action was
that the cell in which an agent was located, contained a string in the next
simulation step. The depot cell, and cells containing an obstacle could not be
marked. By marking a previously marked cell, the old mark was removed and
replaced by the new one. If the cell in which an agent was located, contains a
mark, then the agent received the string in the perception information from
the simulation server. An agent is also allowed to unmark the marked cell
it is standing in. The result of an unmark action is that the cell does not

contain a mark in the next simulation step. Agents do not get immediate
feedback on their actions, but can learn about the effects of their actions
(and the actions of other agents) from the perception information that is
sent to them in the next simulation step.

All actions, except the skip action, could fail. The result of a failed action was
the same as the result of the skip action. An action could fail either because
the conditions for its successful execution were not fulfilled, or because of the
information distortion (described later in this text).

Depot cell There are strong conditions imposed on the depot cell:

1. an agent not carrying a gold item is unable to enter the depot cell (the result
of such an action is the same as if the depot were an obstacle)

2. an agent which enters the depot cell should drop the gold item as the very
next action it is executing

3. after dropping the gold item in a cell, an agent must leave the cell in the
first subsequent simulation step, when he is able to move (i.e. when there is
an empty cell around at the time of agent’s move action).

If an agent does not leave the depot in the first possible opportunity, or does
not drop the gold item as the very next action after entering the depot, the
simulation server punishes it by ”teleporting” it away (it is moved to a random
cell not containing another agent, or obstacle in the grid by the environment
simulator).

Timeout, Information Distortion, and Final Phase The agents had to in-
form the simulation server which actions they want to perform within a timeout
specified at the beginning of the simulation. The contest organizers did not take
any responsibility for the speed of the Internet connection between the server
and participating agents. Timeouts were set reasonably high, so that even partic-
ipants with a slow network connection, or using a time demanding deliberation,
were able to communicate with the server in an efficient way.

A ping interface was provided by the server in order to allow participating
agents to test the speed of their connection during the whole duration of the
tournament.

Agents could receive incomplete information about the environment from the
simulation server. The simulation server could omit information about particu-
lar environment cells. However, this happened only with a certain probability,
guaranteed to be not higher than 20 percent and fixed for each simulation.

In the final phase, the simulation server sent a message to each agent allowing
them to disconnect from the server ending the tournament.

2.4 General Agent-2-Server Communication Principles

Agents communicated with the contest server by exchanging XML messages
and using standard TCP/IP stack with socket session interface. Messages were
XML documents that could be analyzed by standard XML parsers available for
many programming languages. The Internet coordinates (IP address and port)
of the contest server (and a dedicated test server) were communicated to the
participants via the official CLIMA VII Contest mailing list.

Communication Protocol The tournament was divided into three phases.
During the initial phase, agents connected to the simulation server and identify
themselves by user-name and password (AUTH-REQUEST message). Creden-
tials for each agent were distributed in advance via e-mail. As a response, agents
received the result of their authentication request (AUTH-RESPONSE message)
which could either succeed or fail. After successful authentication, agents had to
wait until the first simulation of the tournament started.

At the beginning of each simulation, agents of the two participating teams
were notified (SIM-START message) and received simulation specific informa-
tion: simulation ID, opponent’s ID, grid size, number of steps the simulation last
and the depot position.

In each simulation step an agent received a perception about its environment
(REQUEST-ACTION message) and it had to respond by performing an action
(ACTION message). Each request-action message contained information about 9
neighbouring cells around agent (including the one agent stands on), its absolute
position in the grid, simulation step number and a deadline for its response.
Agent had to deliver its response within the given deadline. The action message
had to contain the identifier of the action and action parameters, if required.

When the simulation was finished, participating agents received the notifi-
cation about it (SIM-END message) which included the information about the
number of gold items collected by the team agent and the information about the
result of the simulation (whether the team won, or lost the simulation).

All agents that did not participate in a simulation had to wait until the
simulation server notified them about either 1) the start of a simulation, they
are going to participate in, or 2) the end of the tournament.

At the end of the tournament, all agents received the notification (BYE
message). Subsequently the simulation server terminated the connection to the
agent.

Reconnection When an agent lost its connection to the simulation server,
the tournament proceeded without disruption, only all the actions of a discon-
nected agent were considered to be empty. Agents were themselves responsible
for maintaining the connection to the simulation server and in a case of connec-
tion disruption, they were allowed to reconnect.

Agents reconnected by performing the same sequence of steps as at the
beginning of the tournament. After establishing the connection to the sim-

ulation server, it could send AUTH-REQUEST message and receive AUTH-
RESPONSE. After successful authentication, the server could send a SIM-START
message to an agent. If an agent participated in a currently running simulation,
the SIM-START message was delivered immediately after AUTH-RESPONSE.
Otherwise an agent had to wait until a next simulation in which it participates
started. In the next subsequent step when the agent was picked to perform an
action, it received the standard REQUEST-ACTION message containing the
perception of the agent at the current simulation step and simulation proceeded
in a normal mode.

Ping Interface The simulation server provided a ping interface in order to
allow agents to test their connection to the simulation server. Agents could send
a PING message containing a payload data (ASCII string up to 100 characters)
and receive PONG message with the same payload. As all messages contained a
timestamp, agents could also use ping interface to synchronize their time with
the server.

Protocol Sequence Diagram (UML like notation)

* Initial phase * Reconnect

Server Agent Server Agent

| AUTH-REQUEST | | AUTH-REQUEST |

|<<--------------------------------| |<<--------------------------------|

| | | |

| AUTH-RESPONSE | | AUTH-RESPONSE |

|-------------------------------->>| |-------------------------------->>|

| |

| SIM-START |

* Simulation |-------------------------------->>|

Server Agent +------------------------+

| SIM-START | | ref: |

|-------------------------------->>| | Simulation Step Cycle |

| | +------------------------+

+--+

| loop: Simulation Step Cycle | |

| | | | * Ping

| | REQUEST-ACTION | | Server Agent

| |-------------------------------->>| | | PING |

| | | | |<<--------------------------------|

| | ACTION | | | |

| |<<--------------------------------| | | PONG |

| | | | |-------------------------------->>|

+--+

| | * Final phase

| SIM-END | Server Agent

|-------------------------------->>| | BYE |

|-------------------------------->>|

XML Messages Description XML messages exchanged between server and
agents were zero terminated UTF-8 strings. Each XML message exchanged be-
tween the simulation server and agent consisted of three parts:

– Standard XML header: Contained the standard XML document header
<?xml version="1.0" encoding="UTF-8"?>

– Message envelope: The root element of all XML messages was <message>.
It had attributes: the timestamp and a message type identifier.

– Message separator: Each message is a UTF-8 zero terminated string. Mes-
sages are separated by null byte.

Timestamp is a numeric string containing the status of the simulation server’s
global timer at the time of message creation. The unit of the global timer is
milliseconds and it is the result of standard system call ”time” on the simulation
server (measuring number of milliseconds from January 1, 1970 UTC). Message
type identifier is one of the following values: auth-request, auth-response,
sim-start, sim-end, bye, request-action, action, ping, pong.

Messages sent from the server to an agent contained all attributes of the root
element. However, the timestamp attribute could be omitted in messages sent
from an agent to the server. In the case it was included, server silently ignored
it. Example of a server-2-agent message:

<message timestamp="1138900997331" type="request-action">
<!-- optional data -->

</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->

</message>

According to the message type, the root element <message> can contain
simulation specific data. These simulation data are described and explained in
the official CLIMA VII webpage2.

3 Submission

A submission consisted of two parts. The first part was a description of anal-
ysis, design and implementation of a MAS for the above application. We have
encouraged submissions that specify, design and implement multi-agent systems
using existing agent-oriented methodologies such as Gaia [12], Prometheus [9] and
Tropos [6]. For the description of the implementation, the authors were asked
to explain how their design is implemented. In particular, they were asked to
explain which computational logic techniques (e.g. logic programming, formal
calculi, etc.) are used to implement aspects of the multi-agent system such as
mental states (e.g., goals, beliefs, plans, and roles) of individual agents, commu-
nication, coordination, negotiation, and dialogue. Although we emphasized the
use of computational logic techniques, we did not exclude submissions that were
based on other approaches (e.g. based on machine learning, neural nets, etc.)
and programming paradigms.

The second part was the participation in the contest tournament by means
of an (executable) implementation of a multi-agent system. The source code
together with instructions on how to install it, including precise instructions
on software and hardware requirements, had to be submitted just before the
competition started.
2 http://cig.in.tu-clausthal.de/fileadmin/user_upload/_temp_

/c7c-protocol.txt

3.1 Received Submissions

We have received three submissions for this edition of the CLIMA contest. From
the received submissions, two submissions used an existing multi-agent devel-
opment methodology to specify, design, and implement a running multi-agent
system. The use of computational logic techniques was explicitly discussed in
two of the submissions. The use of computational logic in the third submission
emerged mostly from using Prolog as the programming language for implement-
ing the multi-agent system.

The submission from R.H. Bordini, J.F. Hübner, and D.M. Tralamazza uses
Prometheus [9] as the multi-agent development methodology to specify and de-
sign their multi-agent system. Using this methodology, the multi-agent system
is designed by means of a System Overview Diagram that describes the inter-
action between miner (searching) and courier agents. These agents are subse-
quently specified and designed in terms of Goal Overview Diagram and Agent
Overview Diagrams describing their specific knowledge, goals and plans. Their
designed system is then implemented in Jason [5], which is an interpreter of an
extension of the agent-oriented programming language AgentSpeak [10]. As it
was required by the contest, their multi-agent system consisted of four individ-
ual agents. These agents follow a general strategy according to which each agent
is responsible for one quadrant of the grid environment. Each agent can then
play two roles: carrying gold or searching for gold. The agents from the team
can communicate to help each other. For example, a searching agent that finds
some gold can ask a courier agent to transport the gold to the gold depot. The
use of computational logic techniques in this submission emerges mostly from
the use of computational logic techniques in AgentSpeak language and its Jason
interpreter.

The submission from C. Cares, X. Franch, and E. Mayol uses a goal-oriented
development methodology which is based on a combination of antimodels (a re-
quirement engineering technique) and an extension of Tropos [6]. This method-
ology is used to specify and design a multi-agent system for the Gold mining
scenario of the contest. They specify the goals of the multi-agent system, ana-
lyze possible attacks on these goals (e.g., the goal of the competitor team), and
propose adequate responses to such attacks. Based on the resulting specification,
they identify possible involved agents and design their strategies. Their exten-
sion of Tropos enables them to generate a Prolog implementation of the identified
agents and their designed strategies. The fact that the implementation is based
on Prolog seems to be the only use of computational logic in their system.

The final submission from S. Schiffel and M. Thielscher does not use any
specific multi-agent system development methodology. The focus on this sub-
mission is rather on the use of computational logic techniques in implementing
the Gold mining scenario. In particular, they implement their multi-agent sys-
tem in FLUX [11], which is a programming language based on constraint logic
programming. The agent implemented in FLUX can reason logically about their
sense information and actions in the presence of incomplete knowledge. Each
agent builds a mental model of the environment by sensing the environment and

performing actions. A FLUX agent program consists of a kernel (the reasoning
capability of the agent), a domain-specific background theory (the model of the
environment), and a strategy (the behaviour of the agent). The mental model
of the agents is defined in terms of fluents that represent the position of agents,
the position of the gold depot, the position of the obstacles, and the fact that
an agent carries gold. The strategies of the agents are defined in terms of the
actions that are proposed in the contest description. In this system, all FLUX
agents share the same background theory, and each agent acts according to its
individual strategy and the role it plays

4 Technical infrastructure

In order to run the competition, we developed a multi-agent system environment
simulation server MASSim. Briefly, the server’s architecture consists of

1. simulation plug-in - a replaceable module providing the logics of the envi-
ronment simulation,

2. agent session manager - responsible for holding the sessions between the
server and individual agents and en/de-coding of XML messages of the pro-
tocol,

3. visualization library - which produced the SVG records from each time frame
of the simulation environment state,

4. contest webinterface - providing a public view and interface to the MASSim
server, and

5. MASSim core module - managing the tournament scheme and providing the
connection between the simulation plug-in, agent session manager and web-
interface.

Most of the software components were implemented in Java 1.5.0. The web-
interface module, running as a set of Java servlets under Apache webserver with
Tomcat application server, was loosely connected to the core simulation server
via Java RMI (Remote Method Invocation) protocol so, that if a need arose due
to high CPU load, we could run the webinterface and the core simulation server
on different computers.

The whole MASSim server architecture was designed with the following re-
quirements in mind:

1. high versatility—the core system (MASSim simulation server) should depend
on the most standard software today so that contest participants are able
to download and install the system without a hassle. It should be easily
deployable on standard configurations using Linux OS, Apache webserver
and Tomcat application server;

2. open and reusable - we designed the server so that it can accommodate vast
range of discrete-time simulation scenarios which can be easily connected to
the core server API;

3. component based design - each MASSim simulation server component com-
municates with other components using a well-defined API such that we are
able to replace it quickly on the ground of changing requirements (e.g. dif-
ferent tournament structure, different network communication protocol, or
a visualization technology)

The system, including a documentation which is still partly a work in progress,
is published on the official Contest website: http://cig.in.tu-clausthal.de/
CLIMAContest/.

4.1 Contest preparation

Several days before the start of the competition, the contest organizers con-
tacted participants via e-mail with details on time and Internet coordinates (IP
addresses/ports) of the simulation server. Participants received also agent IDs
necessary for identification of their agents for the tournament. Agents had to
communicate with the simulation server using TCP protocol and by means of
messages in XML format. The details about communication protocol and mes-
sage format was specified and provided to participants long enough before the
actual competition.

The MASSim simulation server system proved to be a reliable and successful
platform for the CLIMA VII Contest. During the first testing phase (05.02.2006–
15.03.2006), we published the system on the Contest website. The participants
could download it and use it for development and debugging of their multi-
agent systems. Together with the simulation server, we published also a sample
implementation of an agent team. The contest participants could copy our full-
fledged working contest protocol implementation written in Java. This should
speed up the agent team development and participants could focus more on the
scenario strategy rather than the technical issues.

The main testing phase of the contest was run between March 15th and
April 27th 2006. During this period we ran the MASSim simulation server on
our network infrastructure with a slightly modified tournament structure imple-
mentation. Participants had to subscribe for a testing account and after receiving
valid credentials for each of their agents they could start using the test server.
Agents could connect to our test MASSim server running at agentmaster.
in.tu-clausthal.de port 12300 and participate in a test match against our
CLIMABot agent team. We did not allow agents of different teams compete
against each other as this should happen exclusively during the tournament it-
self.

For completeness, we give a short description of our own CLIMABot team.
The agents are completely on their own, there is no communication, no lobal
map building. An agent can be in two modes:

Mode 1: the agent moves randomly in its environment and looks for gold. It
remembers all gold positions and stores them in a list. This list is updated
while it is wandering around.

Mode 2: if an agent wants to get to a target at the position (X,Y) it tries the
shortest way to get there. If there are more shortest ways (as the grid is
rectangular and in the case when there are no obstacles directly around it)
it chooses the shortest path randomly.
If on the direct way to the target it bumps into an obstacle so that it cannot
proceed further in the desired direction it pushes the current direction it
wants to go to the stack, then it turns clockwise (to the right) and tries
to go in the new direction each step checking whether it is not possible to
turn into the desired direction (top of the stack). If on this way the agent
bumps into another obstacle it just pushes the current direction onto the
stack, again turns clockwise and proceeds. It does this thing until the stack
is empty. Otherwise the stack is just filled with stuff forever.

If, being in mode 1, an agent finds a piece of gold, it picks it and switches
to mode 2. In the case it finds another piece of gold on its way to the depot it
remembers its position in a list. Once it delivered the piece of gold, it picks the
nearest known piece of gold from the list and goes to it applying the algorithm
in mode 2. If the list is empty, it switches to mode 1.

4.2 Tournament

The CLIMA VII Contest tournament was scheduled for Thursday, April 27th
2006, 15:00 CEST (GMT+2). However, because of last-minute technical diffi-
culties of the Spanish team, we had to postpone the start of the tournament
for a couple of minutes so the tournament finally started at 15:26 the same
day. First, we let all the participating teams to compete against our CLIMABot
agent team and then real tournament matches followed in the following order
Germany:Spain, Brazil:Spain and Brazil:Germany. The tournament finished on
April 27th at 21:58 after 9 hours and 32 minutes. Matches took from 27 minutes
(Germany:CLIMABot) to 1 hour 48 minutes (Spain:CLIMABot).

During the tournament itself, the current tournament status could be watched
in real-time using our webinterface at http://agentmaster.in.tu-clausthal.de/.
Throughout the whole tournament we have not observed any technical problems.
All the results, together with the SVG recordings of all the matches and the of-
ficial DVD ISO image with a mirror-copy of the whole tournament website can
be downloaded from http://agentmaster.in.tu-clausthal.de/.

4.3 Simulation instances

The teams competed in matches each consisting of 5 simulations with identifiers
Random1, Random2, Labyrinth1, Labyrinth2 and Labyrinth. As the names sug-
gest, the first two simulation instances Random1 (Figure 1) and Random2 were
randomly generated simulations differing in the parameters while the last three
were handcrafted mazes.

Labyrinth1 (Figure 2) was a maze of rows of obstacles with gates at the very
ends. This simulation instance proved to be the most difficult for the partici-
pating agent teams, because a random exploration of the grid did not lead to

satisfactory results. In order to collect gold items in this simulation instance
agents had to implement a systematic search of the environment.

Labyrinth2 and Labyrinth (Figure 3) were inverted versions (w.r.t. initial
position of agent teams) of the same simulation instance consisting of a simple
rectangular maze with some holes in the structure and the depot in the mid-
dle. In order to succeed in this simulation instance, agents had to develop an
internal representation of the environment, but a systematic exploration of the
environment was not a hard requirement.

The following is a detailed description of simulation instances:

simulation ID: Random1 Random2 Labyrinth1 Labyrinth2 Labyrinth

grid size: 25x25 25x25 35x35 30x30 30x30

depot position: random random (10,17) (14,14) (14,14)

number of obstacles: 20 40 305 126 126

initial number of gold items: 75 20 60 45 45

information distortion probability: 10% 10% 3% 1% 1%

action failure probability: 2% 2% 2% 2% 2%

gold generation frequency: 3sec 3 sec 3 sec 3 sec 3 sec

number of generated gold items: 1 1 1 1 1

number of simulation steps: 500 500 500 500 500

Fig. 1. Simulation instance Random1 with a screenshot of the visualization interface.

5 Contest results

The winner of the CLIMA VII Contest was the team from Brazil with the highest
number of points: 25. The second team was from Spain with 14 points followed
by the team from Germany with 4 points. The summary of the whole tournament

Fig. 2. Simulation instance Labyrinth1.

Fig. 3. Simulation instance Labyrinth2.

is summarized in the Table 1. All the partial summaries of the matches can be
found in Tables 2, 3 and 4.

We did not include the results of our CLIMABot team. In fact, had our team
attended the contest, it would have been the winner. This is interesting because
it shows that not a lot of logic or strategies are needed to win the whole contest.
Our team has been written by our students in just 2 days. We are still not sure
why such a simple strategy turned out to be superior to all other contestants.

Rank Team Score Points

1. brazil 265 : 125 25

2. spain 225 : 176 14

3. germany 79 : 268 4
Table 1. Final tournament results.

Simulation/Score germany spain

Random1 36 33

Random2 6 10

Labyrinth 2 36

Labyrinth1 0 0

Labyrinth2 3 53
Table 2. Summary of the match between team Germany and the team Spain.

Simulation/Score brazil spain

Random1 33 33

Random2 3 4

Labyrinth 41 22

Labyrinth1 15 2

Labyrinth2 37 32
Table 3. Summary of the match between team Brazil and the team Spain.

6 Conclusion

The major motivations behind organizing the CLIMA Contest are the following:

– to foster the research and development of practically oriented approaches to
programming multi-agent systems,

Simulation/Score brazil germany

Random1 23 18

Random2 11 9

Labyrinth 50 2

Labyrinth1 11 0

Labyrinth2 41 3
Table 4. Summary of the match between team Brazil and the team Germany.

– to evaluate the state-of-the-art techniques in the field, and
– to identify key problems using these techniques.

After successfuly organizing two editions of the CLIMA Contest we still cannot
give a full account of the impact of our Contest to the research in MAS. However
we can briefly summarize what we believe are the major contributions of the
Contest.

Finding bugs: Apart from growing attention, we learned from participants of
the CLIMA Contest that they gathered a lot of practical experience in pro-
gramming agent teams for the contest. We consider this already a major
success: It helps to deepen the understanding of practical aspects of us-
ing tools, approaches and languages. Participating in the CLIMA Contest
already helped to discover several bugs in prominent agent programming
language interpreters and thus to improve the overall quality of the tool.

Classroom use: In the meantime, the technical infrastructure we developed for
the CLIMA Contest, is already used in teaching processes of at least two uni-
versities in Germany and Australia. The advantage of using our simulation
server in MAS lectures is its versatility and simplicity of the Contest scenario.
Practical experience of students with programming simple multi-agent sys-
tems using our simulation server also helps to raise general awareness about
multi agent research and applications of it.

Objective evaluation: A difficulty with the previous edition of this contest
was the lack of an objective evaluation criterion by means of which the win-
ner of the contest could be decided. In fact, the evaluation of the last contest
edition was partially based on the performance of the agent teams in grid-like
environments that were built by the participating groups themselves. As a
consequence, different agent teams could not compete with each other in one
and the same shared environment. Therefore, we decided for this contest edi-
tion to build an environment server in order to create equal conditions for the
participating agent teams. Moreover, this environment server enables agent
teams to focus on computational techniques and methods to implement gold
mining strategies (using local communication technologies and hardware) by
taking off the burden of implementing the simulation environment from the
participants’ shoulders.

As the whole software infrastructure is already developed and the feedback
from the CLIMA VII Contest was in favour of keeping the current competition

scenario, we are only planning to slightly modify and improve our scenario and
simulation instances. As far as the contest management concerns, we learned a lot
during the CLIMA VII Contest, especially with respect to managing the contest
infrastructure, mailing lists and contest schedule planning and announcements.
As the size of the last tournament in terms of number of participants was rather
low, we did not consider to divide participating teams into groups and execute
the tournament in several eliminating rounds.

We are currently finalizing and improving the documentation of our software
packages. They will be freely made available and can be used by interested
colleagues.

7 Acknowledgements

We are very thankful to our students in the Department of Informatics of
Clausthal University of Technology. They worked hard in order to meet all the
deadlines and deliver high-quality code. In particular, our thanks go to

– Bernd Fuhrmann for the core server component, contribution to the overall
architecture and the code repository management,

– Michael Köster for the CLIMA VII Contest simulation plug-in, deployment
scripts and the run-time server configuration,

– David Mainzer for the SVG visualization component, and
– Dominik Steinborn for the webinterface, its connection with the core server

and his care for the testing and run-time server deployment.

We also thank all the contest participants who contributed to its success.

References

1. http://www.sics.se/tac.
2. http://www.agentcities.org/EUNET/Competition.
3. R. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Multi-Agent

Programming: Languages, Platforms, and Applications. Number 15 in MASA.
Springer, Berlin, 2005.

4. R. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Programming Multi-
Agent Systems, volume 3346. LNAI, Springer Verlag, 2005.

5. R. H. Bordini and J. F. Hübner. BDI Agent Programming in AgentSpeak Using
Jason (Tutorial Paper). In F. Toni and P. Torroni, editors, CLIMA VI, volume
3900 of Lecture Notes in Computer Science, pages 143–164. Springer, 2005.

6. J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven informa-
tion systems engineering: the TROPOS project. Information Systems, 27:365–389,
2002.

7. M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Programming Multi-Agent Sys-
tems, volume 3067. LNAI, Springer Verlag, 2004.

8. M. Dastani, J. Dix, and P. Novak. The First Contest on Multi-Agent Systems
based on Computational Logic. In F. Toni and P. Torroni, editors, Proceedings of
CLIMA ’05, London, UK, volume 3900 of Lecture Notes in Artificial Intelligence,
pages 373–384. Springer, Berlin, 2006.

9. L. Padgham and M. Winikoff. Prometheus: A methodology for developing in-
telligent agents. In Agent-Oriented Software Engineering III: Third International
Workshop (AOSE’02). Springer, LNAI 2585, 2003.

10. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. V. de Velde and J. W. Perram, editors, MAAMAW, volume 1038 of Lecture
Notes in Computer Science, pages 42–55. Springer, 1996.

11. M. Thielscher. FLUX: A logic programming method for reasoning agents. CoRR,
cs.AI/0408044, 2004.

12. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(3):317–370, 2003.

