
W911NF-10-1-0112

Tactical AgentScout 2
Deliberative and reactive planning in adversarial environments

Final report
April 2011

Agent Technology Center, Gerstner Laboratory
Department of Cybernetics
Czech Technical University in Prague

Branislav Bošanský, Michal Čáp, Antońın Komenda, Viliam Lisý

Project coordinator: Peter Novák
Principal Investigator: Michal Pěchouček

Contents

1. Overview 9
1.1. Motivation and context . 9
1.2. Project description . 11
1.3. Achievements and innovative claims . 14
1.4. Managerial overview . 19
1.5. Document structure . 19

2. Patrolling of mobile targets 21
2.1. Summary of the workpackage . 21
2.2. Technology description . 21

2.2.1. Related work . 21
2.2.2. Patrolling game . 23
2.2.3. Integration with the simulator . 32

2.3. Evaluation and experimental results . 35

3. Modelling smart targets 37
3.1. Summary of the workpackage . 37
3.2. Technology description . 38

3.2.1. Related work . 38
3.2.2. Formal game definition . 40
3.2.3. State-of-the-art approaches . 42
3.2.4. Designed algorithms . 46

3.3. Evaluation and experiments . 55
3.3.1. Fully observable setting . 56
3.3.2. Partially observable setting . 59

4. Multi-agent re-planning and plan repair 61
4.1. Summary of the workpackage . 61
4.2. Technology description . 62

4.2.1. Interaction of agents with dynamic environments 62
4.2.2. Plan repairing and re-planning . 74

4.3. Evaluation and experiments . 82
4.3.1. Planning algorithms . 83
4.3.2. Plan repairing in dynamic urban environment 90

3

5. Coordination and teamwork 95
5.1. Summary of the workpackage . 95
5.2. Technology description . 95

5.2.1. Distributed Commitment Machines 96
5.2.2. Jazzyk/BSM . 99
5.2.3. Implementation description . 104

5.3. Evaluation and experiments . 106
5.3.1. Scenario . 106

6. Discussion and outlook 113
6.1. Adversarial planning: patrolling of mobile targets 113
6.2. Adversarial planning: modelling smart targets 113
6.3. Multi-agent re-planning and plan repair . 114
6.4. Coordination and teamwork . 114

A. Demonstrators 125

4

Executive summary

This document provides a final technical report on the work perfo0rmed in the context
of the research project W911NF-10-1-0112, Deliberative and reactive planning in
adversarial environments (Tactical AgentScout 2). The project aims at investigation
of problems and challenges in implementation of adversarial behavior in dynamic environ-
ments from game theoretic perspective and investigation of issues in long-term (deliberative)
vs. short-term (reactive) multi-agent planning in adversarial scenarios. The main research
foci of the project include i) adversarial planning for patrolling of mobile targets (convoys),
ii) adversarial planning for modeling smart targets, iii) multi-agent re-planning and plan
repair as a vehicle for integration of reactive and deliberative action selection, and finally
iv) modeling of coordination and teamwork in teams of heterogeneous cooperative agents.
The empirical evaluation of the project aimed at validation in multi-agent simulations of
urban warfare scenarios including heterogeneous teams composed of UAVs, VTOLs and
UGVs.

The main achievements and innovations of the project include development and evalua-
tion of:

1. extensions to state-of-the-art game-theoretic algorithms for controlling a mixed team
of UAVs and UGVs attempting to detect, track and capture smart targets, i.e., targets
which actively and purposefully avoid being detected, tracked, resp. captured;

2. novel game-theoretic algorithms for controlling a team of UAVs/VTOLs patrolling a
number of mobile targets (e.g., convoys);

3. novel multi-agent plan repair algorithms based on distributed constraint optimization
allowing modeling effective reaction and adaptation of a team of agents to unexpected
events and changes in dynamic environment; and finally

4. extensions of state-of-the-art multi-agent coordination techniques for modeling of
agent teams acting cooperatively in order to reach joint goals, while still maintaining
team-, as well as individual-level reactivity to changes in dynamic environments.

In this report we provide a detailed account of the work performed in the context of the
project, provide an extensive discussion of the technologies we proposed, designed and
developed, or adapted for the purposes of the project. Where appropriate, we also provide
a thorough evaluation of the proposed techniques in an example of a simulated ISTAR
mission.

5

How to read this document

For a quick orientation in this report, additionally to the complete information extracted
by reading through the whole of it, the document structure supports the following three
modes of information extraction, corresponding to different levels of required information
depth.

skim (˜5min) the Executive Summary provides a basic overview of the project and its
main objectives.

opinion (˜15min) the Overview chapter provides sufficient information about the project
context, its particular objectives, the work accomplished and finally main achieve-
ments and highlights. It provides enough information to support an interested reader
on a pursuit for an informed overview about the project.

insights (˜1hr) after reading the Overview, the subsequent four chapters provide a deep
account of the individual workpackages of the project. Each of these chapters starts
with a section Summary of the workpackage providing an overview of the particular
techniques and approaches discussed in the chapter. Reading over these summaries
is designed to provide a relatively informed account of the technologies, theoretical
techniques, approaches, as well as related work built upon in the project.

7

1. Overview

This chapter provides an overview of the the final report for the work performed in the
context of the project W911NF-10-1-0112, Tactical AgentScout 2. After an introduction into
the broader context of the project and related research activities of ATG, we summarize
its main objectives and subsequently introduce and discuss the main achievements of the
project team together with the main results of the project. We conclude this overview with
a brief recapitulation of the project execution from a project-managerial view and finally
outline the structure of the remainder of this report.

1.1. Motivation and context

One of the major research tracks of the Agent Technology Center (ATG) in the last years
is development of novel techniques and approaches for distributed multi-agent control of
Unmanned Aerial Vehicles of various types. In the past, the achievements of the center
in this context included development of the AgentFly technology suite, a large-scale
simulation framework for development and evaluation of automatic mechanisms for next-
generation air traffic control. The experiences from the past AgentFly projects provide a
solid basis for a number of other research projects within ATG, including the here reported
Tactical AgentScout 2 technology.

On the substrate of the AgentFly suite of technologies, our group was in the past
involved in several projects aiming at investigation of information collection techniques
for team of coordinated UAVs. Besides here reported W911NF-10-1-0112 project, these
include:

• Tactical AgentFly phases I, II and III (W911NF-08-1-0521 1312AM0, W911NF-
08-1-0521 and R&D 1408-CE-01), aiming at investigation of techniques for coor-
dinated area information collection from basic ones implementing surveillance and
tracking of a single target by a single UAV, to advanced ones enabling tracking of
multiple targets with relatively small number UAVs. The third phase of the project
series, an on-going project at the time of writing this report, aims at porting of the
previously developed techniques to real hardware UAVs and VTOLs and is geared
towards a real-world demonstrator in a mixed simulation.

• Tactical AgentScout phase I (BAA 8020902.A/W15P7T-05-R-P209), the direct
precursor of the Tactical AgentScout 2, project reported here upon. It aimed
at integration of aerial information collection in ISTAR-type missions with different

9

types of ground assets. The main focus of the project was on multi-agent planning
and task-allocation problems.

We proposed the here reported project as a continuation of our long-term line of research
towards deep understanding of information-collection tasks performed by a team of coor-
dinated unmanned vehicles with a special focus on adversarial planning and investigation
of issues involved in coordination of teams of heterogeneous assets.

ATG currently performs several on-going research activities aiming at transfer of the
research results resulting from the above mentioned projects, including the one reported
upon here, and their related technologies from mid- and large-scale simulations in the
AgentFly framework to real hardware. In particular, there is an on-going project in
parts supported by the Czech Ministry of Defence aiming at integration real UAV (Uni-
corn Procerus) into the AgentFly-based simulation and thus produce a mixed-simulation
involving both simulated as well as real aircrafts. The objective is to develop a test-bed for
multi-UAV air trajectory deconfliction by negotiation. Another, planned project will aim
at transfer of the spatio-temporal planner for VTOLs to real quad-rotor UAV provided by
UAS Technologies, Sweden, supported in part by the SAAB funded LinkLab - Center for
Future Aviation Systems.

Figure 1.1.: The depiction of the Procerus UAV kit and the LinkQuad quad-rotor VTOL
employed in the on-going research projects of the Agent Technology Center.

From the start on, the project was planned to loosely extend and build upon the work
and results accomplished in the context of the two related project W911NF-08-1-0521
Intelligent Software Agent Control of Combined UAV Operations for Tactical Missions
(Tactical-AgentFly 2) and BAA 8020902.A/W15P7T-05-R-P209 AgentScout: Army Tech-
nology Objective Unmanned Systems C2 for Operations in Urban Terrain Planning Support
(Tactical-AgentScout 1).

10

1.2. Project description

The Tactical-AgentScount 2 project aims at studying various aspects of adversarial and
cooperative behaviors in dynamic environments. In particular, the research objectives of
the project can be grouped in two main research areas:

1. planning of agents’ activities assuming that the team is facing a smart adversary, and

2. action selection for teams of cooperative agents embodied in dynamic environments.

The project itself was structured in four separate workpackages. The first two (WP1 and
WP2) tackled issues from the first research area by employing game-theoretic techniques for
implementation of strategies for convoy protection and strategies for detection, tracking and
capture of smart targets in urban environments. The latter research area was approached
in the other two workpackages (WP3 and WP4) which aimed at multi-agent plan repair
techniques as an approach to deal with plan failures and complementary to that, at manual
prototyping techniques for implementation of robust agent behaviors based on reactive-
planning approach. In the following, we provide a brief summary of the particular project
objectives of the individual workpackages.

WP1: Adversarial planning: patrolling of mobile targets

A complementary task to tracking a number of mobile adversary targets by a relatively
small team of autonomous aircrafts (as investigated in the Tactical-AgentFly 2 project)
is protection of mobile ground units against attacks from enemy units. The motivating
scenario is an urban environment with a number of convoys passing through the area which
should be protected by a small team of aircrafts, e.g., helicopters. In such a scenario, it
is vital for the patrol not to execute a predictable patrolling strategy. The opposite would
allow the opponent to optimize w.r.t. the patrol’s strategy and attack the convoy in the
worst timepoint, e.g., when the patrol just left the convoy it protects. The solution is use
of randomized strategies which, however, still maintain certain average frequency of visits
of each protected convoy.

The main objective of the workpackage was to develop algorithms for computation of
optimal strategies for protecting of mobile targets in adversarial environments. The basic
underlying assumption driving the research was that the opponent is able to observe the
patrol, as well as the convoys and is capable to launch an attack in any moment when the
target convoy is left unprotected. Given a map of an urban environment, positions and
plans of the convoys and a mobility model of opponent units, the particular goal was then
to find an optimal randomized strategy for the patrol which minimizes the probability
of attacks on the protected convoys. I.e., we are seeking patrolling trajectories which
optimally cover the convoys and minimize the time when they are left unprotected, while
making the movements of the patrol unpredictable.

11

WP2: Adversarial planning: smart targets

One of the objectives of the Tactical-AgentFly 2 project was to develop techniques for
tracking a number of mobile targets by a team of UAVs (including both CTOLs, as well
as VTOLs). However, no attention was paid to the capabilities, or, so to say, intelligence
of the tracked targets. As an extension, in this project we consider smart targets, i.e., such
which actively monitor their environment and act accordingly. Smart targets, when being
tracked, are aware of that fact and actively try to avoid the tracking unit. Complementary,
we consider trackers (be it UAVs, VTOLs, UGVs, or personnel) to be aware of the fact
that the tracked targets are aware of their activities and try to act in best response to the
whole setup.

The objective of the workpackage was to propose a formal game-theoretical model of
pursuit-evasion scenario with heterogeneous teams of agents. The concrete goal was to
develop algorithms for controlling a mixed team of UAVs and UGVs (pursuers) attempting
to detect, track and finally capture a number of smart targets (evaders) so that they acted in
the optimal way w.r.t. the actions performed by the evaders. Complementary, the actively
evading smart targets were constantly optimizing against the actions of the trackers. In
result the idea was to evaluate scenarios in which the individual players act according to
their best response to the strategy of the opponents. We considered variants of the game
with full, as well as incomplete information about the situation available to the players.

WP3: Multi-agent re-planning and plan repair

Actions of agents embodied in dynamic environments can fail. The more dynamic the
environment is, the more often the actions fail. Unfortunately, most realistic environments
are dynamic. This is even more so in military settings. One of the outstanding problems
of artificial intelligence is the question how to implement behavior of intelligent agents in
the face of environment dynamics, i.e., failing actions.

Classical-style planning is nowadays one of the most used techniques for automation
of activities of intelligent agents. However, such plans are not robust w.r.t. unexpected
events occurring in dynamic environments. The standard solution, in such cases, is to
simply re-plan the agent’s behavior from scratch and continue its actions according to the
new plan.

In the Tactical-AgentScout 2, we consider heterogeneous teams of cooperative agents
featuring different capabilities. In particular, we consider a heterogeneous units composed
of human troops, UGVs and VTOLs cooperatively acting in order to achieve a joint team
goal. While decentralized extensions of classical planning can be used to compute activities
of the individual team members, full-scale re-planning of such multi-agent team plans in
reaction to an unexpected event, or plan failure can become too costly. This is due to the
costs of communication in multi-agent teams executing a decentralized planning algorithm.
In scenarios where communication is costly, error-prone, or only low bandwidth is available,
rather than optimizing for the computational efficiency of the planning process, we are

12

interested to minimize the communication complexity involved in it. In result, the main
objective of this workpackage was to formalize multi-agent plan repair problem and devise
and evaluate algorithms for solving it. The evaluation context was an urban military search
and rescue mission involving information collection by the heterogeneous team of agents.

WP4: Coordination and teamwork

Reactive planning is an alternative approach to dealing with dynamics of the environment
and resulting plan failures and unexpected events interrupting normal plan execution. It
allows programmers to manually specify behaviors of agents in flexible manner so that
agent’s (resp robot’s) action selection becomes efficient. The state-of-the-art techniques
of reactive planning, however, do not support implementation of team-level behaviors. In
particular, the main motivation for the final workpackage of the Tactical-AgentScout 2
project is the need to manually specify coordination mechanisms for a team of cooperative
agents which pursue a joint goal (a mission), however none of them is able to carry out the
mission on its own and in results, they are forced to coordinate.

The objective of this workpackage was to extend existing agent programming framework
so that it can accommodate techniques for team-level coordination specification in terms of
reactive plans executed jointly by the team members. In particular, we aimed at implemen-
tation of the distributed commitment machines approach in agent programming language
Jazzyk implementing the framework of Behavioural State Machines. Finally, we aimed
at evaluation of the implemented techniques in the context of military rescue/evacuation
mission in urban environments.

Evaluation scenario

As a blueprint inspiring the project results evaluation scenarios, we consider a simulated
military operation of a heterogeneous team in an urban area. We simulate a military
evacuation mission implemented as and supported by several inter-dependent intelligent
activities, such as traversal of an urban area, movement in a formation, information collec-
tion (surveillance, tracking of possibly smart targets, reconnaissance), heterogeneous team
formation and coordination.

The scenario is put into a realistic context in that we additionally assume relatively
unstructured and highly dynamic environment. Apart from a simulation of a physical
environment (i.e., buildings, roads, landscape features, etc.), we assume presence of struc-
tural disturbances, such as blockades by collapsed buildings, placed improvised explosive
device (IED), etc. at a priori unknown locations. The dynamics of the environment will be
implemented by its partially hostile behavior, uncertainty and availability of only incom-
plete information facilitated by a number of actors, such as civilians and adversary units,
etc. To cope with such a scenario, the task force has to comprise a heterogeneous team
capable of cooperative and coordinated activities. In particular, we assume a number of
unmanned aerial systems (UAS), possibly with a vertical take-off and landing capabilities

13

(VTOL), unmanned ground vehicles (UGV), a number of unattended ground sensors, such
as cameras, acoustic and seismic sensors (UGS) and human troops in the area.

An example scenario showcasing the individual research objectives of the project could
unfold as follows. The task force’s mission is to find and evacuate a VIP from a location
within a hostile urban area. The task force consists of a convoy consisting of a manned
command vehicle supported by a number of UGVs and UASs. Possibly, there is a number of
UGSs deployed, which form a field-deployed sensor network. In order to fulfil the mission,
the aerial component of the task force must be able to perform a complex reconnaissance of
the theater, be capable of continuous surveillance of areas within the theatre and must be
able to detect, track and neutralize a number of moving ground targets, be it human units,
or UGVs. In order to extract the VIP, the convoy navigates through the city and adapts
its plans according to its information about blockades, IEDs or other obstacles to its path.
The task of UGVs, supported by the UASs, VTOLs and UGSs in the vicinity is to protect
the convoy from possibly hostile or non-cooperative actions of the adversary and civilians,
as well as to support the surveillance and target tracking tasks, e.g., in areas inaccessible
to UASs, etc. Upon VIP’s extraction, the task force has to cope with a number of escaping
adversaries implementing smart target strategy, i.e., intentionally avoiding and inhibiting
the task force’s information collection tasks.

1.3. Achievements and innovative claims
In the following, we summarize the main achievements and highlight the main contribu-
tions of the research and technological work performed in the context of the individual
project workpackages. We conclude the section by a brief discussion of the implemented
technological platform used for evaluation of the individual workpackages and highlight
the list of the scientific papers and published either as a direct result, or inspired by the
issues investigated in the context of the project.

WP1: Adversarial planning: patrolling mobile targets

Theoretical contributions:

1. we studied and subsequently extended game-theoretical etchniques for formalization
of the problem of patrolling games focusing on mobile targets.

2. we proposed novel techniques for solving the problem on general street graphs without
constrains on target (protected convoy’s) movements, while considering the worst-
case smart opponent.

3. we proposed and implemented an abstraction of the problem suitable for generation
of a corresponding mathematical program.

Technological prototypes:

14

1. we implemented algorithms integrating and exploiting a state-of-the-art non-linear
mathematical program solver for computation of patrol’s strategies.

2. in order to support evaluation of the proposed techniques, we developed and im-
plemented algorithms for smart attackers facilitating their realistic behaviors corre-
sponding to maximizing the likelihood of a successful attack of unprotected convoys.

Evaluation and results:

1. we evaluated the proposed techniques and algorithms in a series of scenarios involving
increasing numbers of attackers aiming at two independent convoys protected by a
single UAV.

2. it turned out that proposed techniques for solving the patrolling of mobile targets
problem are easily integrable with more realistic scenarios involving realistic sensor
and actuators of physical agents, such as e.g., VTOLs implementing realistic physical
movement dynamics.

3. the abstracted techniques turned out to perform very well in comparison to fixed non-
randomized policies. The use of optimal patrolling policies leads to 10% fewer at-
tacks on convoys in the simulated urban environment than in the case with the non-
randomized policies. The evaluation also shows, that the technique scales with the
increasing number of considered attackers.

WP2: Adversarial planning: smart targets

Theoretical contributions:

1. we investigated and formalized several models of pursuit-evasion games according to
the state of the art in the domain. In particular, we devised universal algorithms for
both player teams in the following settings:

a) pursuit-evasion games in fully observable domains, i.e., both player teams have
full information about the state of the world,

b) visibility-based tracking game with imperfect information, i.e., the pursuer/tra-
cker team tries to maximize the periods when the adversary is in its field of
view, and finally

c) visibility-based pursuit-evasion with imperfect information, i.e., the pursuer
team aims at capturing the target(s), however only estimating its movements
while it is not being visible.

2. the proposed techniques are based on our previous work on goal-based game-tree
search.

Technological prototypes:

15

1. we implemented the algorithms for solving the problems in the three settings de-
scribed above by employing anytime Monte Carlo Tree Search algorithm.

Evaluation and results:

1. we successfully performed a qualitative evaluation of the proposed techniques.

2. we identified that the considered problem is highly sensitive to synchronization of be-
haviors of the individual agents. In discretized setting, the agents implicitly arrive to
their respective waypoints at the same time, however this is an unrealistic assumption
in real-world scenarios due to e.g., imprecise path planning abstracting away possibly
complex terrain features of the environment.

WP3: Multi-agent re-planning and plan repair

Theoretical contributions:

1. we formalized the multi-agent plain repair problem as an extension of the state-of-
the-art multi-agent STRIPS-style planning framework.

2. we proposed three algorithms for the plan repair problem:

NRA: naive repairing algorithm, based on iterative prolonging parts of the old plan
and fragmentary repairs by re-planning from scratch,

BRA: blind repairing algorithm, exploiting the possibility to push the failures in the
semi-repaired plans forward into the future fix them opportunistically later, and

LRA: locality repairing algorithm, based on the idea that localized repairs of plans
do not influence other parts of the original plan, thus minimizing the need for
heavy computational and communication.

3. we analytically studied computational and communication complexity of the proposed
algorithms.

Technological prototypes:

1. we implemented the proposed algorithms in the form of a scientific software toolkit.

2. we integrated the proposed plan repairing algorithms with a state-of-the-art multi-
agent planner.

Evaluation and results:

1. we experimentally evaluated computation and communication complexity of the NRA
algorithms. We verified the hypothesis that even the naive plan repairing algorithm
performs significantly better that re-planning from scratch in the face of plan failures
caused by a dynamic environment. The price of the reduction of communication com-
plexity of the considered decentralized algorithms are plans which are slightly longer
than optimal solutions of a classical planner.

16

2. we evaluated performance of the NRA plan repairing algorithms in a tactical scenario
in military urban mission involving a number of cooperating heterogeneous agents
including UASs, VTOLs, UGVs and simulated human troops.

WP4: Coordination and teamwork

Theoretical contributions:

1. we extended and adapted the framework of Distributed Commitment Machines, a
state-of-the-art theoretical approach to modeling multi-agent teamwork with explicit
coordinationm, so that it can be used not only as an interaction monitoring tool (as
originally devised), but also as a mechanism determining the behaviors of individual
agents.

2. the shared team behavior specification yields a flexible mission specification language.

Technological prototypes:

1. we implemented the proposed coordination mechanism in a form of a multi-agent
program written using a state-of-the-art agent programming language Jazzyk.

Evaluation and results:

1. we successfully performed a qualitative evaluation of the approach and implemented
an example of a coordinated team behavior facilitating squad’s movement through
a simulated urban area in a formation, while still enabling adaptations to the local
conditions (shape of the terrain), as well as swift reactions to unexpected events from
the dynamic environment (encounter with an opponent).

2. we verified the hypothesis that multi-agent coordination using the proposed techniques
implemented in terms of a modular reactive plan is elaboration tolerant and provides
a flexible representation of teamwork robust to changes in the code. The technique
allows rapid prototyping of team behaviors, as well as flexible adaptations thereof.

Technological platform

For the evaluation purposes of the project, we extended the technological platform incor-
porating the A-Lite toolkit also used in the past projects Tactical AgentFly 2 and in the
precursor project Tactical AgentScout 1. The evaluation environment is a high-fidelity 3D
environment dynamics of which is controlled by an event-driven simulation engine. In or-
der to realistically model movements of the robotic vehicles in the world, the simulator
integrates a physics simulator. In result, the unmanned aircrafts, as well as unmanned
ground vehicles are capable of realistic movements modeling their physical properties. The
Figure 1.2 depicts a screenshot from the simulated environment.

17

Figure 1.2.: Screenshot depicting a visualization of the high-fidelity urban environment
model used in evaluation of the project workpackages.

Scientific output

As already highlighted above, the work on this project resulted in a number of scientific
contributions to state of the art in the field of autonomous agents and multi-agent systems
(subfield of Artificial Intelligence). As of writing this report, we already published two
scientific papers at premier venues in Artificial Intelligence discussing the scientific contri-
butions developed in the project’s workpackages. Another two papers are currently under
review at top-tier conferences and their affiliated workshops. The following lists summarize
the scientific output of the project to date:

Published results:

• Branislav Boĺanský, Viliam Lisý, Michal Jakob and Michal Pěchouček: Computing
Time-Dependent Policies for Patrolling Games with Mobile Targets, Proceedings of
The Tenth International Conference on Autonomous Agents and Multiagent Systems,
Taipei, Taiwan; AAMAS 2011, May 2011.

• Peter Novák and Wojtek Jamroga: Agents, Actions and Goals in Dynamic Environ-
ments; Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence, Barcelona, Spain; IJCAI 2011, July 2011.

18

Submissions under review:

• Antonín Komenda, Robert Lass, Michal Pěchouček, William Regli and Peter Novák:
Scalable and Robust Multi-agent Planning with Approximated DCOP, submitted to
the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI-11.

• Antonín Komenda and Peter Novák: Multi-agent Plan Repairing; submitted to De-
cision Making in Partially Observable, Uncertain Worlds, IJCAI 2011 co-located
workshop.

After the project end, we still plan to further report on the results of this project, what
should result in several additional scientific publications.

1.4. Managerial overview
The project unfolded as planned, without any significant problems and friction. Besides the
principal investigator (Michal Pěchouček), the project involved a project coordinator (Peter
Novák), staff of 4 full-time researchers (Branislav Boĺanský, Michal Čáp, Antonín Komenda
and Viliam Lisý) partially supported by one technical programmer and two undergraduate
students.

Even though the original project proposal projected a single workpackage focusing pri-
marily on adversarial planning for smart targets, in the course of the project execution
it turned out that the topic of patrolling of mobile targets grew into a significant and
self-encapsulated workpackage. Therefore, even though it wasn’t highlighed as a separate
package in the intermediary reports, this final report treats it a s full-fledged workpackage.

Generally, as also highlighted in above in this chapter, the project resulted in relatively
deep investigation of the considered issues and inspired, or directly gave rise to a number of
interesting and significant results – as also highlighted by the above discussed publication
output.

1.5. Document structure
The remainder of this final project report is divided into four subsequent chapters 2, 3, 4
and 5 respectively providing a detailed account on the results of our work on the workpack-
ages WP1, WP2, WP3 and WP4. The workpackage chapters feature a uniform structure.
Firstly, a chapter provides an overview of chapter content in a Summary of the workpackage
section. Subsequently, the section Technology overview introduces all the theoretical and
implementation details developed and used in the project. Finally, sections titled Eval-
uation and experiments provide an overview of the project results evaluation and finally
discuss and interpret the experiments conducted in its context.

The report concludes with Chapter 6 summarizing the main results of the report and
providing an outlook on potential vectors of future work along the lines of research reported

19

upon here. Finally, the report is extended the Appendix A providing a brief overview of
the implemented demonstrators delivered as a part of the project results package together
with this final report..

20

2. Patrolling of mobile targets

2.1. Summary of the workpackage
In this workpackage we address the problem of patrolling. In patrolling scenarios a defender
(also termed as a patroller) needs to protect multiple targets against an attacker. There
are numerous examples of real-world scenarios that correspond to the patrolling problem –
such as protecting a perimeter, covering some area, or protecting high-value targets. The
common assumption in all of these examples is that the attacker can choose to attack any
target at any time, and that the attack requires specific completion time (i.e. number of
steps) during which the attacker can be discovered by the defender.

Game theory is a suitable framework for solving such problems as the solutions it pro-
vides are the optimal strategies for the defender given the opponents’ information, capa-
bilities and intentions. Game theoretic models have been successfully used to solve specific
variants of the patrolling games in previous works [2, 3, 8, 9, 10] and there are several
successful applications of similar game-theoretic models in real-world scenarios [71, 64].
We follow the previous work and extend existing patrolling game-theoretic models towards
allowing the high-value targets to change their positions in time. Besides the theoretic
work we integrated this method within the project Tactical AgentScout 2 and experimen-
tally evaluated on a scenario, where an aerial patroller is protecting two convoys moving
through an adversarial area. The experimental results showed that the game-theoretic
model outperforms the baseline non-adversarial approach. Moreover, these results show
that the game-theoretic model is better in spite of the fact that not all assumptions of the
game-theoretic model were satisfied in the experimental settings.

This chapter is organized as follows. After reviewing the work related to our approach
we provide a game-theoretic definition of the general problem of patrolling, following by
the description of our approach for solving the patrolling game with mobile targets. Next,
we describe the implementation phase – how this general mathematical model was applied
in the project Tactical AgentScout 2 – together with the description of the experiments
setting and the results. The theoretical essentials of our approach were published in [18].

2.2. Technology description

2.2.1. Related work

Two main classes of game-theoretic models are dealing with protecting targets or infras-
tructure from attacks of an adversary: security games and patrolling games. The main

21

common features of the games are (1) the presence of two players – the defender and the
attacker; (2) a very limited amount of resources available for the task – the defender usu-
ally cannot guarantee preventing all the attacks, but it optimizes a utility based on the
probability of a successful attack; (3) both classes seek the solution mostly in the form of
a Stackelberg equilibrium – they seek a strategy that is efficient even if it is known to the
attacker.

Security Games

In the security games [39, 75] model the defender protects the targets by simply allocating
her limited resources to the targets. The attacker cannot observe current allocation of the
resources and only selects the target to attack based on the known randomized strategy
of the defender. There are several variants of security games, each reflecting an important
characteristic in some real-world security scenario. The first variants of security games (in
[39, 42, 37]) dealt with heterogeneous resources – the defender has several types of resources,
each with different limitations on which target they can cover. Moreover, the authors
presented concept of schedules (subsets of targets). Instead of assigning the resources to
the individual targets, authors propose assigning them to a schedule meaning that the
resource can simultaneously cover multiple targets. The schedules therefore represent a
compact form, in which the game can be formulated.

Other variants of security games focus on the problem of multiple types of attackers –
the model of Bayesian security games was studied in works [21, 63, 62]. In [75] authors
explicitly defined a security game, in which the attacker also posses multiple resources and
can attack multiple targets. This variant is a very important enhancement of the original
security-game model and it is currently being analyzed by Korzhyk et. al. [43].

There are several existing applications based on security games (e.g. the system comput-
ing an optimal placement of checkpoints at LA International Airport [64], and assigning
Federal Air Marshalls to protect flights in United States [71]).

Patrolling Games

In the patrolling games the defender protects the targets by moving through an area ac-
cording to a strategy and periodically visiting the targets. The attacker can observe the
current position as well as the strategy of the defender and in the right moment starts
attacking some target. The attack takes some time and the goal of the defender is to
interrupt this attack.

In [2], the problem of patrolling a perimeter is analyzed. The patrolled environment is
modeled as a circle graph, where each node is a potential target. The authors seek the
defender’s strategy both as a simple Markovian policy and as a policy with an additional
internal state. The implications of limiting the attacker’s knowledge on the same game
model are analyzed in [3].

The methods for perimeter patrol cannot be directly applied for patrolling environments

22

with more general topology hence the problem of patrolling on general graphs was studied
in a sequence of works by Basilico et al. In [8] the authors define the patrolling problem
on an arbitrary graph and provide a general model (termed BGA model) for computing
the optimal strategy for the defender. The strategy is defined as a higher-order Markovian
policy, though for computational reasons, only experiments with a first-order Markovian
policy were performed. Further work in this line of research includes the analysis of the
impact of the attacker’s knowledge about the defender’s policy on a general graph [9] and
an extension of the model for multiple patrollers [10].

In our approach in this project we adopt the BGA model and further improve it in order
to find optimal strategies for protecting mobile targets.

2.2.2. Patrolling game

A patrolling game is a two-player game between the defender and the attacker. The game
model consists of a set of targets. The attacker may choose to attack any target at any time
and the attack requires some time to complete. The defender tries to prevent the attacks
by periodically visiting each of the targets. If the visit of a target occurs during the attack
of this target, the attacker is caught. The initial condition for the patrolling-game model
is, that the defender does not have sufficient time to deterministically visit all the targets
to prevent all possible attacks and a randomized strategy has to be employed.

We discretize the environment, hence we assume that the game is played on a graph
and in steps. In each step the defender and the targets can move to another vertex of the
graph. The defender can move only to an adjacent vertex, but the movement of the targets
in the graph is generally unlimited and they can move to an arbitrary vertex in the graph.
Finally, in each step the attacker, while observing the situation, can choose whether to
attack some target or wait. The attacker can choose to attack only one target during the
course of the game.

Formal Definition

Environment The patrolling game is a game in the extensive form played on a directed
graph G = (V,E), where the targets Q and the defender can be positioned in any of n = |V |
vertices. We assume the set E is represented as an adjacency matrix (ei,j), where ei,j = 1
if there exists an edge from vertex i to j, {i, j} ∈ E, and ei,j = 0 otherwise. The game is
played in turns and we denote the set of turns T , indexed t = 1 . . . |T |1. The movement
of the targets in the graph is modeled as a function f : Q × T 7→ V . We assume that a
successful attack on a target takes D turns. The full information about the graph structure
(G), information about current position of the defender and positions of the targets, as
well as information about the movement schedules (f) is known to both players.

1When there is no confusion we use T to also denote the number of the turns |T |.

23

Strategies The goal of the defender is to move on the graph and to intercept an attack
of the attacker, i.e. to come to a node where the attack is taking place. The randomized
strategy of the defender has generally a form of a probability distribution over paths of
length |T | in the graph.

This, however, holds only if we assume that the game has a perfect recall – i.e. both
players can remember history of all moves they have played before (i.e. the game can
never return to exactly the same state, because at least the memory of the players would
differ). The games with the perfect recall suffer from large space requirements – there are
O(N ·BF T) states that needed to be explored (BF represents maximum degree of a vertex
in the graph), which even for simple graph with 16 nodes (e.g. grid 4 by 4) and 14 turns
can result in ≈ 1012 states.

Therefore in our approach we adopt the imperfect recall and we seek the strategy for
a defender in the form of first-order Markovian policy – the defender makes her decisions
based solely on the vertex, in which she currently is. The policy defines for each i, j ∈ V
and t ∈ T a value αti,j representing the probability that the defender present in vertex i in
turn t moves to vertex j. We denote the set of all Markovian policies for the defender Θd.

The set of possible actions of the attacker Aa = {noop, attack(s,t,q)} represents either
the action noop (i.e. no attack), or starting the attack on a target q when the defender is
in vertex s and it is the t-th turn of the game. If the attacker chooses one of the attack
actions, it cannot perform any other actions and for next d ∈ N turns it can be captured in
the vertices {f(q, t+ 1), . . . , f(q, t+ d)}. We assume that the attacker has a full knowledge
of the stochastic strategy executed by the defender. This simulates the worst case attacker
observing the defender for a long time before the attack or obtaining a reliable intelligence.
The attacker’s strategy is a response function (AR : Θd 7→ Aa), which selects an action for
any of the strategies of the defender. We denote the set of all attacker’s strategies Θa.

Utilities Finally, let us define the utility values for both players for each combination
of their strategies. In general, there is a limited number of outcomes of the game. The
attacker can either be captured, or it can successfully perform an attack on a target q ∈ Q.
Following the BGA Model we define X0 ∈ R; X0 ≥ 0 to be the reward for the defender
when it captures the attacker and Xq ∈ R; Xq ≤ 0 to be the loss of the defender when
the attacker successfully performs an attack on a target q ∈ Q. Similarly, we define the
loss and reward Y0 ∈ R; Y0 ≤ 0, and Yq ∈ R; Yq ≥ 0 for the attacker being captured and
successfully attacking q ∈ Q, respectively.

As we stated above, the strategy of the defender is mixed (i.e. randomized), therefore
the utility value assigned to a combination of two strategies is the expected utility. The
values X0 and Xq (or Y0, Yq respectively) are weighted by the probability of capturing the
attacker (πqσ) in case that the defender plays (σ ∈ Θd) and the attacker plays AR(σ) ∈ Θa,
which decides to attack the target q:

24

Ud, Ua : Θd ×Θa 7→ R
Ud(σ,AR(σ)) = X0π

q
σ +Xq (1− πqσ)

Ua(σ,AR(σ)) = Y0π
q
σ + Yq (1− πqσ)

Ua(σ,noop) = Ud(σ,noop) = 0

(2.1)

Solution The defined problem corresponds to Stackelberg (or leader-follower) games and
we search for a solution of the game in the form of a Strong Stackelberg Equilibrium (e.g.
in [75]). The formal definition of this notion follows.

Definition 1. A pair of strategies 〈σ,AR〉 forms a Strong Stackelberg Equilibrium (SSE)
if they satisfy the following:

1. The leader (defender) plays a best-response:
Ud(σ,AR(σ)) ≥ Ud(σ′, AR(σ′)),∀σ′ ∈ Θd

2. The follower (attacker) plays a best-response:
Ua(σ,AR(σ)) ≥ Ua(σ,AR′(σ)),∀σ ∈ Θd, AR

′ ∈ Θa

3. The follower breaks ties optimally for the leader:
Ud(σ,AR(σ)) ≥ Ud(σ,AR′(σ))

∀σ and ∀AR′ ∈ Θa satisfying 2.

SSE is a very suitable equilibrium for the security applications in the real world. First of
all, the strategy in SSE is robust against the worst case opponents that have full knowledge
of the strategy the defender is executing. Moreover, in many security games, the defender’s
solution for SSE is also a strategy in the NE of the game [75]. Hence, it is efficient also
in the case that the attacker did not observe the defenders strategy and chose its action
rationally only based on the definition of the game.

In our approach we assume that solution of this game cannot be deterministic – i.e.
the defender cannot always protect the targets, nor the attacker can always perform a
successful attack. Hence we seek non-deterministic solutions, where the defender is forced
to randomize the movement to maximize the utility based on a chance of capturing the
attacker.

Computing SSE in Patrolling Games with Mobile Targets

We use mathematical programming (MP) for computing a SSE in patrolling games with
mobile targets – we formulate the problem as a mathematical program and use a generic
solver (e.g. MATLABr, or IBM CPLEX[1]) to find a solution. We adopt the BGA
mathematical program [8] and further improve it in order to calculate the SSE for games
with mobile targets (the details of the differences between our and BGA model can be
found in [18]).

25

V,Q, T the set of graph nodes / targets / time steps
Xq, Yq attacker’s / defender’s reward for successful

attack on q
αti,j prob. of using edge (i, j) if the defender is

in i at turn t

δh,ti,q prob. of moving from i to target q in exactly
h steps starting at turn t

ωti,q prob. of moving from i to target q in at most
h steps starting at turn t

Table 2.1.: Quick reference of the notation and variable semantics. Indexes are omitted if
not applicable.

Require: G = (V,E) – graph; Q – targets
Ensure: σ – defender’s strategy, v – strategy value

1: for (s, q, t) ∈ V ×Q× T do
2: (v, σ) = MP (s, q, t)
3: if v > vmax then
4: vmax := v; σmax := σ
5: end if
6: end for
7: return (σmax, vmax)

Figure 2.1.: The algorithm for computing the defender’s policy for the game.

Developed MP searches for an optimal time-dependent policy σ = (αti,j ; i, j ∈ V ; t ∈ T)
for the defender. The reason for using time-dependent policy is that the defender can have
substantially different strategy in the same vertex in different time steps because of the
changed positions of the targets. Hence the αti,j are the variables in our program. Besides
that, we define an alternative set of variables δh,ts,q , which represent the probability that the
defender positioned in the vertex s ∈ V reaches the target q ∈ Q in exactly h ∈ N steps
while starting in the t-th (t ∈ T) turn of the game. In order to make the formulas more
readable, we further define variables ωts,q representing the probability that the defender
positioned in vertex s visits the target q in at most D steps while starting in the t-th turn
of the game. Table 2.1 summarizes used notation.

The mathematical program is constructed and ran for each attacker’s action attack(s,t,q)
as the best response. This reflects the motivation of the SSE – the attacker observes the
defender and waits until the defender is located in the most convenient place for the attacker
(s), it is the right turn of the game (t), and then starts the attack appropriate target (q).
The main results of the program are the value of the game for the defender (i.e., maximized
expected utility function for the defender) and defender’s strategy σ = (αti,j ; i, j ∈ V).

26

Finally, as the overall solution of the patrolling problem we select those values of αti,j that
were found as the solution of the MP with the highest value of the objective function.
The algorithm expressing the use of the MPs as sub-methods for finding a SSE is depicted
in Figure 2.1. Each call of the MP in the algorithm optimizes the defender’s policy
σ = (αti,j ; i, j ∈ V ; t ∈ T) under the assumption that attack(s, q, t) is the optimal action of
the attacker. The formulation of the MP for single configuration (s, q, t) is following:

max
σ

Xq

(
1− ωts,q

)
+X0ω

t
s,q (2.2a)

αli,j ≥ 0 ∀i, j ∈ V ; l ∈ T (2.2b)∑
j∈V

αli,j = 1 ∀i ∈ V ; l ∈ T (2.2c)

αli,j ≤ ei,j ∀i, j ∈ V ; l ∈ T (2.2d)

δ1,l
i,g = αli,f(g,l+1) ∀i ∈ V ; g ∈ G; l ∈ T (2.2e)

δh,li,g =
∑

x∈V rf(g,l+1)

(
αli,xδ

h−1,((l+1)mod|T |)
x,g

)
∀i ∈ V ; g ∈ Q; h ∈ {2, . . . , d}; l ∈ T

(2.2f)

ωli,g =
d∑

h=1
δh,li,g ∀i ∈ V ; g ∈ Q; l ∈ T (2.2g)

Yq
(
1− ωts,q

)
+ Y0ω

t
s,q ≥ Yq′

(
1− ωt′s′,q′

)
+ Y0ω

t′
s′,q′

∀s′ ∈ V ; q′ ∈ Q; t′ ∈ T
(2.2h)

The first two constraints (2.2b), (2.2c) ensure that the probabilities αti,j represent a
correct defender’s policy σ, and constraints (2.2d) ensure that the defender moves only
between two adjacent vertices. The constraints (2.2e)-(2.2f) define the probability δh,li,g of
reaching a target in exactly h steps using the policy σ. To do so, we express the vertex of
the target using the function f . If h = 1, δ is equal to probability connecting the current
position of the defender i and the position of the target in the next turn f(g, l + 1). For
higher h, it is the probability of moving from the current position to some node x, which is
different from the vertex of the target f(g, l+1), multiplied with the probability of reaching
the target g from the node x in exactly h− 1 steps. The constraints (2.2g) define variable
ω and constraints (2.2h) ensure that no alternative attacker strategy can provide higher
attacker’s utility Ua. The optimized function (2.2a) expresses the expected utility Ud of
the patroller’s policy σ for a fixed combination of s ∈ V, q ∈ Q and t ∈ T .

Solving the Mathematical Program If some solver can optimally solve the program
defined above, we would have the optimal strategies for the patrolling problem. However,

27

solving this program is hard. The number of program constraints and variables in the
improved stationary formulation is O(|V |2 · |T | · D) in the time-dependent case. Most of
the constraints are bilinear; the remaining constraints as well as the optimized function are
linear.

The formulation of the programs in previous sections was chosen with the readabil-
ity as the main criterion. However, the exact form of the formulation can influence the
computational complexity of solving the problem optimally as well as the potential for
approximation. A different formulation of the problem can be constructed if some of the
program variables are not represented explicitly in the program.

Bilinear MP The presented form of the programs expresses the optimization of a linear
function over a region defined by (at worst) bilinear constraints. The size of the program is
polynomial in the relevant problem parameters. However, solving a bilinear program is in
general NP-hard [12]. Non-convexity of the feasible region that is defined by the bilinear
equalities indicates that this particular problem is most likely not an exception. On the
other hand, these programs are widely studied and many approximation algorithms are
available.

Polynomial MP Some of the variables in the presented programs do not have to be
represented explicitly in an actual program formulation. For example, the variables ω
in program (2.2) can be clearly removed and all its occurrences can be substituted by
the corresponding sum of variables δ. This modification still leads to a bilinear program.
However, if we also remove the variables δ in the same way, we are in a different class
of MPs. All the bilinear constraints are removed and only the linear constraints remain.
However, the complexity of the optimized function increases dramatically. Instead of linear,
it becomes polynomial with maximal degree D. As mentioned in [45], even unconstrained
optimization of 4-degree polynomials is NP-hard, hence this formulation is also not likely
to produce optimal solution for larger problems in reasonable time.

Experimental Evaluation – Synthetic Graphs

We present an experimental evaluation of the proposed approach on the synthetic graphs
outside the Tactical AgentScout 2 domain. The focus of the experiments is on the quality
of the solutions produced by the proposed non-linear program.

We used the following settings for the experiments: (1) we used two types of graphs –
grid and grid with holes; (2) two targets were present in each setting and we used three
different movement schedules for the targets; (3) we simplified the values of the targets
and assume that all targets have the same value; (4) we compared the quality of produced
time-dependent policies to an approximation calculated as a stationary policy.

We conducted the evaluation on two types of graphs inspired by a typical application
domains: (1) grid with holes (see Figure 2.2(a) for an example) which may e.g. represent
a road network, (2) full grid (see Figure 2.2(b) for an example) that corresponds to dis-
cretization of open space, such as ocean surface. In both figures, black nodes represent
initial positions of targets and dashed arrows show motion patterns for the targets. In all

28

Figure 2.2.: The schema of the experimental scenarios. Black nodes denote target’s initial
poositions and arrows depict target’s movement.

experiments, targets move once per two defender’s moves; this reflects that the defender is
faster than targets.

As adding more targets did not show any interesting changes in the results, we limit
the presentation to experiments with two targets only. Three types of target movement
with different implications on the distance between the targets were employed: (1) alter-
nating where the distance between the targets is decreasing and increasing in time (see
Figures 2.2(a),2.2(b)); (2) equidistant is defined only for grid graphs and involves simulta-
neous movement of targets along the top-most and bottom-most edges of the graph from
left to right and back. In Figure 2.2(b), the target at the bottom starts from the left side
and moves in the same way as the one on top; (3) stationary where targets remain in their
initial positions. Finally, in all experiments we adopt the repeated version of the game –
i.e. the targets are moving in cycles and the game repeats each |T | turns.

Program for Time-Dependant Policies For explanatory reasons we simplified the values
of the targets, that neither the attacker nor the defender has any preference among the
targets – the attacker tries to maximize the probability that it will successfully attack some
target and the defender aims to minimize this probability. This corresponds to an instance
of the defined patrolling problem where Xq = −Yq = −1; ∀q ∈ Q and Y0 = X0 = 0. As we
want to evaluate the probability of catching the attacker we assume that the attacker has
to attack some target (i.e, we disallow noop action for the attacker).

Using above simplification the game became a zero-sum variant of the original problem,
however, it does not substantially change the characteristics of the program, nor it is
significantly computationally easier to solve compared to the original formulation due to the
non-linearity in constraints of the MPs (δ variables). The only change is the simplification
of the objective function and utility-based constraints, which enable us to formulate the
MP as a single min-max optimization instead of a sequence of optimizations of MPs for
each initial point, turn, and target. We are searching for σ that optimizes:

max
σ

min
s,q,t

(
ωts,q

)
(2.3)

29

s.t. (2.2b)-(2.2g)

Constraints (2.2h) are substituted by the maximization of the objective function and can
be removed. We further refer to the value of the objective function (2.3) as the reached
value of the game.

Program for Stationary Policy In order to evaluate the quality of the solutions based on
a time-dependent policy we need to obtain a stationary policy, which still can be efficient
even with moving targets in some cases (e.g. if the movement is limited). We compare the
performance of these two formulations in terms of the reached game value and computation
time in the game with moving targets.

In order to obtain a stationary policy, we have slightly modified the MP (2.3) – we have
removed the time index from all α variables in all constraints. All δ and ω variables keep the
time index in order to take target’s movement into account. This modification is especially
useful if the variables δ and ω are not explicitly represented in the implementation of the
program. In that case, the number of real variables in the program decreases significantly.
Besides the comparison reasons we used the stationary policy as an initial point for solver
for calculating the time-dependent policy.

Implementation We implemented the proposed mathematical programs in MATLABr
using the fminimax function for the optimization. For both programs – the MP for the
time-dependent and for the stationary policy – we use only α as variables; variables δ and
ω are not explicitly represented as variables of the MP. The set of α variables is limited to
those αti,j for which there exists an edge between vertices.

Internal MATLAB parallel methods were used during the optimization, hence the dura-
tion of the experiments is expressed in the total CPU time (in seconds) consumed on all
cores.

Results The results on the synthetic graphs proved that in the game with mobile targets it
is reasonable to use the time-dependent policy. In most of the experimental settings usage
of time-dependent policy led to significantly higher utility value than the approximation
using a stationary policy but currently at the expense of significantly higher computational
costs.

The most representative results, in terms of the reached game value and the average
computation time, from two graphs (shown in Figures 2.2(a) and 2.2(b)) were selected and
depicted in Table 2.2.2. Note that the value reached in the zero-sum variant represents
the worst-case probability that the defender catches the attacker during the attack on
some target. As expected, the dynamic policy is significantly better than the stationary
approximation, as the defender can better adapt to the movement of the targets. For the
third target movement type, i.e. stationary targets, both methods converged to the same
values and policies.

30

Graph Mov. Type Policy d value time [s]

grid 4x4

alternating

stationary 8 0.19 6.60
dynamic 0.50 3516.20

stationary 9 0.33 30.81
dynamic 0.89 14063.46

equidistant

stationary 9 0.32 37.32
dynamic 0.50 333.22

stationary 10 0.37 39.81
dynamic 0.69 1338.19

grid-hole n13 alternating

stationary 8 0.17 4.83
dynamic 0.50 3194.19

stationary 9 0.26 13.58
dynamic 1.00 9859.08

Table 2.2.: Comparision of the reached value of the game (equals the probability that the defender
catches the attacker) and the average copmutation time; d denotes attack duration.

Figure 2.3.: Defender’s policies. Two targets move right from vertices (0,12) to (3,15)
and back. The probability of using an edge corresponds to thickness of the
respective edge or circle (in the case of loops). A stationary policy (Figure (a))
and two snapshots of a time-dependent policy are shown – turn 6 with targets
at (2, 14) (Figure (b)) and turn 7 with targets at (3, 15) (Figure (c)).

31

The frequent appearance of 0.5 as the reached game value in Table 2.2.2 stems from
having two targets. In many settings, the defender cannot protect both targets and thus
it non-deterministically “chooses” just one of them; the attacker then succeeds if it attacks
the other target. Note that the MP also found a deterministic policy that always leads to
catching the attacker (reached value is 1.00).

The differences between stationary policy and time-dependent policies for the defender
can be seen in Figure 2.2.2: the stationary policy 2.3(a) covers all positions of the targets
in time, while the time-dependent policy can utilize the knowledge of the current positions
of targets (vertices 2 and 14 in 2.3(b) showing turn 6) and also future positions of targets
(2.3(c) shows turn 7 of the game with targets in vertices 3 and 15). Note, that thanks to
the time-dependent policy, the defender can in turn 7 reach the target in vertex 3 from the
vertex 2 in one move, however, there is no such possibility in the stationary policy.

2.2.3. Integration with the simulator
Experiments on synthetic graphs showed that the time-dependent policy can significantly
improve the utility of the defender compared to the stationary policy. Therefore, it is rea-
sonable to consider the application of the time-dependent policies into real-world scenarios.
However, high computational requirements on the computation of the randomized policy
prohibit us from using the method directly in the Tactical AgentScout 2. In this section we
therefore first describe the scenario, in which we intend to utilize the patrolling, following
by approximation method based on so called distance graph and experimental results.

Tactical AgentScout 2 – Patrolling Scenario

The screenshot of the patrolling scenario in the project Tactical AgentScout 2 is depicted
in Figure 2.2.3. There are two convoys (i.e. two targets) crossing an adversarial area, and
there is a single patroller providing an aerial support. The goal of the patroller is similar
to the standard definition in a patrolling game – i.e. to periodically visit both convoys and
prevent any possible attack from the adversaries.

Distance Graph

This scenario can be modeled as the mathematical program from Section 2.2.2. The size
of the program will be, however, too large, hence unsolvable for any mathematical solver.
Therefore, we use an abstraction termed the distance graph. Note, that to find the optimal
policy it is unnecessary to model the entire environment – i.e. to exactly compute the
solution of the patrolling game on the graph of the complete road network. Firstly, the
patroller is an aircraft vehicle, hence its movement is not limited to the road network.
Secondly, modeling the precise structure of the graph is not necessary for finding the
optimal policy for the patroller – the essential is the distance between patroller and the
targets. The patroller can in each step choose to come closer to a target, or move away
from a target. Therefore, in the scenario with two mobile targets, the optimal strategy of

32

Figure 2.4.: Patrolling scenario implemented in the Tactical AgentScout 2 environment.
The small green nodes represent convoys that need to cross an area, in which
multiple adversaries operate (red nodes). They are protected by a single pa-
troller (large green circle). Blue nodes represent street-graph nodes, and yellow
nodes represent the sensor of the patroller.

33

Figure 2.5.: Distance graph in the patrolling scenario. The patroller follow policy calcu-
lated on the distance graph. The targets can change their position in the
distance graph in time reflecting changes in the distance between them in the
environment.

34

the patroller is a randomized walk on the shortest path between the targets – on a distance
graph between the targets. The distance graph for the patrolling scenario in the Tactical
AgentScout 2 is depicted in Figure 2.2.3. The targets are placed in some vertices of the
distance graph according to their distance in the environment (note that the distance can
change in time and therefore the targets can also change their position in the distance
graph) and patroller follows a policy calculated on this graph – in each decision point it
can decide whether to follow its current heading towards a target or it can turn around.
For scenarios with multiple targets, the distance graph will be constructed similarly as a
complete graph between all the targets, however, some additional vertices will have to be
added to keep the solution computed on the distance graph to be optimal in the original
game as well.

2.3. Evaluation and experimental results

We implemented the model of the distance graph and the patroller following the optimal
time-dependent policy computed for the distance graph into the Tactical AgentScout 2
project. We used two ground convoys with scripted paths through the area, and a single
patroller modeled using model of a helicopter with simulated dynamics. Compared to
the game-theoretic model we use different representation of the adversaries. The game-
theoretic model assumes that there is only a single attacker observing the situation and
waiting for the right moment to start to attack some target. Such assumption is rarely
fully corresponding with the real-world scenarios. Therefore, instead of using an omniscient
adversary that can attack at any time any target we use multiple simple adversarial units.
They follow the convoys, but they are deterred by the patroller. We project the sensor of
the patroller to the nodes of the road network (yellow nodes in Figure 2.2.3) – these nodes
represent the “active range” of the patroller and they are selected based on the current
velocity vector of the patroller. If the patroller turns the other way, the nodes are slowly
fading representing the aging of the information. This sensor together with the simple
model of adversaries sufficiently reflect desired situation. The adversaries tend to go to a
convoy, however, they do not want to be “seen” by the sensor of the patroller.

To experimentally evaluate the performance of our game-theoretic approach (further
referred to as the randomized strategy) in this scenario, we compared it with the classical
algorithm for protecting targets – deterministic policy, where the patroller visits each target
in a deterministic manner (further referred to as the fixed strategy). We implemented both
methods using the same helicopter agent and the only difference was in the algorithm,
which selects a convoy to visit next. We compare these two methods by means of number of
occurrences of so called dangerous situations – a dangerous situation occurs if an adversary
is close to a convoy and it is not “seen” by the sensor of the patroller. Dangerous situations
reflect possible attacks on the convoy and to goal is to prevent them.

We executed experiments on the patrolling scenario in the Tactical AgentScout 2 envi-
ronment with fixed paths of the convoys, and with the increasing number the adversaries

35

Figure 2.6.: Comparison of performance between the randomized policy based on the game-
theoretic approach and the deterministic approach. Lower number of average
dangerous situation is better.

present in the environment. The adversaries were placed randomly in the road network
and for each configuration (i.e. for each method and for each number of adversaries) over
400 different samples were executed. The results, depicted in Figure 2.3, show that the
randomized strategy based on our approach of solving patrolling games with mobile tar-
gets is not worse compared to the fixed strategy and in many configurations is significantly
better. On average, the usage of the randomized strategy lowers the number of dangerous
situations by 10%.

36

3. Modelling smart targets

3.1. Summary of the workpackage

In this work package, we developed algorithms for controlling a smart target that actively
avoids detection, tracking and capture by a team of pursuers. Furthermore, we developed
algorithms for the team of pursuers that perform these tasks.

We first provide a brief review of the related research in the areas mathematical pursuit-
evasion games and tracking, more practical probabilistic pursuit evasion games, and general
algorithms for playing games of imperfect information. Next, we formally define the prob-
lem solved in this chapter. We assume a suitable discretization of the space and provide a
formalization that allows describing pursuit-evasion games with teams of agents that have
different mobility and field of view restrictions. The objective in these games can be either
to capture the evader or to move the pursuers in a way that maximizes time in which the
evader can be observed by the pursuers. We further define several incrementally complex
sub-games of the complete games that are investigated separately.

The algorithms we provide for creating behaviors in the games are based on general
algorithms for playing (imperfect information) games. For games with full observability
of the agents, we base the algorithms on the Monte-Carlo Tree Search (MCTS) algorithm
with action selection based on the Upper Confidence Bound that has been recently very
successful in various domains. In the partially observable games, we base our approaches
on the paranoid version of information set search. We use it both with the more standard
minimax algorithm and with MCTS. We discuss several adjustments of these algorithms
needed in order to make them applicable in our domain. The main problems are caused
by

• the presence of simultaneous action of the players,

• the scalability with increasing number of units available to the players and the size
of the graph.

We tackled the scalability issues by adding domain specific knowledge to the game playing
algorithms. We designed domain-specific “heavy” simulation methods for MCTS and we
used procedural knowledge heuristic to prune the search space. For improving scalability
with the number of agents, we analyzed an option of weakening the coupling the actions
of agents within one team. However, this approach does not seem to be promising in this
domain. When dealing with the simultaneous moves, we used the standard approach used

37

in successful players in general game playing competition. Even though we have identified
serious weaknesses of the method, it is still usable in our domain.

We have implemented the agents in a simulation and performed basic feasibility experi-
ments. The presented algorithms are able to produce reasonable behavior in the simulation
in real time. However, in the current form, the algorithm does not scale favorably with the
number of units in the scenario. The behavior produced by our anytime algorithms exhibit
serious flows when used with more than four units and ”real-time” CPU restrictions.

3.2. Technology description
The problem of collaborative tracking or surveillance of targets that are being aware of
being monitored (further termed as ’smart’ targets or evaders) is formally described by
various variants of pursuit-evasion games (PEGs). There are several different characteris-
tics of variants of PEGs. The differences can be found in environment (it can be a graph,
polygonal environment, or free space), different relation of the pursuers’ and evaders’ max-
imal speed (the speed can be bounded or not, or the speed of the evaders can be superior
or not), different range of sight (whether there is a limited range of visibility or the angle
of the sight (e.g. camera)).

Even though there is limited number of results on PEGs in continuous space, they are
generally limited to open space with no obstacles, or very restricted topology. As we aim
to apply the developed methods in high fidelity simulation and later in the real world, we
focus on approaches with discretized time and space. In general, we are interested in games
on graph, which progress in discrete time steps.

There are two classes of methods that have been used for solving PEGs and games
in general: mathematical programming (MP) and state space search (SSS). For pursuit-
evasion games on graphs with hundreds nodes that are needed to represent our domain,
methods based on state space search (SSS) (e.g. alpha-beta) are more suitable. The
advantage of MP is that it provides provable optimal solutions or approximations of the
optimal solutions with bounded error. However, these methods generally require huge
amount of memory and computational resources. As a result, they cannot provide real-
time performance with larger spaces or teams with higher amount of agents. The SSS
methods often sacrifice optimality and often even completeness in order to quickly provide
a reasonable solution. Therefore the SSS approach is more suitable for time-critical tasks
of searching and tracking where the position of the targets changes unpredictably.

3.2.1. Related work
Capturing a smart evader in an environment is the basic task in pursuit-evasion games
(note, that searching for an evader can be seen as a special case of capturing, where the
evader is considered captured when the visual contact is established). One of the best
explored variant is introduced in [70], where a group of pursuers is searching for a single
evader with unbounded speed in a polygonal environment. This variant was further tackled

38

in [30] where a problem of determining the minimum number of pursuers needed for which
exists a strategy to capture the evader was shown to be NP-hard. Several works were
focused on removing various restrictions such as focusing on curved environment [47], or
limiting the visibility (by terms of field of the view [28], or the range of sensors [35]). The
formal definition of the problem of finding a strategy for pursuers to locate an evader with
unbounded speed on a graph was formalized in [41] as a GRAPH-CLEAR problem showing
to be NP-complete.

All of above approaches was concerning the problem of capturing the evader in case the
pursuers do not know the position of the evader. On the other hand, the game of cops
and robbers introduced in [34] describes a game, where a group of cops are trying to catch
equally fast robber with known position. In general, the game is solved by a variant of SSS
(as e.g. TrailMax algorithm in [51]). Multiple variants of the game have been introduced
over time (e.g. limited visibility of the cops was analyzed in [36]), however none of the
models match all our requirements (see Section 3.2).

Tracking of a smart target is another task related to the problem. In [46] authors define
tracking (also being called as a problem of maintaining visibility) of an unpredictable evader
in a polygonal environment with obstacles in discrete time. A game-theoretical framework
introduced in this work was further improved in [25] where a position uncertainty of a
robot pursuer was considered. Different variant was considered in work [7] where stealth
target tracking was introduced – pursuer is tracking an unpredictable moving target in
an unknown environment with obstacles and, at the same time, remains hidden from
the target. On the other hand, the game-theoretical framework of a continuous case of
tracking for holonomic agents in known environment with obstacles was described in several
works by Bhattacharya and Hutchinson ([13], [14]), finally defining strategies being in Nash
Equilibrium in [15].

All of mentioned works considered only the problem of tracking with one pursuer and
one evader. In the domain of collaborative target tracking the target is usually moving in
random direction (as e.g. as in the work of Vidal et al. [73] where a group of UASs and
UGVs is tracking and pursuing a ground evader) and the issues of communication in an
agent network are being tackled (e.g. in [22]). The game theoretic approach is applied in
works of Harmati and Skrzypczyk [33] where a group of pursuers is tracking an evader.
The coordination, collision avoidance and keeping the shape of a formation is formalized
using game-theoretical framework and appropriate utility functions, while for solving they
introduce a semi-cooperative Stackelberg equilibrium.

The algorithms designed for specific classes of games can be very efficient, but they
usually strongly depend on specific assumptions and are not usable at all if they do not
hold. In order to achieve high flexibility and produce a reasonable (even if suboptimal)
course of action in any situation, we aim to base our methods on general game playing
algorithms that proved to be successful in variety of domains.

The most prominent algorithms in this area are the information-set search [60] and
Monte-Carlo tree search algorithms [40]. Although there are no guarantees for these algo-
rithms to find even approximate equilibrium in general extensive-form games, they often

39

perform well in a real play. These algorithms are described in more details in Section 3.2.3.
Alternatively, approaches based on learning could be utilized. Fictitious play [20] is a

powerful mechanism that allows learning equilibrium strategies in many games. It has been
successfully used e.g. in the network security domain [52]. Similar concept has been used
in the algorithm called Counter-factual regret minimization [77], one of the top performing
algorithms for playing poker. It iteratively computes (approximate) NE based on regret
matching [29] and it is guaranteed to converge to a NE in zero-sum games in finite number
of iterations. It has a low memory requirement (linear, compared to possibly exponential
requirements of mathematical programming) and the speed of convergence can further be
improved my Monte-Carlo sampling [44].

3.2.2. Formal game definition
The related research section of this chapter shows that there is a large body of research of
several variants of pursuit evasion games (PEGs). It includes multiple options for repre-
sentation of the space and motion dynamics of the players. However, none of the existing
formalization fully captures all aspects of the game required for the scenarios supported by
the project. The main differences in our scenario compared to the standard pursuit evasion
games are following.
• Multiple Evaders Most of the games assume single evader trying to escape from

one or a small team of pursuers. In our scenario, multiple smart targets are trying
to escape from the team of pursuers.

• Heterogenity The pursuers and evaders in standard PEGs are assumed to move in
the same space and each pursuer has the same capability to capture the evader. In
our scenario, we have several sources of heterogeneity. First, different agents have
different movement restrictions. The evader can cross obstacles like scarce bushes,
narrow corridors, or stairs, while they can be impassable for UGVs. The movement of
UASs is not influenced by the obstacles on the ground at all, but it often has a more
complex movement dynamics restriction that does not allow it to move arbitrarily.
Moreover, our scenario assumes that only the UGVs can capture the evader, which
is another source of heterogeneity.

• Limited Visibility The smart targets are likely to use terrain features, like trees,
awnings, or obstacles by buildings in narrow streets to prevent detection. Therefore,
we need to assume different visibility models for the pursuers.

Even though we aim to apply the developed algorithms in high fidelity simulator with
continuous time and space, we use a discrete model for formal definition of the game due
to lower computational requirements compared to continuous case.

Complete Game Definition

The PEG with Heterogeneous Agents (PEHA) is a tuple (I,N, pos0, t, v, w, h) where

40

• I = O ∪ P ∪ E is a set of agents, which is composed of disjoint subsets of observers
(O), pursuers (P), and evaders (E)

• N is a common set of nodes (positions) for the agents

• pos0 : I → N are the initial position of the agents. Generally, we refer to the position
of the agents at (the end of) time step l as posl.

• t : I × N → P(N) is the accessibility mapping that assigns to each agent and each
place a set of places the agent can move to from the given position

• v : I×N → P(N) is the visibility mapping that assigns to each agent and each place
a set of places in which the agent can see to other agents from the given position

• w : E → N is the value of capturing an evader

• h is the number of time steps in which the game is played (i.e., the fixed horizon)

Definition 2. We say that an evader e ∈ E is captured by a pursuer p ∈ P in time step s
iff

poss(e) = poss(p)

Definition 3. We define a legal path (strategy) of agent a as a mapping ρa : {1, . . . , h} →
N , such that

∀s ∈ {1, . . . , h} ρa(s+ 1) ∈ t(a, ρa(s))

We further denote the joined path (strategy profile) of a subset of agents G ⊆ I by the
same symbol with set subscript ρG.

The objective of the pursuers is to capture as many valuable evaders as possible within
the limited time horizon. They are supported by the observers, which provide additional
information about target positions. More formally, the game objective is

objective : arg max
ρ(O∪P)

min
ρE

∑
{e∈E:∃s∈{1,...,h},p∈P ρe(s)=ρp(s)}

w(e) (3.1)

The solution of the game are the legal paths for the observers and pursuers that maximize
the importance of the captured evaders in the worst case (i.e. optimal play by the smart
targets).

Simplified Game Variants

In solving the game defined in the previous reports, we use the standard approach. We add
several simplifying assumption, solve the problem and based on the experience obtained
and techniques developed, we gradually remove the simplifications. In order to do that, we
define two subsets of the complete game.

41

Fully Observable Pursuit-Evasion Game This simplest game model we use adds the
following assumptions to the game definition.

• Full observability: the visibility mapping v assigns each agent and each possible
position the whole set of nodes on the map.

• Homogeneous movement: the movement restrictions are the same for each of the
agents. In particular, the “speed” of the agents is unified.

• Single evader: the set of evaders has only one element (|E| = 1).

• No observers: we assume that the set of observers is empty (O = ∅). I.e. all the
agents of the blue team are able to catch the evader.

With full observability and unified movement restrictions, the game we solve is similar to
the well-studied cops and robbers game. The first report of this project contains more
details on the similar game models. Our game differs from the classical cops and robbers
game in one key element – simultaneous moves. The agents choose their next position
on the graph simultaneously and hence they are introducing a simple form of imperfect
information to the game. The agents are uncertain about the positions of their opponents
in the following move. Hence, they are also uncertain about the real outcomes of their
actions.

Visibility Tracking Several state related research works consider a model, where the task
of the team of pursuers is not to capture the evader (i.e. be collocated with him), but to
keep him in sight. These games can also be set into our general model, but we have to
modify the objective and add a few restrictions. We assume the following:

• All observers: we assume there are only observer and evader agents (P = ∅). I.e.
the game always continues for the evader until the time horizon is reached.

• Modified objective: the objective in the visibility tracking game is to see the
important evaders as many times as possible. Formally:

objective : arg max
ρ(O)

min
ρE

∑
s∈{1,...,h}

∑
{e∈E:∃p∈P ρe(s)∈v(ρp(s))}

w(e) (3.2)

3.2.3. State-of-the-art approaches
In this section, we briefly sketch the intended approach to solving the problem. So far,
we have focused more on the patrolling problem in the domain; hence we do not deliver a
more detailed analysis of the solution of this problem in this report.

In our scenario, we need real-time decision making in fairly large game, hence we have
decided to adopt the state space search (SSS) approach as discussed above. We intend
to implement some of the state-of-the art methods surveyed in the related work section of

42

this chapter. Due to expected high computational complexity we intend to focus mainly on
incomplete methods that cannot offer theoretical guarantees on the produced solution, but
which has been proven to be successful in other domains. These methods include mainly
Monte-Carlo tree search method (such as UCT[40]) and the methods for exploiting various
forms of sparseness in game domains, which have been developed by ATG in its previous
projects [48, 49].

Monte Carlo Tree Search

All the algorithms presented in this section are based on Monte Carlo tree search (MCTS)
techniques. These techniques are suitable in our domain for a number of reasons. First
of all, they proved to be successful in a number of different domains. An agent based
on MCTS technique called UCT [27] was the winner of the general game playing (GGP)
competition organized by AAAI in 2007 and MCTS agents stayed on the top position every
year, including the last competition in 2010.

The key advantage of the algorithm for our application domain is its anytime property.
The algorithm can use any amount of computational resources available to produce near
optimal strategy, but even after a short time, it is already able to output a reasonable
strategy and quickly decide about the next move. In our application, it allows dynamic
balancing of the quality of the pursuit process and the resources needed for more crucial
tasks performed by the agent, such as collision avoidance and motion control.

The third advantage is that the MCTS algorithms in general require minimal amount of
domain specific knowledge to be encoded. They require only the implementations of the
actions available to the agents, their effect on the game state and the description of the
desired outcome of the game. No additional knowledge about specific opponent strategies
or suggested plans for the agents is needed. On the other hand, if this knowledge is
available, it is usually possible to incorporate such knowledge in order to increase efficiency
of the algorithm.

The algorithm maintains a tree corresponding to a part of the search space close to the
initial state. At the beginning, this tree consist of only the root node and then it gradually
grows more in the areas that are perspective to at least one of the players. The main
skeleton of any MCTS algorithm consists of four procedures that are repeatedly called in
the following order:

• Selection:Starts in the root note and descends down the already constructed part
of the tree based on the statistical information stored in the tree nodes.

• Expansion:After it reaches the leaf of the already constructed tree, it adds a small
sub-tree rooted in the leaf to the maintained tree.

• Simulation:It chooses one of the leafs of the newly added tree and runs a of the
play behind that point using random actions for each of the players and evaluate its
result.

43

• Backpropagation:It returns back to the root of the tree and on the way, it updates
statistics in all the nodes using the result of the simulation.

The main idea of the algorithm is to use earlier iterations to create statistics that allow
guiding the later iterations to the portions of the search space that are more relevant for
the game.

The output of the algorithm are the actions in the root node that lead to statistically
most favorable results for the agents that runs the algorithm.

Goal-based game tree search

GB-GTS [48] is a search-based algorithm that incorporates procedural background knowl-
edge into classical adversarial search in order to simplify searching in multi-agent games.
A similar approach based on HTN has been used to create a competitive bridge playing
program [69].

The procedural knowledge is represented in the form of so called goals, where each goal
consist of three elements: (1) a set of initial conditions specifying the states in which the
goal is applicable, (2) a set of conditions that define the world states in which the goal is
satisfied, and (3) a procedure that for each state of the world returns the next action on
the path towards the goal satisfaction, or marks the goal unsatisfiable. Instead of searching
on the level of atomic actions, the GB-GTS plans on the level of high-level goals. This
way only meaningful branches of the game tree would be evaluated, which substantially
reduces the search space. On the other hand, the GB-GTS does not reduce the problem to
the pure usage of high-level goals instead of atomic actions because the simulation of the
future development in the world is still performed on the atomic level. Hence the GB-GTS
is similar to a cut-off heuristic in a classical adversarial game tree.

The algorithm runs as follows. The search starts with all agents marked as idle. In
any run of the main loop, if there is an idle agent, the algorithm creates a new branch of
the search for each goal that is applicable for the agent in the current situation, assigns
it the goal (the agent is not idle anymore) and continues to the next loop. If all agents
have some goals assigned, GB-GTS simulates the future development of the game move
after move, until at least one agent becomes idle again by satisfying a goal or detecting its
goal is unsatisfiable in the given state. In such case, the main loop of the algorithm starts
again. The algorithm iterates a pre-determined fixed number of moves to the predicted
future (look-ahead), evaluates the reached position and the interim states that led to the
position, and propagates the value back using a value back-up function.

Information Set Search

Information set search (ISS) [60, 61] is a heuristic method for playing imperfect informa-
tion extensive form games that has been successful for example in Kriegspiel (imperfect
information variant of Chess). However, it is a heuristic algorithm that does not provide
any bounds on the quality of the produced solution, unless we have a perfect model of the

44

opponent’s behavior. The main idea of the algorithm is substantial reduction of computa-
tional complexity by searching only through the information sets that belong to the player
using the algorithm. The actions of the opponent are substituted by operations on the
information sets that could possibly be the effect of the opponent’s actions.

The algorithm is based on the same principles as the standard minimax algorithm used
to play perfect information games like chess. It traverses the game tree by a depth-limited
depth first search. The tree nodes are the information sets in the game. In the root (first
layer) and every odd layer, the edges that lead to the following layer represent the actions
that can be performed by the player. Note that in all states in one information set, the
applicable actions of the player must be the same. The information set in the next layer
represents all the states that can follow after applying the action in the parent information
set. The edges going from the even layers of the tree do not represent actions, but possible
observations. Each observation leads to a different information set.

When the algorithm reaches the pre-defined depth, it applies a static evaluation function
and computes the utility value. The values of all the child nodes are then used to compute
the value of a parent. In the action selection nodes, the value of the child after the action
that maximizes the searching player’s utility is used. In the observation selection moves,
the situation is much more complex. The right value to select is based on the opponent
model. Two basic opponent models are explored in literature.

Paranoid The paranoid opponent model assumes that the observation received is the least
convenient one. This is consistent with the minimax assumption used in perfect
information games. However, in imperfect information games, this expects the oppo-
nent to make the worst possible move even if he does not have enough information
to determine it. The information of the searching player about what would be the
move that would harm him the most is usually more accurate than the information
available to the opponent.

Overconfident The overconfident assumption is the other extreme. As the opponent often
does not have the information to determine, which of his moves lead to the worst
possible observations, this assumption expects that the acquired observation is uni-
formly randomly selected from all possible observations. This approach performs
better than the paranoid in games with strong information asymmetry.

Based on these opponent models, the value in the “observations” node would be the mini-
mum (paranoid) of mean (overconfidence) of the values in the child nodes. The advantages,
disadvantages and bounds of these two opponent models are further examined in [61].

Visibility-based pursuit evasion The information wet search has been successfully applied
for generating the pursuers’ behavior in visibility-based pursuit evasion domain [66]. The
actions of the pursuers are all possible moves of the agents. The possible observations
revealing the position of the evader on each position that became visible by the previous
move of the pursuer or no observation. This ”observation” leads to a state that represents

45

all possible locations of the evader that it could reach from its previous position and are
not currently observable.

The paper presents several evaluation function in the leafs. Their experiments indicate
that the most successful function for tracking is the one they called RLA. The function
evaluates a leaf information set proportional to the size of the set of nodes that can be
reached by the evader in less than d steps, but cannot be observed by any of the pursuers
in this time.

3.2.4. Designed algorithms

In this section, we explain the details of the algorithms we have designed for creating
behavior in the PEGs with heterogeneous teams. All the algorithms are based on (a
combination of) the existing approaches introduced above.

MCTS for Fully Observable Pursuit-Evasion Game

The algorithm we use for this problem is a variant of MCTS with UCT [40].

Simultaneous Moves UCT was developed for alternating moves games. The advantage
of these games is that the players always know what the next state of the world is after
they apply an action. It does not hold in games with simultaneous moves. The state after
applying an action depends on the action the other players chose to apply. If we want to
apply MCTS to simultaneous moves games, we have two basic options.

Moves serialization: The moves can be reasoned about as if they occurred in se-
quence. As a result, the player that is considered to move second knows the move of the
first player and can adapt its strategy accordingly. The order, in which the moves are
considered, causes the algorithm with serialized moves to be either too optimistic or too
pessimistic. This can lead to bad play in some cases, but in general, the approach has been
shown efficient in several domains (e.g. [48]).

Simultaneous updating: The adversarial planning methods based on MCTS allow
also direct consideration of the simultaneous moves. The definition of the game tree is
modified so that a subset of players moves in one node of the tree, not a single player.
In the selection phase, an action for each of the players is acquired in each tree node
based on the statistics of the action’s expected utility and the number of times the action
was sampled. In the backpropagation phase, statistics for each of the actions are adapted
separately. This approach avoids the issue with optimism/pessimism, but the concurrent
adaptation of the strategies of multiple players based on the same samples may lead to
suboptimal balanced strategies that can be exploited [68]. However, this method proved
to be successful in CADIA player [27] and we adopt it in the current work.

Monte-Carlo Tree Search The implementation of the game state in the fully observable
case consists only of a vector of physical positions of the agents. The UCT algorithm

46

creates a new root node for the observed state of the world and repeats the following four
phases.

Selection: The selection phase starts in the root node and descends down the previ-
ously constructed portion of the game tree. It selects an action for each of the players in
the current tree node based on the statistics in the nodes and the UCT formula:

action.expV alue+ C

√
ln(node.nbSamples
action.nbSamples

expV alue is the expected value of taking the action and nbSamples is the number of
previous samples going through the current node and selecting the action. The action that
maximizes the value of the formula is selected and performed in order to identify the next
node that will be set as the current node. At the end of this process, either the end of the
game is reached or the selection selects a node that has not been previously visited.

Expansion: When a new leaf node is reached, the node is expanded. All the game
states that can follow the current leaf node in one move are generated and appended to
the tree. One of them is selected and the simulation phase is initiated. When the game is
ended in this node, constant node with value 2 for the pursuers is created.

Simulation: Simulation tries to estimate the quality of the state reached at the end of
the repeated selection process. We have designed two simulators for the perfect information
version of the game.

The simpler random simulator selects completely random moves for all the players until
the evader is caught, or a pre-specified horizon is reached. If the random simulation does
not lead to capture of the evader, it is assumed to escape and the value of the simulation is 0
for both players. Otherwise (1+1/t), where t is the round in which the evader was captures
is returned. This motivated the pursuers to capture the evader as early as possible.

The canonical random simulation in MCTS can be substituted for so-called heavy simula-
tions [23] that use domain-specific knowledge to produce simulation that are likely to occur
in the game. The heavy simulations in our implementation prohibit for all agent staying in
a node and going to the position where the agent was in the previous time step. Moreover,
always when an agent arrives to a crossroad, it computes which of the notes it can move to
is (a) the furthest node from the closest pursuer for the evader agents and (b) the closest
node to the evader from a pursuer agent. Then with probability 0.5 it chooses the selected
node and with probability 0.5 it chooses any random node. The simulation value in the
case of capture is the same as for the random simulation. The simulation value i the case of
reaching the simulation horizon of 30 steps without a capture is (1/sumDistance), where
the denominator is the sum of distances between the evader and the pursuers. In order
to compute the heavy simulations efficiently, we use a pre-computed cache of distances
between each pair of nodes in the graph.

Backpropagation: In the last phase, the result of the simulation is propagated back
towards the root in the tree. The statistics of the actions and nodes on the path from
the simulated node to the root are updated. The number of samples in each of the nodes

47

and selected actions is incremented and the expected values of the actions on the path are
updated by the result of the simulation.

Search Tree Progression In order to be able to model the topology of the space precisely,
we use a graph with high number of nodes. Hence, the distances between two neighboring
nodes are quite small. The standard approach used with game tree search algorithms is
to execute a new search after each move is applied. This would give us only very limited
amount of time for reasoning about the next move. Moreover, the situation after a single
move is generally very similar to the situation in the previous time step, which indicated
that most of the reasoning could be reused.

In order to reuse the previous computations and use the available time as much as
possible, we do not start a new search in new step. After the agents submit their moves
to the simulation and start to move, they observe the actions being performed by the
opponents (i.e. the directions, in which they move). They find child of the current root
node of their MCTS trees that corresponds to the combination of the actions that are
being performed. The replace the current root node by its child and run the simulation
until the end of the move. At the end of the move, they select the actions to play based on
the statistics an observe the nest opponents move. From the design of the UCT selection
mechanism, large portion of the simulation in the current tree used the child that leads to
the actual situation in the next move. These simulations create the tree for the next move
that is further refined.

Team actions We have restricted the game to contain only one evader, but we assume
to have multiple pursuers. While being two entities in the simulation, they have exactly
the same goal and they can communicate to coordinate their actions. From the game
theoretical perspective, they are single player with actions corresponding to the Cartesian
product of the actions of individual actors – pursuers.

On the other hand, working explicitly with the whole set of possible combinations of
actions of the individual players may be inefficient for several reasons.

• If the numbers of actions available to the pursuers in a node are (b1, . . . , b|P |) and
we keep the action statistics for each action from the Cartesian product, we have to
keep b1 ∗ b2 ∗ · · · ∗ b|P | records. If we consider each agent an individual player, we just
need to keep b1 + b2 + · · ·+ b|P | records. This means not only a substantial reduction
of the memory requirements of the algorithm, but also saving of computational time,
as much smaller number of actions need to be considered in the selection process in
each node. Considering the agents to be separate players improves the scalability of
the approach.

• In many domains, such as ours, some moves by one agent may be superior to other
moves no matter what the other pursuers do. For example, no pursuer should enter
an empty death end. When all the pursuers are considered single player, the player

48

Figure 3.1.: Simultaneous UCT update pathology example.

has to learn that going to the dead end with the agent is bad for each and every
combination of moves of the other pursuers. This leads to spending a lot of com-
putational resources on parts of the tree that are unlikely to bring interesting good
outcomes.

• Using the Cartesian product of actions complicates distribution of the algorithm to
multiple agents. Agents have to reason about all the other agents and their actions
and assume high level of coordination.

The alternative approach is considering all the teammates to be separate players with the
exact same utility and simultaneous decision (as in case of the opponents).However, this
approach also has drawbacks on the fundamental level as well as more practical issues
with the specifics of the UCT algorithm. The problem with UCT is that the concurrent
deterministic update of the actions’ quality statistics of the individual agents may converge
to suboptimal strategies. One example of such pathology is following.

Example 4. Assume that two players of the same team have both two actions in a node.
We denote them {a1

1, a
1
2}and{a2

1, a
2
2}. The UCT selection rule gives the highest priority to

the actions that has not been tried in the node yet. As a results, the first two samples will
cause consecutive selection of (a1

1, a
2
1) and (a1

2, a
2
2). The agents from the same team, hence

the simulations results to the same value for both the agents and hence their estimate of
the expected value of the actions is the same. Any time the UCT visits this node, the
number of samples and the returned values for the action on the same position for the
two agents will be the same, hence the UCT formula will choose the actions on the same
position for both the agents. The pairs of actions on different positions, such as (a1

2, a
2
1),

will never be examined. However, this action can be sub-optimal as shown in Figure 3.1.
Each pursuer should go to a different node in order to capture the evader before it reaches
the nodes marked Gone.

Goal-based extension The performance of the SSS techniques in many domains can be
substantially improved using procedural knowledge heuristic about reasonable behaviors
in the game. In our setting, we used a simplified version of GB-GTS for this purpose. We
augmented the state of the world with the current goal for each agent. The goal in our case
was a node in the graph where the agent wants to arrive using the shortest path. In the
MC tree search algorithm, if an agent has a goal assigned, the only action considered for

49

the agent is moving to the next node on the shortest path to the goal node. If it reaches
the node, it becomes idle. In that case, the next action for the agent is assigning any of
the applicable goals (important crossroads near-by) in our case.

Just using the close crossroads helped significantly reduce the size of the search space.
However, the GB-GTS method can be used to incorporate more sophisticated background
knowledge. The goals can be pre-computed nodes with favorable topological properties for
either the pursuer of the evader or hand-made smart heuristics. Because of limited amount
of time and satisfiable results with simpler goals, we did not pursue this line of research
further.

Monte-Carlo ISS for Visibility-based PEG

We have described the state of the art method for visibility-based tracking [66] in Sec-
tion 3.2.3. It is based on the information set search and static evaluation function. There
are two main problems we have to solve if we want to adapt it to PEGs with heteroge-
neous teams in realistic setting. The first problem is that we need a different evaluation
function. The RLA heuristics works well for the tracking problem, but it is not usable
for capturing the evader. The other problem is that the vanilla minimax-based ISS needs
variable time to compute the next action. If an agent is in an area with higher number of
crossroads, the amount of possible future courses of action within a horizon is larger and
the computation time needed to traverse it longer. This effect is further strengthened by
various pruning mechanisms such as alpha-beta. Unless the algorithm finishes, it cannot
provide any solution.

This issue is critical in our application, because in practice, we have a strictly limited
period of time for computation. The time is given by the speed of the agents and the
time, when the opponent arrives to the next node of the graph. If we do not have the next
move by the time, we cannot apply the next action, we might have missed the opportunity
to catch the evader and we have to start over again. The whole tree (until the selected
look-ahead depth) has to be traversed again in the next move.

This problem does not have a satisfactory solution within the classical game tree search
approaches. The solution offered are either wasteful to computational resources of requires
move ordering knowledge that might be impossible to acquire. The first solution could be
to estimate the upper bound on the computation time needed and select the search depth
accordingly. However, the amount of computation needed is exponential in the search
depth. As a result, it is not likely that it will be possible to find a search depth that
uses the whole period of time available for computation. The player would be most likely
idle long before it has to decide about the next move. It a reliable upper bound cannot be
computed, iterative deepening is an option, but it has the same problem. The last iteration
will not be finished in time and it will most likely use most of the available time because
of exponential increase of the required time with the search depth.

Both the problems with evaluation function and effective use of resources can be solved
by MCTS approach. That is why in the following, we combine the ISS with MCTS. Thanks

50

to the anytime properties of MCTS, the confidence in the right solution increases in time
and we can always get a good solution exactly at the end of the move. Moreover, thanks
to reusing of the search tree between the nodes, we can transfer a lot of the search effort
from previous time steps to the following. Even the problem with designing a good leaf
node evaluation function is relaxed in MCTS. One of the main reasons why MCTS has been
successful in the general game playing competition [27] is that (mostly) random simulations
are often more efficient in estimating quality of a node than a static evaluation function.

Monte-Carlo ISS The proposed method is application of the MCTS to the same kind
of tree that is built in the ISS. However, we do not limit it to a fixed depth and rather
construct the tree gradually more intensively in the more promising parts. The state of
the game is represented as a vector of positions of the agents of the searching player and
a vector of the sets of the possible positions of the opponents.

Selection: The selection mechanism we use is the same as we applied in the game
with full observability. We use UCT selection in the nodes where action is selected. In the
nodes where the observation is selected, we use both the paranoid and overconfident model.
The paranoid model is emulated by UCT selector with negative values of the nodes. The
overconfident model corresponds to uniformly choosing a random observation.

Expansion: The expansion of the node in which an action is selected is straightforward.
All the applicable actions are identified and applied to get the child nodes. In the case
of the nodes with observations, the expanded children correspond to each of the positions
where the opponent could appear and possible one information set where it stays unseen.
There is one exception. We define a threshold on the maximal possible size of the set of
possible positions of an unseen agent. When the critical size is reached, we assume that the
agent stays in the region that does not grow any further until it is spotted again of the parts
of the region are explored and the agent is not detected. The reason for that can be seen
in the pathological behavior of the evader. If the evader does not see a pursuer for a long
time, it always considers possible that it is handing in each unseen location. If we did not
apply the threshold, the observation nodes would always produce the pursuer appearing in
exactly at the next seen position in all possible escape directions. Both overconfident and
paranoid algorithm would reach the conclusion that any further course of action is equally
bad regardless on other seen pursuers that might be approaching the evader. Ignoring the
long unseen pursuer consistently produces better behavior.

Simulation: In the simulation stage, we need to estimate the quality of an information
set, not a single state as it was in the case of the fully observable game. For that, we use
perfect information sampling in our algorithm. We create 5 random samples of full states
that are part of the information state. We run the same biased simulation as in case of the
full observability and return the mean of the results of these 5 simulations.

Choosing the samples randomly in simulation also corresponds to an overconfident as-
sumption. A model of opponent behavior could be used to bias the selection of the stated
for simulation. It the opponent has sufficient amount of information, the simulation results

51

Figure 3.2.: UCT selection for partial information games. “#” stands for the number of
samples and EV is the expected value.

for states that are unfavorable are more likely to be representative for estimating the value
of the node.

Backpropagation: The backpropagation phase is the same as in the previous cases.
After the simulation, the numbers of times the actions have been used as well as the
expected value they led to are updated in all the information sets that have been traversed
in the current sample.

Novel Approach Suggestion

The need for opponent model or at least the paranoid/overconfident assumption in ISS
results from the fact that the search is performed only on the information sets of single
player. The information about the other player has to be provided externally. In order to
overcome this problem, we have proposed an alternative solution. This section introduces
the main concepts of the algorithm, which has not been implemented within the limited
timespan of this project.

The algorithm can be perceived form two perspectives. The first perspective is general-
ization of the UCT algorithm for the simultaneous moves as shown in the precious section.
The other perspective is simultaneous learning of the best response strategy to the actual
strategy if the opponents. First we explain the algorithm for the case that we know exactly
what the initial state of the game is and how this limitation can be dropped.

The main idea of the algorithm repeatedly traverse the game tree as in UCT, but to use
the current information of individual agents instead of the exact state of the world in the
selection and backpropagation phases. In order to do that, we need a data structure that
will be able to quickly return an information set corresponding to any sequence of moves
by the agents. With each of the information sets, we store the actions available in the
information set and we with all actions, their expected value and the number of times the
action has been tried-out.

52

Selection The selection process starts from the initial state of the game, which is assumed
to be known to both players. During the whole selection phase, we are still working with
a complete state of the game, regardless what the agents know about it. The selection
process is depicted in Figure 3.2. In any node, the full state of the world (s) including the
full history of the actions of all the agents (h) is transformed to the information sets of
each of the players. The information set corresponds to the information the players would
have if they played h in the game and update their believes about the state of the world
based on the observations they obtain. The pursuer (P) knows the exact position of its
agents, but it might be uncertain about the position of the evader, if it cannot see it in
state s.

With each information set that has been previously encountered in the search, the agent
stores the following information. (1) All the actions that are available in the information
set. For each action, the statistics about (2) how many times was each of the actions used
in the information set and (3) the mean value that was gained by the player for playing the
action. Based on this information, each agent can use the UCT formula to select the next
action it should explore in order to optimally balance the exploration and exploitation of
the information obtained in previous samples.

The following node in the selection process is uniquely identified by the combination of
actions each of the agents selects. The selection process continues in the same way in the
following nodes, until the combination of actions in a node leads to constant leaf node (i.e.
the game ends in the node) or to a situation sf , for which at least one of the players does
not have a corresponding information set in the table of already encountered information
sets.

Expansion The expansion means adding the information sets corresponding to the state
sf to the table of encountered information sets for all the players, which do not already have
it there. All the actions available to the player in the information set must be generated
and the corresponding data structure initiated.

Simulation The simulation phase is exactly the same as in the full observability version of
the game. It starts from the full game state that is available all the time in the algorithm.
In that state, all the agents take random moves until the evader is captured, or a pre-
defined horizon of moves is reached. The horizon in our experiments is set to 15 moves. If
it is reached without capturing the evader, the value returned by the simulation is zero for
all the players. If the evader is captured in move t of the simulation, the value returned is
(1 + 1/t) for the pursuers and the same value with the negative sign for the evader.

Backpropagation The backpropagation phase is also similar to the full observability case.
After the simulation, the numbers of times the actions have been used as well as the
expected value they led to are updated in all the information sets that have been traversed
in the current sample.

53

Uncertain root node The algorithm described above always starts from a known game
state in the root node. While this assumption can be used in academic partial information
games, such as Kriegspiel, it is not realistic in the pursuit evasion game. We might know
that the evader is located somewhere on the map, but if it is not visible in the root note of
the game, the root represents an information set that consists of a large number of possible
game states. Even if one player knows the positions of its agents, it is not known to the
other player. In general, only the information that is common knowledge in the game
can be used for unbiased pruning of the search.

We assume that the only common knowledge at the beginning of the pursuit evasion
game with partial information is that all the agents are on the map and in case that the
initial state is not unique, both players know that they cannot see each other. The game
states consistent with the common knowledge for the case of two pursuers and one evader
are following.

R = {(pos(p1), pos(p2), pos(e)) ∈ NxNxN : pos(e) 6∈ v(p1, pos(p1)) & pos(e) 6∈ v(p2, pos(p2))}

With limited visibility range, the size of the set is almost as large as the number of all
possible states of the game. If this set is really too large, just a sample of a limited size is
selected from the set R.

The algorithm then runs the same way as before, but the initial position in the rood is
selected uniformly from (the sample of) the set R. After certain time, the best action from
the information set representing the real knowledge of the agent in the current state of the
world is performed.

Information update After the game progresses by another move, new common knowledge
is generated. The agents either see each other or not. In the first case, the pursuer knows
the exact state of the game, but the evader typically learns only the position of one of the
pursuers. In the second case, both players learn that they do not see each other.

Even if the agents do not see each other, some of the positions of the opponent, which are
apparently bad, become less likely than others. The uniform distribution over the states
we used in the root node to represent complete lack of knowledge about the opponent’s
position is already not precise. The opponent’s position is the outcome of its strategy and
not some random effect of the environment. Therefore, creating a probability distribution
over the opponent’s possible positions is impossible without additional assumptions. As
usual in game theory, we are trying to create a method that limits the assumptions on the
opponent’s behavior only to its rationality. We do not know what the best moves are for
the opponent, so we use the information from the search.

One option to use the information can be creating a new root node and sample a new
set R based on the most likely moves in each of the roots in the current set. This approach
is difficult, because it is not clear how to sample the set to keep the size of R constant and
preserve both the uniform distribution of possible starting positions and the high chance
of taking good moves by the agents.

54

That is why as the first step to a good resampling strategy, we suggest delaying the re-
sampling to the special situations, in which the uncertainty about the opponent’s positions
is quite low. In general setting we preserve the root of the search three in past and each
Monte Carlo simulation starts in the root, the selection process goes through one of the
information sets one of the players may assume to be possible in the current state and con-
tinue in to the future. When the players obtain new information, all the information sets in
the current time step and in the past are checked and removed is they are inconsistent with
the observations. Note, that the actions in the predecessors of the information sets that
lead to the removed sets are removed as well. Moreover, the contributions of the actions
to the number of samples and expected value of the whole information set are removed as
well.

The following MCTS samples that start in the root of the tree (in the past) arrive to a
possible current state of the world with the probability proportional to the current estimate
of the optimal strategies, all the observations, and the (uniform) distribution of the possible
start states in the root node of the search.

Discussion The main advantage of the proposed approach is that it is not biased to
paranoia or overconfidence, as most of the state of the art techniques. It reasons for both
players equivalently, thanks to the requirement of the symmetric knowledge.

The main disadvantage is naturally computational complexity of the approach. It may
have to run for a long time in order to produced reasonably good strategy. The analysis
of the balance between the combinatorial explosions caused by all the combinations of
possible moves and the tree reductions possible thanks to the observation by the agents is
part of the future research.

3.3. Evaluation and experiments

With the exception of the algorithm described in Section 3.2.4, we have implemented all
the algorithm described above within the multi-agent simulation platform. We start the
evaluation of the algorithms by the simpler case with full observability and then examine
the generalization. We focus on analysis of

• suitability of the basic principles of the proposed algorithms with respect to the real
world requirements,

• scalability of the proposed algorithms to problems of realistic size,

• and basic parameter choises suitable for our setting.

55

Figure 3.3.: An example situation in the game with full observability. The green dots are
the pursuers and the red dot is the evader.

3.3.1. Fully observable setting
Minimax vs. MCTS

In the first set of experiments, we evaluated our assumption that the minimax-based algo-
rithms will have serious problems assuring stable performance in limited time. We run the
minimax algorithm with a simple evaluation function that returns the sum of distances be-
tween the evader and the pursuers or −1 in the case of capturing the evader. The example
problem includes single evader and two pursuers. The screenshot of the schematic view of
the scenario is in Figure 3.3.

Without the simple goal-based extension that removed the decisions on the interim
unimportant nodes in the graph, neither of the approaches performed well. The fine dis-
cretization needed to provide exact model of the scenario topology caused huge state space.
With the goal-based approach, the minimax algorithm was able to search 10 moves ahead.
This look-ahead was generally sufficient for capturing the evader in our domain with the
simple evaluation function. However, the deterministic nature of the algorithm caused
that it often also got stuck in a cyclic situation that repeated forever without a successful
capture.

As we expected, the main problem with this approach was the variable time it needed for
computation. The histogram of the computation times needed for a sample initial setting
is shown in Figure 3.4.

Most of the computations were performed quickly. However, the pruning was sometimes

56

0

10

20

30

40

50

1000 2000 3000 4000 5000 6000 7000N
u

m
b

e
r

o
f

co
m

p
u

ta
ti

o
n

s

Computation time (ms)

Figure 3.4.: The histogram of computational times (ms) needed to compute solution with
the minimax algorithm and alpha-beta pruning.

not efficient and more complex situations caused the algorithm to run even 7 seconds.
This uncertainty could be lowered by fine-tuned move ordering and situation complexity
assessment, but it cannot be completely removed. Sometimes, the algorithm would not
produce any solution in time and the agents would have to move heuristically.

The experiments with MCTS algorithm are more promising. The first advantage is that
it is an anytime algorithm. Hence, we can limit the computation time to any time period we
need. In our experiments, we used 1 second. Even with this strict limitation, the algorithm
performs reasonably well. If both agents use MCTS to produce their behavior, the pursuers
are able to eventually capture the evader in any starting configuration of the simulation.
The current implementation with the same procedural knowledge heuristic as we used for
the minimax algorithm and with the biased simulation described in Section 3.2.4 was able
to perform approximately 10 000 simulations per second. However, with reusing of the
simulations from previous moves and approaching end of the game, the decisions were
eventually made with over million simulations performed through the root of the tree.

Based on these findings, we have determined that MCTS is a more suitable algorithm in
our setting.

Scalability with additional pursuers

The standard way to reason about games among relatively small teams of agents’ controlled
by a small number of players is to consider all combinations of actions of the agents to be
an action of the player. However, this approach does not scale well with increasing number
of agents. The number of actions of each of the players is exponential in the size of his

57

team.
In MCTS algorithms stores statistics about each player’s action. With exponential num-

ber of actions, the memory complexity as well as computational complexity of processing
single tree node becomes exponential in the size of the team. An alternative approach we
explored is to consider the team of agents to be separate (simultaneously deciding) players
within the MCTS algorithm. These players share the same utility function and implicitly
coordinate based on the results of the simulation. After sufficient number of trials, each
team member select the best action most often and the other team members can adapt
their strategy to achieve good results. The simultaneous adaptation of agents’ strategies
can be guaranteed to reach the Nash equilibrium [20]. A good update strategy could lead
to reasonable coordinated play even without the need to reason explicitly about all possible
combinations of the actions of the agents.

In order to examine this hypothesis, we have performed the following experiments.

Experiment setting All the experiments reported in this section were performed on a
regular 10 × 10 grid graph. Agents can move in at most 4 directions, or they can stay at
the same node. One evader and two pursuers start on a random location. Two instances
of the UCT algorithm are run. The first is run by the evader agent and the second by one
of the pursuers. This pursuer decides about the actions of all its teammates, sends them
a message and they just perform it without any reasoning. We have used a fixed evader
setting for this experiment. The evader used

• the presented Monte Carlo search with UCT parameter set to 3

• considered each evaders actions separately (not their product)

• used 1 second of CPU time to come up with a next move.

Results The first experiment validates that the described UCT based Monte Carlo method
is capable of producing rational behavior of the pursuers within reasonably short compu-
tational time.

We varied the parameters of the pursuer player in two basic dimensions. First, we tried
to give it various time intervals for reasoning about the next move. Second, we compared
the quality of its play in case of using the Cartesian product of the actions and two separate
players with their own actions. In the product case, the UCT parameter was set to 3. In
the other case, it was set to 3 for one player and 4 for the other player in order to avoid
the issues with deterministic synchronized action quality exploration.

The results of the experiment are summarized in Figure 3.5(a). First of all, we can
see that the agents were performing reasonable strategies. Catching an evader on a grid
generally requires pushing it to a corner and intercepting its attempt to flee from there. If
it manages to flee from the corner (which cannot be prevented for 100% by two pursuers),
it can run to the opposite corner of the grid, which buys it approximately 20 moves, in
which it cannot be captured. With only 1 second of reasoning, the suggested methods were

58

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1000 1500 2000 2500 3000

M
C

T
S

 S
am

pl
es

Computation time

Simple
Product

Figure 3.5.: (a)The mean number of moves needed in order to capture the evader with two
pursuers on 10x10 grid graph. (b) The mean number of samples made by each
algorithm in the given time.

able to catch the evader on average in less than 50 moves. Naturally, the actions of the
agents also seemed reasonable in the simulation.

The second result of this experiment is the fact, that using cross product of the actions in
case of two pursuers is more efficient the separate consideration of the agents. The number
of moves the agents needed to catch the evader was in average smaller in the earlier case.
Moreover, the standard deviation of the number of moves needed was substantially smaller
for the cross product setting. Even though the selection process has higher computational
complexity, it allows more precise guidance of the search and pays-off at the end.

This claim is supported in Figure 3.5(b), which shows the number of Monte Carlo samples
individual methods managed to make in the given time. Even though the computation in
each tree node is more complex, the better guidance of the search assured that the samples
were ended sooner and hence, more samples could be made.

The last result that can be seen on these graphs is confirmation of the anytime property.
The more time the agents used for the reasoning, the shorter was the time needed to catch
the evader and the smaller was the deviation.

Based on these experiments, we can see that using simple actions with the basic UCT
formula is not beneficial. However, we assume that it is caused by the described pathology
and the situation can be different a different selection rule.

3.3.2. Partially observable setting
Based on the experience with the scenario with full observation, we could make several
design decisions in advance. We focus on MCTS that is more suitable in this setting. As
we aim to use the very successful UCT selection method, we further assume the actions of
the player to be reasoned about as all the combination of the actions of the agents in her
team.

59

Based on the MCTS IIS algorithm described in Section 3.2.4, we were able to create a
proof of concept players for both the pursuer and the evader agents in a game with the
team of pursuers composed of three units. Two ground units that are able to capture the
evader and one observer UAV that provides information. Only one evader is present in the
scenario.

The performance of the players is far from perfect. We believe that the main reason of
the limited performance is that the GB-GTS method be used add procedural knowledge
heuristic to the search algorithms in the full information case cannot be directly applied
for ISS. Hence, the algorithm currently considers all possible sequences of movements of
the actions.

However, in limited situation, they can find interesting solutions within a short period
of time. The proof of concept implementation indicates that the chosen methods can be
successfully used for the problem solved in this chapter in its full width. Achieving this
even without any procedural knowledge heuristic indicates that we can expect very good
play once the prune out all the clearly inferior courses of action. A good solution might
be a combination of the agent oriented GB-GTS and the HTN-based approach of Smith et
al. [69], which can deal with the imperfect information present in bridge.

60

4. Multi-agent re-planning and plan repair

4.1. Summary of the workpackage
The following chapter fleshes out the results of our research in the context of interaction of
multi-agent and multi-robot systems with dynamic environments, such as the urban warfare
missions are. The workpackage tackled two main issues. Firstly, we studied interactions
of agent and multi-agent systems with dynamic environments in which actions of agents
embodied in dynamic environments can fail. Secondly, we tried to tackle the problem of
managing such interactions by automated planning approach. In particular, in the face of
plan failure, we propose to attempt to repair the plan by the team of agents, instead of
re-planning from scratch.

Our study of interactions agents with their environments, we followed a rigorous formal
approach and proposed a formalism allowing us to finally classify various combinations
of agent-vs.-environment systems according to estimation of plan execution success rate,
resp. confidence level. In the core of the framework lies modelling of environments in
terms of stochastic Markov Decision Process in which agent’s actions do not automatically
succeed, but rather fail with some probability. On top of this formal model, we propose a
novel formal temporal modal logic called pDCTL* which allows us to exactly capture the
success of execution of agent programs attempting to satisfy a given goal, an individual
mission. IN result, the formalism allows us to formulate the notion of a planning horizon,
i.e., timeframe for which planning still works reasonably well. That is, the plan will succeed
with some sufficient probability. In the future, we plan to extend this line of research
further to multi-agent case, i.e., investigation of interactions of cooperating agents working
in teams towards satisfaction of some joint goal, or a mission.

The second, and in fact the main pragmatic topic of this chapter deals with the problem
of plan repair. In particular, we recognize that classical-style planning is nowadays one
of the most used techniques for automation of activities of intelligent agents, however we
also observe that such plans are not robust w.r.t. unexpected events occurring in dynamic
environments. The standard solution, in such cases, is to simply re-plan the agent’s be-
havior from scratch and continue its actions according to the new plan. In multi-agent
case, when decentralised planning method is used, this leads to significant communication
among the multi-agent team members. In situations where communication is costly, or
undesired (e.g., it could reveal the position of the agent to an adversary), there is a ample
interest to reduce the communication to a bare minimum, even though the price for it
might be prolonged non-optimal plans and/or imprecise plans.

We propose four algorithms solving the problem of multi-agent plan repair. The algo-

61

rithms differ in the level of complexity of the plan repair process, analytical properties, such
as teh communicartion complexity, as well as in the quality and efficiency of the resulting
plans. We also evaluated and compared the implemented algorithms with other state of the
art multi-agent planners and the optimal output plans in synthetic domain of box movers.
The domain is rich enough to facilitate modelling and study of properties of the proposed
algorithms in a domain, where teamwork is essential for the multi-agent system’s success.

Finally, we employed one of the plan repair algorithms in an integrated scenario of team
mission execution in urban warfare setting. We model a multi-robot team consisting of
several micro-UASs (modelled as AESIR Vidar single-rotor VTOLs, about 1m in diameter,
10kg payload capacity) and medium-range unmanned helicopters (modelled as Saab Skeldar
V-200 VTOL, 40 kg payload capacity) supporting a human squad on their VIP evacuation
mission in an urban terrain. While the secondary task of the robot team is to perform their
own information collection mission in the town, their primary task is to provide situational
awareness and reconnaissance for the human squad. In result, while the robotic team
has its own plan to carry out their joint planned mission, they are not aware of all the
movements of the human squad and have to repair their original plans according to the
changes invoked by the activities of the squad. The results of this qualitative evaluation
show a lot of promise w.r.t. the future improvements and in-field applications of the plan
repair algorithms.

4.2. Technology description

4.2.1. Interaction of agents with dynamic environments

In dynamic environments agent’s actions can fail. This might be either directly due to
failing effectors of the agent, or indirectly due to incompleteness of information. The latter
situation may arise either because precise and complete information is inherently impossi-
ble (think of a robot dealing with complex physical phenomena, such as the weather), or
technically infeasible, resp. undesirable in the given application domain (e.g., high space
complexity of the environment representation, or high rate of environment change in rela-
tion to the speed of the agent’s deliberation).

Construction of agents in the face of unexpected failures is difficult. As a reaction to dif-
ficulties with classical planning in dynamic environments, the paradigm of agent-oriented
programming (AOP) based on reactive planning (e.g., [16]) became one of the state-of-the-
art techniques for construction of intelligent agents. Even though the motivation behind
AOP is rooted in the idea that more reactive style of deliberation is more appropriate for
agent’s interaction with a dynamic environment, the precise characteristics of the relation-
ship have not yet been deeply studied.

In this subsection we precisely investigate the relationships between capabilities and con-
trol mechanisms of an agent, its design objectives, the goal, and characteristics of the
environment it is embodied in. As a conceptual framework supporting the discourse, in
Section 4.2.1 we introduce a series of agent behaviour performance measures. We start

62

from relating the set of agent’s generic capabilities to an environment in which actions can
fail. Subsequently, we introduce agent programs constructed from the basic actions and
based on their performance in the environment, we provide a taxonomy of their mutual
matchings. Finally, in Section 4.2.1 we consider the relationship between a program, its
design objective, a goal it is aimed to fulfill, and characteristics of the environment. We
study the relationships of the triad using Probabilistic Dynamic CTL* logic (pDCTL*),
a novel temporal logic framework facilitating reasoning about agent system specifications
and actual programs aimed at realising it. We observe, that imperfect performance of
agent programs situated in dynamic environments w.r.t. their goals can in fact be caused
by two distinct phenomena. While the environment by its dynamics can make the program
fail, it can be also the program itself, which is not implemented perfectly w.r.t. the goal.
We conclude the discourse of the subsection by discussion in Section 4.2.1 of how program
construction influences its performance w.r.t. the design specification, and finally, in Sec-
tion 4.2.1 we formally relate the two causes of program imperfection. In particular, we
introduce an impact metric, a measure indicating how much the imperfections in program
implementation influence the chances for reaching the goal.

The following section is based on our research paper [58].

Agents, actions, environments

We focus on actions of an agent acting in an environment. The agent’s actions can change
the state of the environment, possibly in a probabilistic way. Other agents, if present in
the system, are not relevant at this stage and are assumed to be appropriately modelled
as a part of the environment. Due to this characteristics, we will model environments as
Markov decision processes (MDP’s) [11]. By this, we implicitly assume that agents can
always exactly recognise the current state of the environment. We leave analysis of the
more general case (partial observability) for future work.

Basic notions

Definition 5 (Environment). Environment E is modelled as a Markov decision process
(S, E , P) where S is a set of states the environment can be in, E is a set of events which can
happen in E and P : S×E×S → [0, 1] is a probabilistic transition function with transitions
labelled by events. That is, P (s, e, s′) defines the probability that, upon occurrence of the
event e in the state s, the next state of the environment will be s′. We will adopt the
convention that if e is not enabled in s then P (s, e, s′) = 0 for all s′ ∈ S.

Furthermore, we assume that some propositional language L is available to characterise
properties of states of E. L comes with a standard satisfaction relation |=, with E, s |= φ
meaning that the formula φ ∈ L holds in the state s of the environment E.

An agent consists of a template that specifies how it can act (i.e., provides a set of basic
operations available to the agent) and a program that prescribes how it will act (e.g., by
defining its deliberation mechanism). An agent must match its environment in the sense

63

that its actions must be events in the environment. Moreover, each action is annotated
with a specification of its envisaged effects. In an ideal environment, the annotation should
hold after the action has been executed.

Definition 6 (Agent template). Let E = (S, E , P) be an environment. An agent tem-
plate (Act,Ann) situated in E specifies the set of basic actions (capabilities) Act ⊆ E that
the agent can execute in E, together with the function Ann : Act → L that annotates the
agent’s actions by formal descriptions of their expected effects.

Definition 7 (Macro actions and traces). A macro action is a possibly infinite sequence
of actions ρ = a1, . . . , an, . . . with ai ∈ Act.

An execution trace λ of macro action ρ rooted in a state s0 ∈ S of environment E is
a (finite or infinite) sequence of labelled transitions s0

a1→ s1
a2→ · · · an→ sn

an+1→ · · · such
that si ∈ S and P (si−1, ai, si) > 0 for all i. By λ[i] = si, we denote the ith state on
λ, and λ[i..j] = si

ai+1→ . . .
aj→ sj denotes the “cutout” from λ from position i to j. The

ith prefix and suffix of λ are defined by λ[0..i] and λ[i..∞], respectively. |λ| denotes the
number of transitions in λ. In the case λ is infinite, we write |λ| = ∞. For a given trace
λ = s0

a1→ s1
a2→ · · · an→ sn

an+1→ · · · , we denote ρ(λ) = a1, a2, . . . , an, . . . the macro action,
execution of which resulted in λ.

Definition 8 (Situated agent). An agent is represented by a tuple A = (Act,Ann, τ)
where (Act,Ann) is an agent template situated in an environment E, and τ is an agent
program over Act. The set P of well-formed programs is defined as follows:

• a is a program for every a ∈ Act;

• If τ, τ ′ are programs, then also τ ∪ τ ′, τ ; τ ′ and τ∗ are programs denoting non-
deterministic choice, sequential composition and unbounded iteration respectively;

• Additionally, fixed iteration τn is defined recursively as τ1 = τ and τn+1 = τn; τ .

The semantics of an agent program is defined in terms of the set of traces TE(τ, s0) it
induces in the environment E, rooted in some initial state s0. Formally, TE(τ, s0) is defined
inductively

• TE(〈a〉, s0) = {s0
a→ s1 | P (s0, a, s1) > 0},

• TE(τ ; τ ′, s0) = {λ | there exists i : λ[0..i] ∈ TE(τ, s0) and λ[i..∞] ∈ TE(τ ′, λ[i])},

• TE(τ ∪ τ ′, s0) = TE(τ, s0) ∪ TE(τ ′, s0),

• TE(τ∗, s0) = {λ | λ[0] = s0, k0 = 0 and there exist k1, k2, . . . s.t., λ[ki, ki+1] ∈
TE(τ, λ[ki])}.

Additionally, TE(τ) denotes the set of all traces induced by τ in states of E, i.e., TE(τ) =⋃
s∈S TE(τ, s). Moreover, given a set of sequences X, we will use Fin(X) to denote the

set of finite prefixes of the sequences from X. For example, Fin(TE(τ)) is the set of finite
histories that can occur during execution of τ in E.

64

Note, that the generic form of agent programs we define in Definition 8, serves only
for exposition of ideas in this paper. In fact, any succinct way of encoding of agent’s
behaviour in terms of enabled execution traces (intended system evolutions) would serve
equally well. This broader understanding of agent behaviours naturally includes various
planning mechanisms, as well as most state-of-the-art AOP languages.

Hereafter, unless specifically stated otherwise, we will assume an agent A = (Act,Ann, τ)
situated in an environment E = (S, E , P), s.t. the annotation function Ann is expressed in
some propositional language L with a satisfaction relation |= that interprets formulae of L
in states of E.

Probabilistic execution of actions and programs Annotations play dual role in the spec-
ification of agents’ capabilities. On one hand, they put forward the envisaged outcome
of an action in an ideal environment. On the other, they allow to define the notion of
successful execution of the action (and, dually, the notion of execution failure).

Definition 9 (Success and failure of actions). A transition s
a→ s′ is a successful

execution of a if s′ |= Ann(a), otherwise it is a failure.
Given a state s ∈ S, the probability of successful execution of action a ∈ Act in s is

defined as
Pok(a, s) =

∑
s′|=Ann(a)

P (s, a, s′)

Straightforwardly, the probability of failure of a in s is Pfail(a, s) = 1− Pok(a, s).

A macro action is successful if and only if all its components succeed along the trace.

Definition 10 (Success of macro actions). Let ρ = a1, . . . , an be a macro action. The
probability of successful execution is extended to macro actions as follows:

Pok(〈a1, . . . , an〉, s0) =
∑

λ=so
a1→···an→sn

si|=Ann(ai)

n∏
i=1

P (si−1, ai, si).

Note that Pok is a probability distribution determining execution success of sequences of
actions in states of E.

Now we are ready to introduce probability-based measures of successful execution of
actions and programs in an environment.

Definition 11 (Execution success measures: actions). Let ρ be a (macro) action.
The minimal certainty of successful execution of ρ in the environment E is defined as:

P−ok(ρ,E) = min
s∈S

Pok(ρ, s).

Similarly, we define the maximal certainty of successful execution of ρ in E:

P+
ok(ρ,E) = max

s∈S
Pok(ρ, s).

65

Definition 12 (Execution success measures: programs). Let τ ∈ P be an agent
program over the actions of some agent A. The minimal certainty of successful execution
of τ w.r.t. a state s in the environment E is the minimal probability of execution success
among the individual traces induced by the program rooted in s:

P−ok(τ, s) = min
λ∈TE(τ,s)

P−ok(ρ(λ), s)

Moreover, the minimal certainty of execution success for program τ in the environment
E is defined as

P−ok(τ, E) = min
s∈S

P−ok(τ, s).

The notions of maximal certainty of successful execution P+
ok(τ, s) and P+

ok(τ, E) for an
agent program are defined analogically.

Classification of environments w.r.t agent templates In the first approach, we gauge
how well the agent’s basic capabilities (e.g., effectors of a robot) match the environment in
which the agent is to be situated.

Definition 13 (Taxonomy of environments w.r.t. success of actions). Given an
agent template (Act,Ann) in an environment E, we can distinguish several relations be-
tween the two, depending on how well the template specification meets the dynamics of
the environment. Formally, we say that the matching between (Act,Ann) and E is:

ideal iff P−ok(a,E) = 1 for all a ∈ Act,

consistent iff P−ok(a,E) > 0 for all a ∈ Act,

strictly consistent iff it is consistent and P+
ok(a,E) < 1 for all a ∈ Act,

inconsistent otherwise.

We argue, that the most interesting cases of relationship between an agent and an en-
vironment is when from the agent’s perspective the environment is strictly consistent, or
at least contains a significant strictly consistent fragment. For a mobile robot, a controlled
indoor environment is usually ideal. Examples of (strictly) consistent agent-environment
systems include e.g., outdoor robots operating in rain, snow, on icy, or sandy surfaces, or
on gravel roads. From a robot’s perspective, an environment is also strictly consistent when
it features only imprecise sensors and/or unreliable effectors. For the agent’s controller,
such situation is indistinguishable from the case when the failures are truly exogenous.
A controlled indoor environment is ideal for the robot. A standard outdoor environment
is manageable only, and a crowded outdoor environment could even turn hopeless. This
classification can give a good formal hint on limitations of usability of the robot.

The view promoted in the Definition 13 is rather pessimistic. Especially for agent tem-
plates based on large libraries of actions, even if one action does not match the environment,

66

the whole agent template is seen as a mismatch. In a more complex agent program, designer
might want to take into account also some failures of actions e.g., by encoding various con-
tingencies, or refining the conditions under which actions and plans can be executed. The
following refinement of the environment vs. agent classification takes the agent program as
a basis for the matching.

Definition 14 (Environments vs. agents). Given an agent A = (Act,Ann, τ) in an
environment E, we say that the matching between A and E is:

ideal iff P−ok(τ, E) = 1,

consistent iff P−ok(τ, E) > 0,

strictly consistent iff it is consistent and P+
ok(τ, E) < 1,

inconsistent otherwise.

Still, this notion of matching between agents and environments is not perfect. In par-
ticular, if τ includes unbounded iteration (an infinite deliberation cycle in an event-driven
agent is a good example) then it is easy to see that all the environments are either ideal or
inconsistent w.r.t. such an agent. This is because the notion of success relates executions
to the annotations of all the actions that are going to be performed, regardless of their
relevance to a larger context. In many scenarios, such context is provided by an objective,
a goal, that the agent is supposed to pursue. We will formalise the concept and discuss
the consequences in the next section.

Reasoning about temporal goals

In the previous section, we showed how “perfectness” of an environment can be classified
with respect to the agent’s repository of actions and/or its main algorithm. However,
the classification is quite rough in the sense that it depends on all the actions behaving as
expected (according to the provided annotations). An alternative is to consider a particular
objective, and to measure how the environment reacts in the context of the objective.

Objectives that refer to execution patterns (like achievement of a property sometime in
the future, or maintenance of a safety condition in all future states) can be conveniently
specified in linear time logic. LTL [65] enables reasoning about properties of execution
traces by means of temporal operators g (in the next moment) and U (strong until). To
facilitate reasoning about finite sequences of actions and compositions thereof, we will use
a version of LTL that includes the “chop” operator C [67].

Temporal goals: LTL Formally, the version of LTL used in this paper is defined as follows.

Definition 15 (LTL). The syntax of LTL is given by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | gφ | φUφ | φCφ.
67

Other Boolean operators (disjunction ∨, material implication→, etc.) are defined in the
usual way. The semantics is defined through the clauses below (where E is an environment
and λ is an execution trace of some macro action of an agent A situated in E):

E, λ |= p iff E, λ[0] |= p,

E, λ |= ¬φ iff E, λ 6|= φ,

E, λ |= φ ∧ φ′ iff E, λ |= φ and E, λ |= φ′,

E, λ |= hφ iff E, λ[1..∞] |= φ,

E, λ |= φUφ′ iff there exists i ≥ 0, such that E, λ[i..∞] |= φ′, and E, λ[j..∞] |= φ for every
0 ≤ j < i,

E, λ |= φCφ′ iff there exists i ≥ 0, such that E, λ[0..i] |= φ and E, λ[i..∞] |= φ′.

Additional operators ♦ (sometime in the future) and � (always in the future) are defined
as ♦φ ≡ >Uφ and �φ ≡ ¬♦¬φ. Note that achievement goals can be naturally specified
with formulae of type ♦φ, whereas a goal to maintain φ corresponds to the formula �φ.
Finally, we say that LTL formula φ is valid in E w.r.t. a program τ (written E, τ |= φ) iff
for all s ∈ S, φ holds on every trace λ ∈ T (τ, s) .

For an agent situated in an environment, we can easily define how likely the agent is to
bring about a given goal.

Definition 16 (Probabilistic fulfilment of goals). Given an agent program τ situated
in an environment E = (S, E , P) and an LTL formula φ, we first define the probability
space (TE(τ, s),Fin(TE(τ, s)), pr) induced by the next-state transition probabilities P . In
this space, elementary outcomes are runs from TE(τ, s), events are sets of runs that share
the same finite prefix (i.e., ones from Fin(TE(τ, s))), and the probability measure pr :
Fin(TE(τ, s))→ [0, 1] is defined as

pr(s0
a1→ · · · an→ sn) = P (s0, a1, s1) · . . . · P (sn−1, an, sn).

Then, the probability of fulfilling goal φ from state s on is defined through the following
Lebesgue integral:

Pok(τ, s, φ) = lim
k→∞

∑
λ∈Tk

φ
(τ,s)

pr(λ), where

T kφ (τ, s) = {λ ∈ Fin(TE(τ, s)) | E, λ |= φ and |λ| = k}.

The interested reader is referred to [38] for details of the construction and a proof of
correctness.

68

Analogously to Section 4.2.1, the basic measure of fulfilment for a whole environment is
based on the worst case analysis.

Definition 17 (Fulfilment of goals: P−ok , P
+
ok). Let τ ∈ P be an agent program over

the actions of some agent A. The minimal certainty of fulfilment of goal φ by τ in an
environment E is the probability of fulfilment from the “worst” state in E:

P−ok(τ, φ) = min
s∈S

Pok(τ, s, φ).

The maximal certainty of fulfilment is defined analogously.

Reasoning about goals in pDCTL* In order to reason about the expected fulfilment
of goals, we propose a refinement of the branching-time logic CTL* [24] with explicit
quantification over program executions and probability thresholds. In the extension, [τ]ζφ
reads as “agent program τ fulfils goal φ with probability at least ζ”. The logic is called
“probabilistic Dynamic CTL*” (pDCTL*). It is a straightforward extension of “dynamic
CTL*” from [57] (which in turn can be seen as a variant of Harel’s process logic [32]) along
the lines of probabilistic temporal logics [5, 31].

Definition 18 (pDCTL*). The syntax of pDCTL* is defined as an extension of LTL by
the following grammar:

θ ::= p | ¬θ | θ ∧ θ | [τ]ζφ
φ ::= θ | ¬φ | φ ∧ φ | gφ | φUφ | φCφ

where p is a propositional formula from L, and τ is an agent program.
The semantics of pDCTL* extends that of LTL by the clauses below:

E, λ |= θ iff E, λ[0] |= θ,

E, s |= p iff s |= p,

E, s |= ¬θ iff E, s 6|= θ,

E, s |= θ1 ∧ θ2 iff E, s |= θ1 and E, s |= θ2,

E, s |= [τ]ζφ iff the probability of fulfilling φ by τ from s on is at least ζ, i.e.,
Pok(τ, s, φ) ≥ ζ.

pDCTL* formula θ is valid in E (written E |= θ) iff E, s |= θ for every state s of E. Finally,
ψ is a semantic consequence of φ (written: φ ⇒ ψ) iff for every environment E, E |= φ
implies E |= ψ.

The following proposition is straightforward and shows a strong relationship between
formulae of pDCTL* and the measures of goal fulfilment introduced in Section 4.2.1.

69

Proposition 19. E |= [τ]ζφ iff P−ok(τ, φ) ≥ ζ.

Additionally, we define [τ]φ as [τ]1φ. It is easy to see that the semantics of [τ]φ in
pDCTL* and DCTL* coincide. Moreover, pDCTL* validity corresponds to LTL validity
w.r.t. a program (the proofs are straightforward).

Proposition 20. For every environment E, program τ and DCTL* formula φ, we have
E, s |=DCTL* [τ]φ iff E, s |=pDCTL* [τ]φ.

Proposition 21. For every environment E, program τ and LTL formula φ, we have: E, λ |=LTL
φ for every λ ∈ TE(τ) iff E |=pDCTL* [τ]φ.

We note that the operator dual to [τ]ζ has almost the same meaning, except of being
underpinned by strict, instead of weak inequality.

Proposition 22. Let 〈τ〉ζφ ≡ ¬[τ]1−ζ¬φ.
Then E, s |= 〈τ〉ζφ iff Pok(τ, s, φ) > ζ.

Proof. E, s |= 〈τ〉ζφ iff E, s 6|= [τ]1−ζ¬φ iff Pok(τ, s,¬φ) < 1−ζ iff 1−Pok(τ, s, φ) < 1−ζ iff
Pok(τ, s, φ) > ζ.

Thus, pDCTL* allows also to refer to the exact probability of fulfilment by [τ]=ζφ ≡
[τ]ζφ ∧ ¬〈τ〉ζφ.

Classifying environments w.r.t. goals Assuming a particular temporal goal allows for a
finer-grained taxonomy of environments than we proposed in Subsection 4.2.1.

Definition 23 (Taxonomy of environments w.r.t. goal fulfilment). Given an agent
program τ and a goal φ, we can distinguish between several types of environments according
to the probability of fulfilment of φ by τ . We say that E is:

ideal iff P−ok(τ, φ) = 1 (alternative formulation: E |= [τ]φ),

manageable iff P−ok(τ, φ) ≥ ζ for some ζ > 0 (equivalently: E |= [τ]ζφ for some ζ > 0).
Note that, for finite environments, it is equivalent to P−ok(τ, φ) > 0 (and E |= 〈τ〉0φ);

strictly manageable iff the environment is manageable and P+
ok(τ, φ) < 1,

hopeless P−ok(τ, φ) = 0 (or equivalently: E |= [τ]=0φ).

Consider the mobile robot from Subsection 4.2.1. Aiming to move along a pre-defined
path, an outdoor environment is manageable for the robot, but a crowded place could even
turn hopeless due to continuously moving people interfering with the robot. In effect, such
a classification can give a good formal hint on limitations of usability of the robot.

For agent programs inducing only finite traces, we can distinguish environments w.r.t. the
degree of iteration needed for the program to achieve a goal.

70

Definition 24 (Taxonomy of environments cont.). Given a program τ such that
|λ| < ∞ for every λ ∈ TE(τ), we can distinguish between several additional types of
environments according to the certainty of fulfilment of φ by τ in E:

iteratively manageable w.r.t. some ζ > 0 iff there exists k ∈ N s.t. E |= [τk]ζφ,

completely hopeless iff E |= [τ∗]=0φ.

Additionally, we define the following limit cases:

• E |= [τ∗]φ, but there is no k ∈ N : E |= [τk]φ,

• there exists ζ > 0, s.t. E |= [τ∗]ζφ, but there is no k ∈ N : E |= [τk]ζφ, and

• for all k ∈ N, there exists ζ > 0, s.t. [τk]ζφ, however [τ∗]=0φ.

This line of thought can be elaborated upon further by considering special types of
programs. E.g., τ = a1 ∪ · · · ∪ an, where Act = {a1, . . . , an}. Now TE(τ) include all the
possible plans which can be constructed out of the actions in Act.

Program composition vs. goals

In this section, we turn our interest to the the following question: how program composition
affects the certainty level of goal fulfilment by agents in dynamic environments? In partic-
ular, we are interested in how likelihood of fulfilling general maintenance and achievement
goals (involving the � and ♦ modalities respectively) relates to the way how the corre-
sponding programs are constructed. Throughout this section, we implicitly assume that
environments are strictly manageable w.r.t. programs and goals in consideration.

The following theorem articulates the intuition, that concatenation of programs leads to
a strict decrease of the certainty of goal fulfilment by the joined program.

Theorem 25. If τ1, τ2 are programs, s.t., E |= [τ1]=ζφ1 ∧ E |= [τ2]ζφ2 and at the same
time E |= ¬[τ1]ζφ2, then E |= ¬[τ1; τ2]ζφ1Cφ2.

Proof sketch. The idea behind the proof is that due to the independence of τ1 and τ2
w.r.t. φ2 (E |= ¬[τ1]ζφ2), to establish Pok((τ1; τ2), so, φ1Cφ2), we must consider traces
induced by τ1 prolonged by traces induced by τ2. By approximating the sum of probabilities
for sets of such prolongations rooted in terminal states of traces of τ1 by ξ = P+

ok(τ2, E, φ2),
we arrive to the inequality Pok((τ1; τ2), so, φ1Cφ2) ≤ ξ · ζ. Since the environment is only
strictly manageable w.r.t. τ2 and φ2, by necessity ξ < 1, hence ξ · ζ < ζ, i.e., the minimal
certainty of execution success of τ1; τ2 w.r.t. the goal φ1Cφ2 and the environment E is
strictly less than the original ζ.

In Theorem 25 we used the C operator for joining the goal formulae. Concatenation and
further iteration of the same program leads to the following property of maintenance goals
involving � modality on ever longer traces.

71

Corollary 26. Given τ is a program, s.t., E |= [τ]=ζφ, then E |= ¬[τk]ζ�φ.

Let’s assume that the behaviour of an agent conforms to some performance quality
measure when continuously operating at a particular level of probability of fulfilment of
its goal by the agent program in a particular environment. We can formulate the following
informal consequence of Theorem 25 and Corollary 26: in dynamic environments, behaviour
specifications involving temporal maintenance goals of the form �φ are undesirable. The
main reason behind this conjecture is, that to ensure satisfaction of strict maintenance
goals, such as �p, necessarily programs have to be joined by sequential composition, what
leads to decrease of the level of certainty of execution success w.r.t. the envisaged goal. In
fact, by subsequently prolonging the induced traces by sequential program composition,
the level of certainty eventually eventually drops below the minimal required performance
threshold.

Let’s turn our attention to achievement goals, i.e., those which involve the ♦ modality.

Theorem 27. Given τ is a program, s.t., E |= [τ]ζφ, then E |= [τk]ζ♦φ for every k > 0.

Proof sketch. The idea behind the proof is that by inductively iterating τk, the traces which
satisfy ♦φ are i) those on which the goal was already satisfied for lower k’s and prolonged
by any trace regardless whether it satisfies ♦φ, or not; plus ii) all the traces which did not
satisfy ♦φ for lower k’s prolonged by the traces induced by τ which satisfy ♦φ. In result,
for every k, the number of traces which satisfy the formula ♦φ is not decreasing, nor is the
ratio to those which do not satisfy the goal.

In fact, we hypothesise that if E |= [τ]=ζφ, then we should have E |= [τk]=ξ♦φ, where
ξ > ζ and k > 0.

Program perfection vs. fulfilment

Agent programs in dynamic environments can perform in an imperfect manner w.r.t. their
goals due to two reasons. Firstly, it can be the environment by its dynamics which can
cause the program not to fulfil its goal. Secondly, it can be the implementation of the
program itself, which results in execution traces along which the goal is not fulfilled. In
the following, we look at the probability of goal fulfilment had the implementation of the
agent’s capabilities been ideal. This allows us to measure the impact of the imperfection in
the implementation on the fulfilment likelihood.

Definition 28 (Idealised environment). The idealised variant of an environment E =
(S, E , P) with respect to an agent template (Act,Ann) is defined as the environment EAnn =
(S, E , PAnn) where the new probabilistic transition relation PAnn is as follows:

PAnn(s, a, s′) =

 0 iff s′ 6|= Ann(a)
P (s,a,s′)∑

s′′|=Ann(a) P (s,a,s′′) otherwise

72

That is, we take the transition relation P in E and remove all the transitions that do
not conform with Ann (normalising P afterwards). Note that this scheme can be seen as a
probabilistic version of model update similar to the one in Public Announcement Logic [6].

The idealised probability of fulfilling a goal φ is the probability of fulfilment of φ under
the assumption that the agent’s actions will behave as specified.

Definition 29 (Idealised fulfilment of φ). PAnn
ok (τ, s, φ) (resp. PAnn

ok (τ, φ)) in an envi-
ronment E is simply defined as Pok(τ, s, φ) (resp. P−ok(τ, φ)) in the idealised environment
EAnn.

Now we can measure the impact of imperfect implementation as the difference in cer-
tainty of fulfilment between the ideal and the real case:

Definition 30 (Impact metric Imp). Given environment E = (S, E , P), agent A =
(Act,Ann, τ), and goal φ, we define

Imp(φ) = PAnn
ok (τ, φ)− P−ok(τ, φ).

Imp(φ) indicates how much the imperfections in implementation of the agent’s capabil-
ities influence the chances for reaching the goal φ. In this context, it can be interpreted in
two ways:

• Imp indicates how inaccurate the agent implementation is with respect to the given
goal. In contrast, P−ok(τ, φ) shows only the general inaccuracy of the agent implemen-
tation.

• Assuming that the designer has some control over the deployment of the agent in the
environment, Imp can be understood as a measure of how much they should improve
the implementation of the agent’s capabilities in order to get the objective met.

Concluding remarks

The discussion in the last two sections only scratched the surface of what the introduced
conceptual framework allows to rigorously investigate. One of interesting examples is
the notion of a planning horizon. I.e., given a set of agent’s capabilities, a goal and
a specific level of certainty with which it should be satisfied, we can ask: what is the
maximal plan length beyond which the probability of fulfilling the goal decreases below the
required quality threshold? An estimate of the planning horizon could have an impact
on parametrisation of planning algorithms used in dynamic environments, or can lead to
constraints on lengths of plans in a library of a reactive planner. Similarly, deeper insights
into how program composition influences the impact metric of the resulting programs have
a potential to influence formulation of useful code patterns for agent programming, such
as those introduced in [57]. We leave these interesting issues for further work along this
line of research.

73

4.2.2. Plan repairing and re-planning

Plan repairing is a process of partial adaptation of a plan during its execution according
to new conditions in the environment. The plan has not to be altered as a whole, but only
its local part which is inconsistent with the new conditions, has to be changed. On the
contrary, re-planning is a process of restarted planning during execution of a plan. The
new planning process starts from the current state under the current context. Re-planning
do not reuse any parts of the old (inconsistent) plan.

The research challenge for the frame of plan repairing and re-planning include finding
answers for questions as: “For what problem types we need plan repairing and for what
re-planning?” The hypothesis supporting plan repairing approach requires local and rel-
atively rare unpredictable effects. The re-planning approach do not care the amount or
impacts of the unpredictable effects, as the planning process has to be always run from the
current state to the goal state. On the other hand, re-planning requires larger amounts of
information to be shared among the planners (agents) in order to reconstruct the global
state and context of other agents.

Additionally, we hypothesize two other important types of unpredictable world effects
from the perspective of the deliberative/reactive planning systems and approaches. The
first one is a stolid effect and the other one is a opportunistic effect. A stolid effect causes
only a specious plan inconsistency (e.g. solvable by simple ignoring of the effect) where such
effects can be effectively tackled by the plan repairing approaches. An opportunistic effect
can even improve the whole plan provided that it is properly exploited. The opportunistic
effects should be probably more re-planning friendly, as the plan repairing is a local process
and can not simply consider the global state and the neighboring agents’ context.

For an experimental validation and evaluation of the outlined hypotheses we have de-
signed a testing scenario in two levels of abstraction. The next section summarizes the key
principles and elements of the scenario.

Multi-agent Planning Formalization

Various aspects of multi-agent planning were studied in the course of the last decade
(cf. e.g., [72]), surprisingly a formal treatment and a complexity analysis of the gen-
eral problem of multi-agent planning appeared only recently in the work of Brafman and
Domshlak [19]. In the following we recapitulate and extend their formalism of multi-agent
planning (Subsection 4.2.2), introduce an abstract plan-execute-monitor architecture ca-
pable to detect plan failures (Subsection 4.2.2) and finally introduce the multi-agent plan
repair problem (Subsection 4.2.2).

Multi-agent planning Let from now on L be a propositional language. The language L
comes with the entailment relation |=: 2L × L → {>,⊥} mapping a set of propositions, a
theory in L, and a formula to Boolean truth values according to the set inclusion relation.
I.e., having a theory S ∈ 2L and a proposition ϕ ∈ L, S |= ϕ if and only if ϕ ∈ S. W.l.o.g.,

74

A1: P1= a1a1 a2a1 a3a1 ama1...

A2: P2= a1a2 a2a2 a3a2 ama2...

An: Pn= a1an a2an a3an aman...

...

P =(

)

Figure 4.1.: Depiction of a multi-agent plan structure.

we assume >,⊥ ∈ L.
A multi-agent planning problem is defined as a tuple Π = 〈ϕ, S, sinit, Sgoal〉 where ϕ is a

set of agents A1, . . . , An, S denotes the set of all possible states and sinit ∈ S and Sgoal ⊆ S
respectively denote the initial state of the multi-agent system and the set of desirable goal
states. Each agent is characterised by sets of their respective individual capabilities. The
capabilities are described using STRIPS as a set of quadruples φpreaφ

+
postφ

−
post . φpre ∈ 2L

denotes the set of preconditions of the action a, where a is the action’s label. φ+
post , φ

−
post ∈

2L respectively denote the sets of add and delete effects of execution of the action a. To
say that an agent A is capable to execute the action a, from now on we simply write
a ∈ A. Furthermore, we assume that each agent is capable to execute the empty action
{>}ε{>}{>}, i.e., ε ∈ Ai for every 0 ≤ i ≤ n.

Note that our version of STRIPS action specification language does not involve variables.
Assuming only finite domains of variables, w.l.o.g., we assume already grounded action
specifications, i.e., such where a first-order action specification with variables is translated
into a set of primitive ground actions without variables by considering all instantiations of
the action over the domains of the involved variables.

Having a multi-agent planning problem (MA-plan) Π = 〈ϕ, S, sinit, Sgoal〉, we are looking
for a set of individual plans P1, . . . , Pn for the agents A1, . . . , An in the form of sequences
of actions, such that (i) each agent is capable to carry out its individual plan on its own,
and (ii) after the synchronised execution of the individual plans, the system is in one of
the goal states Sgoal. Formally, considering agents A1, . . . , An, we are seeking a n-tuple
P = (P1, . . . , Pn), such that each Pi = ai1, . . . , a

i
m, where aij ∈ Ai and |Pi| = |Pj | = m,

for every 1 ≤ i, j ≤ n. We also denote |P| = m. In the following we write P [k] to select
ak, the k-th action of the individual plan P = a1, . . . , ak, . . . , am. Consequently, we write
φ[k]pre, φ[k]+post and φ[k]−post do denote the pre- and post-conditions of the action P [k]. The
structure of a MA-plan is depicted in Figure 4.1.

Since every agent is capable to perform the empty action ε, the constraint for the same
length of plans can be trivially fulfilled for any multi-agent plan by adding ε-padding to
the end of shorter individual plans.

Synchronised execution of a multi-agent plan (P1, . . . , Pn) in a state s0 is characterised
by a sequel of states s0, s1, . . . , sm where each state sj is obtained from sj−1 by executing
the joint action of the agents 〈P1[j], . . . , Pn[j]〉 for all 0 < j ≤ m = |P1|. We write

75

Planner Monitoring Execution

Repairer

MA-plan

repaired MA-planfailure

correct

Figure 4.2.: The plan execution and monitoring architecture.

sj = sj−1 ⊕ 〈P1[j], . . . , Pn[j]〉, formally

sj = sj−1 \ {
n⋃
i=1

φi[j]−post} ∪ {
n⋃
i=1

φi[j]+post}

The joint action 〈P1[j], . . . , Pn[j]〉 is executable in a state sj−1 ∈ S if and only if
preconditions of each individual action are satisfied in sj−1, i.e., sj−1 |= φpre for every
φpre ∈

⋃n
i=1 φ[j]pre.

We say that the multi-agent plan (P1, . . . , Pn) is sound w.r.t the MA-plan problem
Π = 〈ϕ, S, sinit, Sgoal〉 iff the synchronised execution of (P1, . . . , Pn) is characterised by
the sequel of states s0, s1, . . . , sm, such that s0 = sinit, sm ∈ Sgoal and each joint action
〈P1[j], . . . , Pn[j]〉 is executable in the state sj−1.

Plan execution and monitoring In dynamic and uncertain environments, agent’s ac-
tions, plans, must not always lead to the desired consequences, or can turn out to be not
executable. To account for such cases, a cautious agent must be able to not only to execute
its actions, but also monitor its own progress and detect failures. Generally speaking, be-
sides a planning component, implementation of an agent should also include a monitoring
and plan repair components. Figure 4.2 depicts a generic multi-agent plan-execute-monitor
architecture. More concretely, considering a multi-agent plan produced by some suitable
MA-plan problem planner, the abstract execution monitoring algorithm checks in every
state the soundness of the next step before advancing. If necessary, it invokes the plan
repair procedure. The Algorithm 4.1 lists a sketch of such an algorithm.

The multi-agent planning function plan(...) takes as an input an instance of the MA-
plan problem and returns a multi-agent plan P. simulate(. . .) denotes the ideal plan
execution function if everything works out right according to the joint action specification
(w.r.t. the effects of the involved actions). Formally, simulate(P, s, k) = s\{

⋃n
i=1 φi[j]−post}∪

{
⋃n
i=1 φi[j]+post} simulates the ideal execution of the joint action 〈P1[k], . . . , Pn[k]〉 on the

state s. Function exec(. . .) executes a joint action defined by sets φ+
post and φ−post and

returns changed state.
Plan failure is detected by the condition cannot proceed(P, scurr, k) which is true iff there

exists an individual plan Pi of the agent Ai, such that the precondition φ[k + 1]pre of the

76

Algorithm 4.1 Generic plan execution and monitoring algorithm.
1: P = plan(Π)
2: k := 0
3: while k 6= |P| do
4: scurr := exec(scurr,

⋃n
i=1 φi[k]−post ,

⋃n
i=1 φi[k]+post)

5: if cannot proceed(P, scurr, k) then
6: P = repair(Π,P, scurr, k)
7: if P = Fail then
8: return Fail
9: end if

10: end if
11: k := k + 1
12: end while
13: return True

action Pi[k] is not satisfied in s, i.e., s 6|= φ[k + 1]pre. Hence, the next joint action of the
plan P cannot be executed as planned because one of the preconditions necessary for the
step is not satisfied.

Upon plan execution failure, the plan repairing function repair(Π,P, scurr, k) takes as an
input the considered instance of the multi-agent plan problem, the executed multi-agent
plan P, the current state scurr in which the execution of P failed (could not proceed any
more) and k the step in which the execution of the plan P failed in.

Multi-agent plan repair As already sketched in the previous subsection, upon detection
of plan execution failure, a plan repair should be attempted. In general, a plan repair
problem R can be defined as a tuple

R = (Π,P, s, k)

comprising the original MA-plan problem Π, the currently executed multi-agent plan P,
the state s in which the execution of P was interrupted (couldn’t proceed anymore) and 0 <
k < |P| the number of the step in which the execution of P was interrupted. Furthermore,
we assume that there was a reason for the joint plan so that it couldn’t proceed further n
state s. Provided the execution of P is characterised by the sequence of states s0, . . . , s|P|,
there must be an individual plan Pi in P, such that the precondition φ[k + 1]pre of the
next action to be executed Pi[k] is not satisfied in s = sk, i.e., s 6|= φ[k + 1]pre. A solution
of the plan repair problem (MA-repair) is of the same type as that of the plain multi-
agent planning problem Π, i.e, a joint plan P ′, which is sound w.r.t. the MA-plan problem
Π = 〈ϕ, S, s, Sgoal〉. Optionally, we can require the resulting multi-agent plan P ′ to be
constructed from P with use of minimal number of changes. Since the optimal plan repair
problem is not the focus of this paper, we leave out its precise formal definition.

77

Algorithm 4.2 Naive plan repair algorithm
1: scurr := simulate(P, sinit, k)
2: while Sgoal 6⊆ scurr do
3: P ′ := plan(ϕ, S, sF, scurr)
4: if P ′ 6= ∅ then
5: return P ′ · tailplan(P, k)
6: else
7: k := k + 1
8: scurr := simulate(P, sinit, k)
9: end if

10: end while
11: return Fail

In the above paragraph, we focus only on a single type of plan failure, the critical one, i.e.,
when the cooperative plan simply cannot proceed anymore. The reasons for such a situation
might be twofold. Either (i) some previous individual action of the multi-agent plan failed,
i.e., some post-condition of the action did not become true after the action’s execution, or
(ii) the environment interfered and invalidated a previously established condition so that
the forthcoming action couldn’t be safely executed. In both cases, the failure is detected
at the latest possible point, i.e., when the condition becomes vital for the subsequent step
in the joint plan, that is its precondition.

In general, we can identify several types of plan failures. Alternatively, post-conditions
of actions could be checked after their execution in order to detect action failures. This
approach is however vulnerable to checking irrelevant conditions, i.e., such which are never
used as a precondition of some future action in P.

Plan repairing algorithms

Naive Repairing Algorithm Algorithm 4.2 lists the simplest algorithm designed. It uses
iteratively prolonged repairing plans from the point of the failure. The complexity of
the Naive Repairing Algorithm (NRA) respects the inner planner complexity. The worst
case complexity is PSPACE-complete (since a general planning fits the PSPACE-complete
complexity class).

Blind Repairing Algorithm The Blind Repairing Algorithm (BRA) tries to solve a failure
by adopting an alternative action(s) solving the failed effects. Firstly it finds agent(s) which
caused the problem (their effects does not meets the simulated state). A after the agents are
found, for each agent an alternative action is tried to be found. If the personal alternative
cannot be found a wide alternative is tried (another agent can adopt an action which solves
the failure). Finally, even if the wide alternative cannot be found, the problem is ignored
to be solved in the next steps prospectively, which can cause opportunistic solution of the

78

Algorithm 4.3 Blind Repairing Algorithm
1: P ′ := (P ′1 = ε, ..., P ′n = ε)
2: scurr := simulate(P, sinit, k)
3: ϕ∗ := (A|A ∈ ϕ ∧ ∃a ∈ A : φa+

post ⊆ scurr \ sF ∨ φa−post ⊆ sF \ scurr)
4: for all Ai ∈ ϕ∗ do
5: if ∃ar : ar ∈ Ai, φarpre ⊆ sF ∧ φar+

post ⊆ scurr ∧ scurr 6⊆ φar−post then
6: P ′i [1] = ar
7: else
8: if ∃Ad∃ad : Ad ∈ ϕ, ad ∈ Ad : φadpre ⊆ sF ∧ φad+

post ⊆ scurr ∧ scurr 6⊆ φad−post then
9: P ′d[1] = ad

10: else
11: noop()
12: end if
13: end if
14: end for
15: if ∃i : P ′i 6= ε then
16: return P ′ · tailplan(P, k)
17: else
18: return tailplan(P, k)
19: end if

failure in future. If a failure is ignored the repairing algorithm is called again in the next
step by the main monitor-execution loop. Algorithm 4.3 lists the pseudo-code of the blind
plan repairing algorithm.

The algorithm is not sound in the pure form as it can miss a solution of the repairing
problem. Its modification towards the soundness can be managed simply by adding a fail-
safe call of NRA if the algorithm iteratively fails at the goal state. The iterative form of
the algorithm is listed in Algorithm 4.4.

The non-iterative form has linear complexity (iteration over the number of the agents).
The iterative extension has minimal quadratic complexity (number of the agents times the
length of the plan). Maximal complexity reflects the complexity of the NRA as it can be
used as a fail-safe process.

Locality Repairing Algorithm The last repairing algorithm (see Algorithm 4.5) is based
on an assumption, the communication is not costless, i.e. we count amount of information
needed to be transmitted for each repairing of an action (for the Naive Repairing Algorithm,
it is the complete global state plus the final state to one repairer agent, and then back to
the result to the rest of the agents c = 2 ∗ 2 ∗ n, n is number of the agents, i.e. number of
the state to transfer and c is communication volume for each (re-)planning process; for the
Blind Repairing Algorithm the mean value is c = n/2, i.e. a median of the probability of
number of agents involved in reparation of one action).

79

Algorithm 4.4 Iterative Blind Repair Algorithm
1: korig := k
2: sorig

F := sF
3: P ′ := P
4: while Sgoal 6⊆ scurr do
5: P ′ := blindRepair(Π,P ′, sF, k)
6: if ∀i ∈ (0, ...,m) : φ′i[k]+post ⊆ sF ∧ sF 6⊆ φ′i[k]−post then
7: return P ′
8: else
9: k := k + 1

10: sF := simulate(P ′, sinit, k)
11: end if
12: end while
13: return naiveRepair(Π,P, sorig

F , korig)

Before presenting the final plan repair algorithm, the locality repairing, let us introduce
the notion of a causality graph exploited by the algorithm.

Each MA-plan P can be represented as a graph G, where vertices V represent the actions
and edges E represent causal links among the actions:

G = (V,E)
V = {vi|∀i : ai ∈ P}
E = {eij |eij = (vi, vj) iff φaipost ∩ φ

aj
pre 6= ∅}.

Using a causality graph G, a causality relation ← can be defined as ai ← aj iff eij ∈ E. A
transitive closure of ← (oriented path in the causal graph) will be denoted as ∗←.

The proposed plan repairing algorithm is based on the planning technique presented
in [53]. From the communication perspective, it tries to solve the problem as locally as
possible, iteratively including more and more agents which tries to solve the problem also
locally. Therefore, the agents communicate as few as possible information (failed actions).
Algorithm 4.5 lists the pseudo-code of the Locality Repair Algorithm (LRA).

The vector v represents three counters: v1 number of agents involved in the repairing
process, v2 represents length of the repairing plans, and v3 represents number of actions
removed from the old plan. The counters are increased if a valid plan is not found using
a constant vector V . Various parametrisation of the algorithm can be done using the V
vector (e.g., V = (0.1, 1, 0) represents increase of the number of the involved agents for
each 10 actions of the repairing plan length).

The combination(ϕ,A, n′) method generates a set of possible combinations of n′ agents
prioritising combinations with the agent A. The function A : alterns(q, r) generates al-
ternative repairing plans from the perspective of the agent A of length q with r removed
actions from the current plan. The process of action removing follows a path in the causal-

80

Algorithm 4.5 Locality Repairing Algorithm
1: v := (1, 1, 0)
2: loop
3: ϕ∗ := combinations(ϕ,A, dv1e)
4: π = {ρ|∀A ∈ ϕ∗ : ρ = A : alterns(dv2e, dv3e)}
5: P = compatible(π)
6: if P 6= ∅ then
7: return P
8: end if
9: v := v + V

10: end loop

ity graph G, formally the process removes actions on path ak
∗← ak+r. The generated

plan alternatives have to satisfy the initial conditions defined by the state sF and the final
conditions defined by state sk+r. The function compatible(π) returns a plan based on the
alternatives in the set π, where only mutually compatible alternatives are preserved. Two
alternatives are compatible if delete effects of one do not preclude usage of the other. The
first compatible alternative tuple found is used.

Repairing Dimensions The Locality Repairing Algorithm is based on the principle of the
Blind Repairing Algorithm. The main difference is the algorithm is sound inherently in
the pure form.

The main problem of the BRA is the repairs can be done only by one changed action for
an agent A in the step k. Additionally, the changes cannot be backtracked as the process
works only in the successive manner. On one side, this facts simplifies the process and
implies the process has only linear complexity. On the other side, the process can miss
quite simple solutions using only two successive actions provided by the failure causing
agent. The Locality Repairing Algorithm takes into an account all these possibilities and
thus searches through the complete space of possible repairs.

More precisely, there are three dimensions in the space of the possible repairs. The
first dimension v1 is common with the BRA and it describes which agents undertake the
repairing actions. The second dimension v2 describes how many and which actions one
agent uses for its local repair. The last one v3 describes how deep the repair goes through
the current plan. The last dimension is similar to the successive direction of the BRA.
The differences are (i) the repairing process can backtrack and (ii) it primarily follows the
causality graph in an opposite direction against the causality links.

In the exhaustive case, all the combinations of the future actions have to be treated as
possibilities for repairing. The only aspect decreasing the full range of 2|A|dv2e combinations
for one agent A is that only compact successive sequences of the actions based on the causal
links need to be considered. The number of the combinations thus changes to (dv2e+1)|A|.

81

Plan Repairing for DCOP-based Multi-agent Planning The plan repairing technique
(NRA particularly) was used in extension of a state-of-the-art Multi-agent Planner pre-
sented in [54]. The planner consists of two phases of planning. In the first phase, a
multi-agent plan is formed (with help of the DCOP solver). This plan contains only public
actions. A public action is an action which can affect other agents’ actions. In the second
phase, the plans are locally completed using the private actions, which ensure transition
from one public action to the next one for each agent.

Using distributed constraint reasoning (DCR) to solve the planning problem shifts the
complexity from the planner to the DCR solving algorithm, and these algorithms cannot
scale to large problem sizes. The scalability of these algorithms is especially relevant in
planning, where the domains grow exponentially with δ, the length of allowable action
sequences.

We proposed using an approximation algorithm for solving the constraint reasoning
representation of the planning problem, and then using plan repair to remove infeasible
parts of the plan. In our empirical results, we used the Max-Sum algorithm [26], which
gracefully degrades solution quality with message loss, and produces complete solutions for
acyclic constraint graphs.

The outline of the approach can be summarized as:
• formulation and definition of the planning problem

• generation of candidate public action sequences (separately by each agent)

• selection of appropriate sequences (distributively by the agents)

• reparation of invalid sequences (distributively by the agents)

• private planning of local plans based on the public sequences (separately by each
agent)

Details of the planning processes and particular techniques can be found in .
To ensure completeness of the overall multi-agent plan, the plan repair phase solves

potential infeasible plans returned by the approximate DCOP algorithm. The generative
graph of the planner is preserved from the planning phase for the plan repairing phase,
which implies, the process reuses a data structure from the planning phase and exploits it
for more efficient plan repairing similarly to [4]. Since the planning problem in the plan
repairing phase is simpler, we can use optimal DCOP to ensure soundness of the repaired
plan.

4.3. Evaluation and experiments
The presented algorithms were evaluated in a synthetic domain and verified in an environ-
ment simulating real-world urban area. The following sections summarizes details of the
prototypes together with and the results, measurements and conclusions for the particular
cases of usage.

82

4.3.1. Planning algorithms

The planning and plan repairing algorithms were implemented and tested in synthetic envi-
ronment based on well known planning domain. The details follows in the next subsections.

Simple Box-Mover Prototype

For experimental purposes, a prototype of the plan repairing algorithm was implemented.
The prototype contains two main parts: a multi-agent planner and plan repairing algo-
rithm. As a planner, a state-of-the-art technique [53] was used. The planner is based on
compatible formalisms as the proposed ones in Section 4.2. It is a distributed planner
based on two-phase planning. In the first phase, each agent prepares a set of possible
sequences of synchronization actions. These sequences are combined into a large set of
all possible tuples. The combined complete plans are checked for (a) soundness, and (b)
for goal satisfaction constraints. For instance, the soundness check tests if there are no
two simultaneous actions using one resource. Additionally, the test also checks linkup of
actions of different agents – a box cannot be loaded if it is carried by another agent. In the
second phase of the planning process, private plans complete the public actions towards
executable private plans of particular agents. The private plans cannot affect the other
agents and they are prepared separately by each agents. The private planning phase ends
with prepared personal plans usable for the execution.

The particular planning problem implemented in the prototype is a simplified instance
of classical blocks-world problem with resources. Initial state of problem is following:

SI = {mover(Mover1),mover(Mover2)box(Box1), box(Box2),
at(Mover1, Point[0, 0]), holds(Mover1,−),
at(Mover2, Point[0, 5]), holds(Mover2,−),
at(Box1, Point[9, 0]), at(Box2, Point[8, 0])}.

The goal state conditions are:

SG = {at(Box1, Point[0, 9]), at(Box2, Point[9, 9])}.

In Figure 4.3, the initial state and one of possible final states are depicted.
There are three possible actions (i) move, (ii) load, and (iii) unload. The STRIPS

definition of the actions contain three sets for each action:

83

Figure 4.3.: Initial state of the planning problem (on the left) and one of the possible final
states (on the right). The goal state contains only Box1.

pre(move(M,P)) = {mover(M), at(M,OldPoint),
(M = Mover1) =⇒ Py < 5, (M = Mover2) =⇒ Py > 5},

del(move(M,P)) = {at(M,OldPoint)},
add(move(M,P)) = {at(M,P)},

pre(load(M,B)) = {mover(M), at(M,P), holds(M,−), box(B), at(B,P)},
del(load(M,B)) = {at(B,P), holds(M,−)},
add(load(M,B)) = {holds(M,B)},

pre(unload(M,B)) = {mover(M), at(M,P), holds(M,B), box(B)},
del(unload(M,B)) = {holds(M,B)},
add(unload(M,B)) = {at(B,P), holds(M,−)}.

The planning algorithm implemented in the prototype covers the core principle of the
proposed technique in [53], however it differs in particular implementation. Figure 4.6
provides the listing of a simplified planning algorithm for the agent Mover1.

The algorithm for Mover2 only receives the sent action sequence and after private
planning process, the agent executes it. The main difference against the algorithm in
[53] is that the planning algorithm is not using CSP solver for finding an appropriate

84

Algorithm 4.6 Pseudocode of the planning algorithm for the Mover1 agent.
Require: sinit . . . initial state
Require: Sgoal . . . goal state
Ensure: PMover1 . . . executable local plan of Mover1

1: for δ = 1; δ = δ + 1 do
2: ρ = generateActionSequences(δ, sinit, Sgoal)
3: ρ′ = RECEIV E(ρ from Mover2)
4: for all P ∈ ρ do
5: for all P ′ ∈ ρ′ do
6: if S = simlulate(sinit, sinit, ρ, ρ

′) then
7: for all si ∈ S do
8: PMover1 = PMover1 + doPrivateP lanning(si−1, si)
9: if PMover1 = ∅ then

10: continue
11: end if
12: SEND(ρ′ to Mover2)
13: return PMover1
14: end for
15: end if
16: end for
17: end for
18: end for

85

pair of the public action sequences, but a exhaustive search is used and implemented
as two nested loops on lines 4 and 5. The statements SEND and RECEIV E repre-
sent inter-agent communication (which is in the prototype replaced by direct variable
access). The function generateActionSequences(δ, sinit, Sgoal) generates a set of all pos-
sible public action sequences of length δ. The sequences are pre-filtered and only lo-
cally sound sequences are included in the set. An example of an invalid sequence is
(load(M,Box1), load(M,Box2), since Box2 cannot be loaded if Box1 is already carried.
The function simlulate(sinit, sinit, ρ, ρ

′) returns a sequence of global states anticipated if
the action sequences ρ and ρ′ would be executed from state sinit without any failure in
the execution. The goal state set Sgoal is provided to allow the function to filter se-
quences which do not end in the goal state. Additionally, the function also checks feasi-
bility of the planned sequences and interactions between the agents. Finally, the function
doPrivateP lanning(si−1, si) creates a private action sequence including one pubic action
at the end of the sequence. The chaining of the private sequences P = P + . . . with public
action at the end builds the final executable local plan.

The second part of the prototype includes two methods for failure handling: re-planning
from scratch and the Naive Plan Repairing Algorithm. Re-planning runs the complete
planning process again if a failure is detected during the execution. The Naive Plan Re-
pairing Algorithm updates the current plan only locally to solve the failure. The local
change is done from the state of the failure to the first public action state.

The model of the failures is based on a probability p with a uniform distribution. The
probability describes if a move action carrying a box drops the box. The detection of the
failure is reliable which means the failure is always detected. p = 1 represents a failure of
each executed move action (since only a move action can fail and the failure occurs after
the action execution, even for p = 1 the goals can be fulfilled – the box is dropped after
each move). If p = 0, the execution is deterministic and without failures.

In Figure 4.4, it is demonstrated the length, of the plans generated by the plan repairing
technique, is only slightly larger (the maximum is 10% for p = 1) than the plans fixed
by re-planning from the scratch. However, the number of generated action sequences (the
main complexity indicator of the algorithm) is by 73% higher for the planning from the
scratch than for the plan repairing algorithm. The Figure 4.5 depicts measurements of the
action sequence generators.

General Box-Mover Prototype

The Simple Box-Mover Prototype was extended towards variable numbers of the entities
in the environment, i.e. there are k mover agents (representing a robot and crane as one
entity), which can each move in a w×h grid and b distinguishable boxes each of which has
one target position. The boxes cannot be laid upon each other. Each grid point can be
accessed by only one mover with the exception of s points, which can be accessed by two
neighbouring agents (hand-over points). Each mover can carry only one box at a time. The
initial state defines points where the movers start and where the boxes lie. The movers has

86

Figure 4.4.: Relation of a total length of a plan (y-axis is counted in number of actions)
and probability p of the failures in percents (x-axis). RP represents re-planning
algorithm and PR represents Naive Plan Repairing Algorithm.The goal state
contains only Box1. The domain contains two movers.

similarily three possible actions (i) move, (ii) load, and (iii) unload. A mover can move in
its accessible grid by one cell horizontally, vertically, and diagonally (including the hand-
over points) whether or not it is carrying a box. A mover can load a box, if it is at the same
point as the box. A mover can unload a box if it is carrying it, and there is not another
box in the unload position. Each box has a target point. A solution of the problem is a
plan of actions for each mover which relocates the boxes from their initial points to their
target points. The model of the failures is same as for the Simple Box-Mover Prototype.

An example instance of the domain is depicted in Figure 4.6, where k = 4, w = 6, h =
6, b = 2, and s = 4.

The experiments are comparing the Naive Repairing Algorithm and re-planning from
scratch for varying probability p. There are three comparison metrics used: (i) computa-
tional complexity, (ii) communication complexity, and (iii) length of the resulting plans.
The computational complexity measure is based on a number of action sequences generated
by the planning, re-planning, and plan repairing processes. All such sequences have to be
checked for soundness and mutual compatibility, which makes them the most complex part
of the algorithm. The communication complexity counts a number of messages, which are
necessary to coordinate the planning processes. The messages contain only comparable
sizes of data (the largest structure transferred by one message is a single-agent action se-
quence). More complex data packages are split into more messages. The length of the final

87

Figure 4.5.: Relation of a total number of generated action sequences (y-axis) and probabil-
ity p of the failures in percents (x-axis). RP represents re-planning algorithm
and PR represents Naive Plan Repairing Algorithm.The goal state contains
only Box1.The domain contains two movers.

plan includes also all repairing plans.
The results are depicted in three figures according to the mentioned metrics. As we can

see in Figure 4.7, the complexity of the plan repairing algorithm (NRA) is considerably
lower (12%) than the complexity of the re-planning. The plan repairing technique uses the
planner during the execution only for short and simple planning problems. On the other
hand, the re-planning approach in the earlier phases of the execution has to plan complete
plans towards the goal state.

The communication complexity (see Figure 4.8) of the plan repairing algorithm is also
lower than the re-planning from scratch (57%). As the planning problems creating repair-
ing plans are simpler than the complete re-planning problems, the planning process need
less messages to find the compatible personal action sequences of the agents. The more
advanced plan repairing techniques as Locality Repairing Algorithm are theorised to even
more decrease the number of the messages required for the repairing process according to
the communication dimension of the vector V .

The plan lengths, depicted in Figure 4.9, shows the increase of the plan length for the
plan repairing technique (59%). It is caused by repeated extension of the initial plan by
the repairing plans. Study and reduction of this effect can be one of the possible future
works.

The results of the Box-Mover Experiments support the premise that the plan repairing

88

(a) (b)

Figure 4.6.: The example environment, where circles represent movers and squares repre-
sent the boxes. The orange cells are the respective target points and the red
points are the hand-off points. (a) The initial configuration for 4 movers and
2 boxes. (b) Box1 (10, 0) is being handed from Mover3 (top-right) to Mover4
(bottom-right).

algorithms are from the perspective of algorithm complexity much more suitable for highly
dynamic environments sacrificing only a small increase of the plan length.

Evaluation of Plan Repairing for DCOP-based Multi-agent Planning

The plan repairing algorithm (NRA particularly) was used to fix soundness of plans gen-
erated by the DCOP techniques. This enabled tackling of larger planning problems.

Once the length of the plan δ is big enough to reach any of the goals, a plan is produced
which does so. That this is one of the key differences between our approach and a constraint
satisfaction algorithm. For example, the results in the Box-Mover domain with two agents
for δ = 1 . . . 3 was a set of ε for each agent. For δ = 4 . . . 5 it produces a plan that moves
one of the boxes to the goal. For δ ≥ 6 it produces a plan that meet both goals.

When the number of agents was increased to four, which resulted in cyclic constraint
graph, DCOP solver failed to construct an optimal plan. At this point, plan repair was
used to construct the optimal plan. The search space (i.e. the number of public plan
combinations need to be evaluated) is shown in Figure 4.10. The complexity of plan repair
was the same for any number of agents, because δ was fixed at 6.

The result shows the plan repairing technique can be also used in cooperation with other
problem solving approaches for additional adaptation or fixing of more efficiently generated
plans. The complexity of the problem it thus transformed into the complexity of the plan
repairing problem, which can, using known planning approaches, provide better insights
into the problem and well-known heuristics.

89

Figure 4.7.: Comparison of NRA and re-planning from scratch – computational complexity
metrics.

Figure 4.8.: Comparison of NRA and re-planning from scratch – communication complex-
ity metrics.

4.3.2. Plan repairing in dynamic urban environment
Mission

The high-level mission goal is to extract a VIP from a safe-house in a hostile urban area
(village) by a blue force units. The topology of the village is known a priory from a
satellite recon. The troops are supported by a heterogeneous team of autonomous robotic
assets (2 Vidar VTOL MUASs, 2 Skeldar VTOL UASs, 1 MDARS UGV), see Figure 4.11.
The environment unpredictability and the blue forces involved cause perturbations in the
plan execution, and the autonomous units has to adapt (repair plans) accordingly to be
consistent with the behavior of the blue forces. The adaptation should take into an account
the high-level plan, which should be always the goal of the blue forces. The assets are
controlled by multi-agent planning and plan repairing system and they must behave quite

90

Figure 4.9.: Comparison of NRA and re-planning from scratch – plan length metrics.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 2 3 4 5 6 7 8

S
e
a
rc

h
 s

p
a
ce

Agents

BF
MS

MS+R

Figure 4.10.: Growth of the search space for δ = 6 as the number of agents increases for
brute-force (BF), DCOP (Max-Sum) (MS), and DCOP (Max-Sum) with plan
repairing (MS+R).

91

Figure 4.11.: The ground forces (green) supported by the robotic team (2 Vidar VTOL
MUASs – orange, 2 Skeldar VTOL UASs – red, 1 MDARS UGV – brown) in
the simulated urban environment.

intelligent with regard to the mission (which description includes also the needs of the
soldiers in form of action preconditions). Additionally, any asset can be destroyed, if it
behaves inadvisedly. The positions and numbers of the hostiles is not known a priory.
The behavior of the blue and red forces is based on the reactive behaviors described in
Chapter 5.

The communication among the assets is considered to be reliable and limitless (the blue
forces are spatially compact and thus they keep nearly permanent visual contact). The
computation load is limited by the simulating computer which corresponds with computa-
tional power of the the on-board computers . The sensors are simulated as deterministic,
precise, and use ground-to-ground occlusion simulation. The actuators differ for the var-
ious assets. The Vidars have deterministic and precise move actuators, the Skeldars use
dynamics simulation and the MDARS is simulated using physics simulation engine.

Planning and plan repair

The initial plan of each asset is to move to the safe-house and than to the extraction point.
Possible actions of the assets are:

noop() The preconditions are ∅ and the action can be used by all asset types. The action
represents doing nothing, i.e. wait.

move-to(position) The preconditions are {covering ∧ ¬colliding} and the action can be
used by all asset types. The asset is moved from the current position to new position.

personal-cover(person) The preconditions are {covering ∧ ¬colliding} and the action can
be used by the Vidars. The action moves the asset above the position as the person

92

Figure 4.12.: Two Vidar MUASs providing street recon actions in front of the team.

is and orients it oppositely than the person is directed.

street-recon(street) The preconditions are {allAlliedCovered ∧¬colliding} and the action
can be used by the Vidars. The action moves and orients the asset as it can look
through the street (see Figure 4.12).

street-surveillance(street) The preconditions are {allAlliedCovered ∧ ¬colliding} and the
action can be used by the MDARS and Skeldars. The action moves the asset along
the street.

crossing-surveillance(crossing) The preconditions are {allAlliedCovered ∧¬colliding} and
the action can be used by the Skeldars. The action positions the asset above the
crossing and makes it to observe the area around the crossing.

There are three used preconditions:

colliding The condition holds if the action is spatio-temporally colliding with action(s) of
other assets.

covering The condition holds if the action causes an allied troop is covered (the asset is
in a proximity).

allAlliedCovered The condition holds if all allied troops are covered (in the proximity of
all troops is at least one asset).

The conditions can form a propositional formulae.
The plan-repairing mechanism is solving the problems caused by the unpredictable move-

ment of the troops. The first move-to action in the initial plan

(moveto(safehouse),moveto(extractionpoint))

93

Figure 4.13.: An individual plan of one of the Vidar MUAVs. The white lines represent the
initial mission plan (move to the safehouse – move to the extraction point).
The yellow lines depict a spatial representation of the current repaired plan
of the asset.

has the precondition covering, which implies the action cannot be used and causes a failure
of the plan. To solve the failure, the NRA technique (see Section 4.2.2) adopts a action
solving the problem which is personal − cover(person) with a randomly chosen allied troop.
Usage of the action solves the failure (and made allAlliedCovered holding) and thus the
other assets can use other the possible actions (surveillance and recons). The basic de-
conflicition of the assets is caused by the colliding precondition, because of which the
assets are always adopting actions at distinct positions. The initial mission plan and the
repaired plan of one Vidar VTOL is depicted in Figure 4.13.

The demonstration shows the multi-agent plan repairing technique can be used for dis-
tributed continual planning of robotic team in highly dynamical and unpredictable envi-
ronment.

94

5. Coordination and teamwork

5.1. Summary of the workpackage

In the coordination an teamwork research track, we studied methods that will allow us to
specify the joint mission of a number of agents. In particular, we were focusing on how we
can specify the desired sequence of actions an agent needs to perform in order to effectively
pursue the joint goals of the team.

For this purpose we were examining commitment machines – a framework for monitoring
of communication protocols. In this framework, each synchronization point in the protocol
can be defined as a commitment one agent makes to another agent. A protocol cannot
proceed to later stages until all the relevant commitments are discharged.

Such a mechanism turns out to be also suitable for the specification of desired interactions
between two or more agents. Distributed commitment machines represent a more realistic
flavor of commitment machines that allows the mechanism to be executed in a distributed
way, i.e. by each involved agent.

In order to evaluate the method, we have implemented a simple example scenario in
which a team of troops moves in formation through an urban area. The modelled team
consists of one leader with four subordinate troops. The team moves in a coordinated
fashion so that they jointly cover the surrounding area.

The mechanism was implemented using Jazzyk agent programming language, which
provided us an advantage of being able to combine different knowledge representation
techniques in our program. Using the technologies mentioned above, we were able to
build agents exhibiting robust coordinated behavior, which was specified in form of a short
declarative program.

5.2. Technology description

One of the objectives of this workpackage is to develop a technology allowing us to specify
and subsequently execute a large range of mission scenarios composed of a number of basic
building blocks, such as exploration, surveillance, tracking on the side of the mission assets,
such as e.g., UAVs, as well as behaviors including e.g., securing an area, movement to a
pre-defined location, tracking or evasion on the side of ground forces, be it allied, or foe
troops.

We designed and implemented a basic framework allowing us to encode specifications
of missions as a number of interdependent commitments representing the dependencies

95

betwen the partial goals the team has to achieve in order to successfully fulfill the mission.
Our mission specification framework is based on the formalism of distributed commitment
machines.

5.2.1. Distributed Commitment Machines

Commitment Machines

Commitment machines, originally developed by Yolum and Singh in [76], is an approach
for flexible and succinct specification of inter-agent coordination protocols, are well suited
for high-level specification inter-relationships among individual agent’s goals.

Inter-agent commitments are a structure capturing a relationship between goals and
beliefs of different agents working together. Commitments usually involve 2 parties, a
debtor who commits to a creditor by a concrete commitment content. Below, we treat
commitment and meaning as abstract types defined over some language. In the following
we assume that a language L is a set of formulae coming with a relation of set inclusion ∈
and a relation of provability ` w.r.t. a set of formulae.

The set of commitments over a language L are formulae constructed as follows:

• C(c, d, ϕ), where ϕ ∈ L is a commitment,

– provided p and r are commitments, then also C(c, d, p) and C(c, d, p r) are
commitments as well.

c and d above denote the creditor and the debtor of the commitment. CL denotes the set
of all commitments over L.

Whenever the context is clear, we omit the creditor and debtor designation. In the
following, we simply assume that the debtor of a commitment is a particular team member
and the creditor is the team in general.

The set of meanings ML over L is defined as follows:

• all formulae ϕ ∈ L are meanings in ML,

– all commitments φ ∈ CL are meanings in ML too, and finally
– provided φ and ψ are meanings, then φ ∧ ψ and ¬φ are meanings as well.

A finite set of meanings M ⊆ S is said to be minimal iff >,⊥ ∈M and

∀mi,mj ∈M : mi ≡ mj =⇒ mi = mj

Furthermore, we say that a set of meanings F ⊆M is consistent w.r.t. M iff any meaning
that is stronger than a meaning from F necessarily also belongs to F , i.e.,

∀mi ∈ F,mj ∈M : mj ` mi =⇒ mj ∈ F

96

An action φpre : a : φpost is a tuple of a label a uniquely identifying the action and
φ ∈ML, the associated meaning it causes.

Whenever the context will be clear, since the pre- and post-conditions of actions are
conjunctions of literals, we treat them as sets and write ϕ ∈ φ whenever φ is of the form
φ = ψ1 ∧ · · · ∧ ϕ ∧ · · ·ψn.

A Commitment Machine (CM) is a triple 〈M,∆, F 〉, where M is a finite minimal set of
meanings over some language L, F ⊆M denotes a set of finite meanings, a set of meanings
consistent w.r.t. M and finally ∆ is a finite set of actions.

The standard commitment machines semantics in [76] is defined using the action update
function s⊕ a : φ = s′, such that s ∧ φ ` s′.

Let L be a language and cm = 〈M,∆, F 〉 a commitment machines over L. Furthermore
let S be a set of states and π : S → 2ML be a propositional labelling function mapping
each state to some set of meanings over L.

An action φpre : a : φpost induces a transition between two states s and s′, also denoted
s
φpre:a:φpost−→ s′, whenever the following conditions are satisfied

• s ` φpre,

– s ∧ φ ` s′,
– if s ` C(p) and s′ ` p, then s′ 6` C(p),
– if s ` C(p r) and s′ ` r, then s′ 6` C(p r), and finally
– if s ` C(p r) and s′ ` p and s′ 6` r, then s′ ` C(r).

The semantics of cm is defined as a set of all paths s1, . . . , sn, such that s1 ∈M , for each
1 ≤ i < n there exists φpre : a : φpost ∈ ∆, s.t. si

φpre:a:φpost−→ si+1 and there exists a final
meaning ψ ∈ F , s.t. si+1 ` ψ.

Distributed Commitment Machines

In [74], Winikoff introduces the framework of Distributed Commitment Machines, an ex-
tension of the original CM framework. The main idea behind DCMs is that each agent
reasons about its commitments locally, however some of its actions result in changes in
the global state of commitments in the team, thus communication is necessary in order to
notify the parties involved in the updated commitments to adapt their local states accord-
ingly. To that end, the framework of DCMs introduces two important notions: the set of
roles agent’s play in the mission, and communication queues for each agent.

[Distributed Commitment Machine] A Distributed Commitment Machine (DCM) is char-
acterized by

• a set of roles R,

• a set of possible fluents F ,

97

• a set of possible commitments C,

• a set of possible actions A, where for each action a ∈ A, the following is defined:

– a role ra which is supposed to perform that action

– a set of effects divided into two sets, addition effects E+
a and deletion effects

E−a . Both E+
a , E

−
a are sets of formulae and are disjoint. Each commitment an

action adds, or deletes must be a commitment made by the corresponding role
ra,

– a set of roles RI = R \ ra which should be informed upon performing the action
a.

The state of a role r is defined by the tuple Sr
def= 〈X,Q〉, where X is a set of formulae

(fluents and/or commitments), and Q is a message queue containing messages which are
yet to be processed by r. The messages are generated upon performing actions from the
DCM protocol specification according to the set of roles which are to be notified upon the
action performance (RI). The state of the overall DCM comprises the set of partial states
of the individual roles. I.e., S def= {ri 7→ 〈Xri , Qri〉 | ri ∈ R}.

The system’s operational semantics is provided by two types of transitions. Either a role
(an agent) performs an action, or a role processes one message from its message queue.
Formally, the state change of the role (agent) which performs an action is defined as follows:

Sa def= {(ri 7→ 〈Xi, Qi〉) | (ri 7→ 〈Xi, Qi〉) ∈ S ∧ ri 6∈ RI ∧ ri 6= ra}
∪ {(ri 7→ 〈Xi, Qi ⊕ a〉) | (ri 7→ 〈Xi, Qi〉) ∈ S ∧ ri ∈ RI}
∪ {(ra 7→ 〈N ((Xra ∪ E+

a) \ E−a), Qra〉)}

where N (X) denotes normalization of the theory X as defined in [74]. Informally, nor-
malization is a procedure “minimizing” the theory X, i.e., removing all facts which follow
from a minimal, normalized, core of the theory. For further details, we refer to the original
publication.

The message processing step by a role is formally defined as follows:

Sar
def= {(ri 7→ 〈Xi, Qi〉) | (ri 7→ 〈Xi, Qi〉) ∈ S ∧ ri 6∈ RI ∧ ri 6= ra}
∪ {(ra 7→ 〈N ((Xra ∪ E+

a) \ E−a), Qra 	 a〉)}

where a is the most current message in the message queue Qra . The operations ⊕ and 	
add a new/remove a message from the role’s message queue.

Final states of a distributed commitment machine are such, in which no commitments
remain outstanding and at the same time no messages remain in the message queue.

98

On DCM usage

DCM is a framework allowing to model both local, as well as team-level commitments
between agents and inter-relationships thereof. I.e., each agent possesses its own CM
program which i) steers its own actions in that it provides incentives for actions; and ii) it
uses the CM specification to correctly delete, update, or derive new commitments whenever
it’s local CM enforces it, or whenever a team-level public action is executed by another
team member and communicated to the team.

5.2.2. Jazzyk/BSM

Taking into consideration our past experience with agent-oriented programming, we choose
the state-of-the-art techniques from the field of reactive planning and agent-oriented pro-
gramming languages as the starting point for our implementation of the flexible mission
specification and execution framework. In particular, our design of the fully configurable
multi-agent mission simulation framework is based on the Belief-Desire-Intention (BDI)
agent architecture. The BDI architecture dictates a decomposition of agent’s knowledge
bases into several components storing information the agent has about its environment,
itself and its team peers (beliefs), the information about its goals (in this case, basically
the mission specification together with the agent’s internally adopted goals) and a repre-
sentation of the agents plans, or programs, execution of which ensures establishment of the
agent’s goals, i.e., the agent’s beliefs match its goals in that the agent believes that it had
already achieved the goals eventually in the future.

Concretely, our approach to the design of the flexible mission execution framework is
based on the framework of Behavioural State Machines by Novák [55, 59] and its associated
agent-oriented programming language Jazzyk. Using this framework, we implemented a
modular BDI architecture, that is similar to that described by Novák and Dix in [56].
In the following, we first briefly introduce the framework of Behavioural State Machines
and subsequently describe out adaptation and extension of the original Jazzyk interpreter,
which we developed for the purposes of this project.

Behavioural State Machines In [55], Novák introduced the framework of Behavioural
State Machines (BSM). BSM framework is a reactive-planning approach to programming
cognitive agents based on the Belief-Desire-Intention hybrid architecture. The BSM frame-
work draws a clear distinction between the knowledge representation and behavioural layers
within an agent. It thus provides a programming system that clearly separates the program-
ming concerns of how to represent an agent’s knowledge about, for example, its environment
and how to encode its behaviours. In the core of the framework is a generic reactive com-
putational model inspired by Gurevich’s Abstract State Machines [17], enabling for efficient
structuring of the program code. This section briefly introduces the BSM framework. Be-
low, we introduce an extension of the BSM framework which we developed for the purposes
of this project. For the complete formal description of the BSM framework, see [55].

99

Syntax BSM agents are collections of one or more so-called knowledge representation
modules (KR modules), typically denoted by M, each representing a part of the agent’s
knowledge base. KR modules may be used to represent and maintain various mental
attitudes of an agent, such as knowledge about its environment, or its goals, intentions,
obligations, etc. Transitions between states of a BSM result from applying so-called mental
state transformers (mst), typically denoted by τ . Various types of mst’s determine the
behavior that an agent can generate. A BSM agent consists of a set of KR modules
M1, . . . ,Mn and a mental state transformer P, i.e. A = (M1, . . . ,Mn,P); the mst P is
also called an agent program.

The notion of a KR module is an abstraction of a partial knowledge base of an agent. In
turn, its states are to be treated as theories (i.e. sets of sentences) expressed in the KR lan-
guage of the module. Formally, a KR module
Mi = (Si,Li,Qi,Ui) is characterized by a knowledge representation language Li, a set
of states Si ⊆ 2Li , a set of query operators Qi and a set of update operators Ui. A query
operator ��� ∈ Qi is a mapping ��� : Si × Li → {>,⊥}. Similarly an update operator ⊕ ∈ Ui
is a mapping ⊕ : Si × Li → Si.

Queries, typically denoted by ϕ, can be seen as operators of type ��� : Si → {>,⊥}. A
primitive query ϕ = (���φ) consists of a query operator ��� ∈ Qi and a formula φ ∈ Li of
the same KR module Mi. Complex queries can be composed by means of conjunction ∧,
disjunction ∨ and negation ¬.

Mental state transformers enable transitions from one state to another. A primitive mst
�ψ, typically denoted by ρ and constructed from an update operator � ∈ Ui and a formula
ψ ∈ Li, refers to an update on the state of the corresponding KR module. Conditional
mst’s are of the form ϕ −→ τ , where ϕ is a query and τ is a mst. Such a conditional
mst makes the application of τ depend on the evaluation of ϕ. Syntactic constructs for
combining mst’s are: non-deterministic choice | and sequence ◦.

[mental state transformer] LetM1, . . . ,Mn be KR modules of the formMi = (Si,Li,Qi,Ui).
The set of mental state transformers is defined as below:

• skip is a primitive mst,

– if � ∈ Ui and ψ ∈ Li, then �ψ is a primitive mst,
– if ϕ is a query, and τ is a mst, then ϕ −→ τ is a conditional mst,
– if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s (choice, and sequence respec-

tively).

Even though it is a vital feature of the BSM theoretical framework, for simplicity we omit
the treatment of variables in the definitions of query and update formulae above. For a
full fledged description of the BSM framework consult [55].

Semantics The yields calculus, summarized below after [55], specifies an update associ-
ated with executing a mental state transformer in a single step of the language interpreter.

100

It formally defines the meaning of the state transformation induced by executing an mst
in a state, i.e. a mental state transition.

Formally, a mental state σ of a BSM A = (M1, . . . ,Mn, τ) is a tuple σ = 〈σ1, . . . , σn〉
of KR module states σ1 ∈ S1, . . . , σn ∈ Sn, corresponding to M1, . . . ,Mn respectively.
S = S1 × · · · × Sn denotes the space of all mental states over A. A mental state can be
modified by applying primitive mst’s on it and query formulae can be evaluated against
it. The semantic notion of truth of a query is defined through the satisfaction relation
|=. A primitive query ���φ holds in a mental state σ = 〈σ1, . . . , σn〉 (written σ |= (���φ)) iff
���(φ, σi), otherwise we have σ 6|= (���φ). Given the usual meaning of Boolean operators, it
is straightforward to extend the query evaluation to compound query formulae. Note that
evaluation of a query does not change the mental state σ.

For an mst �ψ, we use (�, ψ) to denote its semantic counterpart, i.e., the corresponding
update (state transformation). Sequential application of updates is denoted by •, i.e. ρ1•ρ2
is an update resulting from applying ρ1 first and then applying ρ2. The application of an
update to a mental state is defined formally below.

[applying an update] The result of applying an update
ρ = (�, ψ) to a state σ = 〈σ1, . . . , σn〉 of a BSM A = (M1, . . . ,Mn,P), denoted by
s
⊕
ρ, is a new state σ′ = 〈σ1, . . . , σ

′
i, . . . , σn〉, where σ′i = σi � ψ and σi, �, and ψ corre-

spond to one and the sameMi of A. Applying the empty update skip on the state σ does
not change the state, i.e. σ

⊕
skip = σ.

Inductively, the result of applying a sequence of updates ρ1 • ρ2 is a new state σ′′ =
σ′
⊕
ρ2, where σ′ = σ

⊕
ρ1. σ

ρ1•ρ2→ σ′′ = σ
ρ1→ σ′

ρ2→ σ′′ denotes the corresponding
compound transition.

The meaning of a mental state transformer in state σ, formally defined by the yields
predicate below, is the update set it yields in that mental state.

[yields calculus] A mental state transformer τ yields an update ρ in a state σ, iff
yields(τ, σ, ρ) is derivable in the following calculus:

>
yields(skip,σ,skip)

>
yields(�ψ,σ,(�,ψ)) (primitive)

yields(τ,σ,ρ), σ|=φ
yields(φ−→τ,σ,ρ)

yields(τ,σ,ρ), σ 6|=φ
yields(φ−→τ,σ,skip) (conditional)

yields(τ1,σ,ρ1), yields(τ2,σ,ρ2)
yields(τ1|τ2,σ,ρ1), yields(τ1|τ2,σ,ρ2) (choice)

yields(τ1,σ,ρ1), yields(τ2,σ
⊕

ρ1,ρ2)
yields(τ1◦τ2,σ,ρ1•ρ2) (sequence)

yields(τ1,σ,ρ1), ρ2 6=skip
yields(τ1/τ2,σ,ρ1) (chain preference)

∀ρ1: yields(τ1,σ,ρ1)∧ρ1=skip, yields(τ1,σ,ρ2)
yields(τ1/τ2,σ,ρ2) (chain preference)

We say that τ yields an update set ν in a state σ iff ν = {ρ|yields(τ, σ, ρ)}.

101

The mst skip yields the update skip. Similarly, a primitive update mst �ψ yields the
corresponding update (�, ψ). In the case the condition φ of a conditional mst φ −→ τ is
satisfied in the current mental state, the calculus yields one of the updates corresponding
to the right hand side mst τ , otherwise the no-operation skip update is yielded. A non-
deterministic choice mst yields an update corresponding to either of its members and a
sequential mst yields a sequence of updates corresponding to the first mst of the sequence
and an update yielded by the second member of the sequence in a state resulting from
application of the first update to the current mental state. Finally, not appearing in
the original BSM framework by Novák, we added the chain preference operator / which
executes only the first, non-empty (skip) update yielded in the sequence of mst’s.

The following definition articulates the denotational semantics of the notion of mental
state transformer as an encoding of a function mapping mental states of a BSM to updates,
i.e. transitions between them.

[mst functional semantics] LetM1, . . . ,Mn be KR modules. A mental state transformer
τ encodes a function fτ : σ 7→ {ρ|yields(τ, σ, ρ)} over the space of mental states σ =
〈σ1, . . . , σn〉 ∈ S1 × · · ·Sn.

Subsequently, the semantics of a BSM agent is defined as a set of traces in the induced
transition system enabled by the BSM agent program.

[BSM semantics] A BSM A = (M1, . . . ,Mn,P) can make a step from state σ to a state
σ′, iff σ′ = σ

⊕
ρ, s.t. ρ ∈ fP(σ). We also say, that A induces a (possibly compound)

transition σ
ρ→ σ′.

A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSM A, iff for each i ≥ 1,
A induces a transition σi → σi+1.

The semantics of an agent system characterized by a BSM A, is a set of all runs of A.
Additionally, we require the non-deterministic choice of a BSM interpreter to fulfill the

weak fairness condition, similar to that in [50], for all the induced runs.

Condition 1 (weak fairness condition). A computation run is weakly fair iff it is not the
case that an update is always yielded from some point in time on but is never selected for
execution.

Jazzyk Jazzyk is a programming language implementing the computational model of the
BSM framework. Originally introduced in [55], the language comes with a standalone inter-
preter which can transparently incorporate a number of heterogeneous knowledge represen-
tation modules ranging from logic-programming-based, object-oriented programming lan-
guage interpreters to interfaces to robotic simulators. However, since the A-Globe/AgentFly
technological infrastructure is based on the Java Virtual Machine run-time environment,
the original language interpreter was not a suitable option for use in the context of this
project. For the purposes of this project, we ported the Jazzyk programming language
to the Java platform and developed a new incarnation of the Jazzyk interpreter capable
of running in the Java Virtual Machine. The implemented full-fledged language inter-
preter allowed us to implement the behaviours of agents in our MAS simulation in a highly

102

modular and flexible manner. The heterogeneity of the BSM/Jazzyk suite allowed us to ex-
ploit the strengths of declarative technologies, such as Prolog together with object-oriented
technologies, i.e., Java language as a natural components of a BDI-based architecture for
behaviour-rich , heavily deliberating, yet responsive and reactive agents in our simulated
missions.

Language The original syntax of the Jazzyk language is an instantiation of the abstract
mathematical syntax of the BSM theoretical framework. when then construct encodes a
conditional mst φ −→ τ . Symbols ; and , stand for choice | and sequence ◦ BSM op-
erators respectively. To facilitate operator precedence, mental state transformers can be
grouped into compound structures, blocks, using curly braces {. . .}. Since the original BSM
framework did not include the unless operator /, we additionally implemented it in our
extension.

Interpreter Our implementation of the Jazzyk programming language, called JazzykJVM,
was developed in a modern functional-object-oriented programming language Scala1 which
compiles into Java byte code, in result featuring a tight and transparent integration with
the Java infrastructure.

Together with the Jazzyk programming language interpreter, we implemented two general-
purpose knowledge representation modules: Prolog module and Java module. As the basis
for the Prolog module accessible from the Java platform, we used the tuProlog v2.1.12 de-
veloped by Department of Electronics, Informatics and Systems of Alma Mater Studiorum-
Università di Bologna, Italy. The Prolog module allowed us to exploit the conciseness and
declarative language strengths of logic-programming. The Java module facilitating object-
oriented is based on a Java scripting language interpreter BeanShell3. We describe the
concrete usage of the modules within our implementation later in this chapter.

To better support source code modularity and re-usability, Jazzyk interpreter integrates a
Java implementation of the popular GNU M4 4, a state-of-the-art macro preprocessor. The
concrete M4 Java port we used is the MNI Macro Processor (MMP) package developed
by Burkhardt Renz at University of Applied Sciences, Gießen-Friedberg, Germany.

Macros are a powerful tool for structuring and modularizing and encapsulating the source
code and writing code templates. Before feeding the Jazzyk agent program to the language
interpreter, first all the M4 macros are expanded and only afterwards the plain Jazzyk
program is fed to the interpreter for execution.

1http://www.scala-lang.org/
2http://tuprolog.alice.unibo.it/
3http://www.beanshell.org/
4http://www.gnu.org/software/m4/

103

5.2.3. Implementation description

The framework facilitating flexible mission specification and execution is heavily based
on exploitation of the strengths of the framework of Behavioural State Machines and the
associated programming language Jazzyk. In the following, we briefly describe the agent
architecture developed for the purposes of the project and the details of mission-specific
agent behavior implementation. For illustration purposes, we only provide a description
of the implementation of ground allied agents whose implementation features the richest
range of behaviours.

Agent architecture Above, we already noted that the architectural decomposition of
the simulated entities is heavily inspired by the BDI architectural scheme. The agent
architecture was implemented for utilization in the context of a mission described in the
previous project report.

The agents’ belief base is decomposed into two sub-modules: a Prolog-based component
storing the agent’s information about its environment and itself, and a Java component.
The former stores primarily persistent information such as the agent’s belief about being
(in-)secure, or static information about the meeting point location, safe house location
once received from the UAV team, etc., together with a logic-based inference engine al-
lowing to draw deductive conclusions from this information. The second sub-component
facilitates mainly manipulation with information about the topology of the simulated envi-
ronment, i.e., the map of the urban area of the operations theater and the related reasoning
mechanisms, such as e.g., path planning on the map graph, etc.

The traditional role of a goal in BDI architecture is replaced by a commitment. An
internal goal of an agent is modelled as a commitment to itself, i.e. the agent is both
the creditor and debtor of the commitment. For the simplicity of implementation, we
consider an agent’s commitment as a special belief stored together with other beliefs in the
Prolog component of the agent’s belief base. This way we can easily implement interactions
between the agent’s beliefs and commitments.

The Figure 5.1 provides a schematic overview of the developed agent architecture.

Commitment Machines in Jazzyk

As mentioned above,an agent’s commitments are stored in its Prolog belief base. To distin-
guish commitments from other beliefs and control the dynamics of commitments, we have
introduced three special-use predicates shown in Table 5.1. In Figure 5.2, we present an
example Prolog belief base containing a commitment to be at position (n5,n15) and a rule
specifying that the commitment will be discharged as soon as the agent starts believing
that it is indeed at position (n5,n15).

Agents’ overall behavior is implemented as a set of self-encapsulated composable be-
haviours encoded as reactive plans, policies, in the programming language Jazzyk. The
commitments are used to motivate the behavior of the agents, to govern their interactions

104

Figure 5.1.: Architecture of ground agents in the AgentScout2 simulation.

c(ϕ) denotes that the agent is committed to ϕ
cc(ϕ, c(ψ)) denotes a conditional commitment, i.e. whenever an agent

beliefs ϕ, it adopts the commitment ψ
ccd(ϕ, c(ψ)) denotes a conditional commitment deletion, i.e. whenever

an agent beliefs ϕ, it discharges the commitment ψ5

Table 5.1.: Commitment related predicates

and to specify their joint mission. An example of commitment machine specifying the
mission from the perspective of the leader agent is listed in Figure 5.3.

The first three lines contain logical derivation rules used to derive facts about the world.
The fourth line contains a commitment denoting that the leader agent is committed to
be at the location of safehouse. On the following two lines, we can see a conditional
commitment prescribing that once the whole team is at the location of safehouse, a new
commitment c(extracted(vip)) is adopted. Similarly, once the VIP is extracted, the leader will
commit to be at the collection location. Finally, the two following lines specify when can
be commitments discharged. The leader can only discharge a commitment of being at a
certain location if his entire team is there as well. The commitment to extract the VIP
can be discharged as soon as the leader agents beliefs that the VIP has been extracted.

The Jazzyk agent program contains behaviours that actively pursue the current com-

105

c (at (n5 , n12)) .
ccd (at (N,T) , c (at (N,T))) .

Figure 5.2.: Example of commitment machine in Prolog

f r o n t s o l d i e r s a t (N,T) :− at (adam ,N,T) , a t (b r i an ,N,T) .
b a c k s o l d i e r s a t (N,T) :− at (c h r i s ,N,T) , a t (dav id ,N,T) .
a l l s o l d i e r s a t (N,T) :− f r o n t s o l d i e r s a t (N,T) , b a c k s o l d i e r s a t (N,T) .
c (at (SAFEHOUSE N , SAFEHOUSE T)) .
cc ((at (SAFEHOUSE N , SAFEHOUSE T) , a l l s o l d i e r s a t (N,T)) , c (e x t r a c t e d (v i p))) .
cc (e x t r a c t e d (v i p) , c (at (COLLECTION N , COLLECTION T))) .
ccd ((at (N,T) , a l l s o l d i e r s a t (N,T)) , c (at (N,T))) .
ccd (e x t r a c t e d (P) , c (e x t r a c t e d (P))) .

Figure 5.3.: The belief base of the leader agent

mitments of the agent. An example of a behavior that pursues the commitment c(at(N,T))
is listed in Figure 5.4.

Additionally, agents often feature implicit behaviours, i.e., such which were not provided
in the mission specification, but the agent adopts their associated goals because of its own
decision in run-time. The Figure 5.5 lists an example of such a behavior implementing an
agent’s reaction when a foe character is encountered.

Finally, the behaviours are composed into an agent program. Using the BSM composi-
tion operators, the agent program defines the interrelationships among the behaviours of
the agent. In the case of our implementation, listed in Figure 5.6, the behaviours are prior-
itized using chain preference operator. In result, for example, the agent prefers to recover
from collisions and react to foe characters over the commitment-pursuing behaviors.

5.3. Evaluation and experiments

5.3.1. Scenario

In order to evaluate the proposed techniques, we have implemented a multi-agent simulation
of the following tactical scenario. We assume a scenario of a simulated military operation
of a ground team in an urban area. We simulate a military evacuation mission. A team
of allied troops traverses the urban area and approaches a safe house located at an apriori
known map position, where the team extracts the VIP. After completing the extraction
task, the troops meet at the collection location where the mission finishes. Throughout the
whole mission, the allied forces maintain their formation so that they cover the surrounding
area and protect themselves. Besides the team of allied forces, there is a number of foe
characters operating in the urban area. The foe characters are generally trying to avoid
allied troops and hide away. Nevertheless, every time an allied troop spots a foe character,
it starts monitoring it until the threat disappears.

106

define(‘PURSUE AT COMMITMENT’, ‘
{

when query beliefs (Target, Current) [{ c(at(Target,)), at(Current,). }] then
{

when query beliefs (Target) [{ plan(Target,). }] then
{

/∗ If the front line is on their positions, make a move ∗/
when query beliefs (Target,Next,T) [{ plan head(Target,Next,T), front soldiers at(Next,T). }]

and query body (Next,T) [{ self.isOneStepAway(Next,T) }]
and query body [{ self.getMovementTarget() == null }] then

{
act (Next,T) [{ self.goToNodeAndTurn(Next,T); }]
},

/∗ Pop first element of the plan ∗/
when query beliefs (Target, Current, Rest)

[{ plan head(Target,Current,T), all soldiers at(Current,T), plan(Target, [Current|Rest]) }] then
{

update beliefs (Rest) [{ update plan(Target, Rest). }]
},

/∗ Order the team to do the next step ∗/
when query beliefs (TargetNode,N,T) [{ plan head(Target,N,T), not(next(N,T)).}] then
{

update beliefs (N,T) [{ action(next(N,T)). }],
update body (N,T) [{ self.broadcast(”action(next(”+N+”,”+T+”))”); }]
}

} else
{

/∗ Plan a path to the target node ∗/
when query body (Current, Target, Plan) [{ Plan = self.planPath(Current, Target); true; }] then

update beliefs (Target, Plan) [{ update plan(Target, Plan).}]
}
}
} ’)

Figure 5.4.: Jazzyk code implementing the behavior that pursues the agent’s c(at(N,T))
commitment

107

define(‘REACT TO FOES’, ‘
{

when sense [{ self.seesFoes() }] then
{

when not B [{ sees foes. }] then
{

update beliefs [{ does see foes. }],
when sense [{ self.isMoving() }] then act [{ self.halt(); }],
act [{ self.turnToClosestFoe(); }]
}
},

when B [{ sees foes. }] and not sense [{ self.seesFoes() }] then
{

update beliefs [{ does not see foes. }]
}
}
’)

Figure 5.5.: Jazzyk code implementing the agent’s reaction to foe characters

SENSE CURRENT NODE,
PROCESS MESSAGES,
PROCESS COMMITMENTS,
RECOVER FROM COLLISION /
{

REACT TO FOES /
PURSUE COMMITMENTS

}

Figure 5.6.: The top-level Jazzyk code of allied team leader

108

Figure 5.7.: 3D visualization and schematic visualization of the simulated environment

We have implemented the agents in the scenario using the aforementioned techniques
and evaluated their performance in a multi-agent simulation. The Figure 5.7 shows the
3d visualization and the schematic visualization of the simulated environment. The green
icons (spots) represent the allied troops, the red icons (spots) represent the foe characters.
The agents operate in a village consisting of over 300 buildings. The street network of the
urban area is represented by a graph which has 142 nodes and 176 edges.

The allied troops plan their route to the safe house using the A* algorithm and con-
sequently execute it by means of a commitment machine which ensure that the squad
moves in a proper formation. The formation typically maintained by the team is shown in
Figure 5.8.

On their way to the safe house, and back to the collection point, the allied team may come
across foe characters that are randomly moving in the environment. Such an encounter will
interrupt the moving, since the team has to deal with a potential threat. In our scenario,
the team members that spot a foe (the ones for which the foe is not occluded by any of the
buildings) halt their movement and monitor the threat, i.e. turn at the foe. An example
of such an encounter is shown in Figure 5.9. Once the threat disappears, the coordinated
movement should continue from where it was interrupted. We included these situations
in the scenario in order to test the modularity and robustness of our approach. We first
developed a commitment machine that encoded the coordinated movement. Later, we
added the behavior that handles the encounters with foe characters. The new behavior
could be included in the agent program with almost no modification in the existing code.

Further we were testing the effort needed to change the formation pattern in which the
allied squad traverses the area. The two possible patterns of movement are depicted in
Figure 5.10. By default we use the pattern illustrated in the first row. The change of the
formation pattern to that shown in the second row is only matter of one minor change
in the behavior that pursues the commitment, i.e. the behavior whose code is listed in

109

Figure 5.8.: Typical formation of the allied team

Figure 5.9.: One of the allied troops encounters a foe character.

Figure 5.10.: Two patterns of allied team formation movement

110

Figure 5.4. In particular, the condition on line 8 needs to be replaced by the following.
when query beliefs (Target,Next,T) [{ plan head(Target,Next,T), all soldiers at(Next,T). }]

and query body (Next,T) [{ self.isOneStepAway(Next,T) }]
and query body [{ self.getMovementTarget() == null }] then ...

Based on these experiments, we consider the chosen approach suitable for concise speci-
fication of agents and especially their interactions. It exhibits high degree of flexibility and
good elaboration tolerance.

111

6. Discussion and outlook

We conclude the project final report with an outlook and discuss possibilities for future
work along the lines of research we performed in the context of this project.

6.1. Adversarial planning: patrolling of mobile targets

In this workpackage we developed a novel game-theoretic model – patrolling games with
mobile targets – together with algorithms that are able to solve these games. Moreover,
we successfully integrated this game-theoretic model within the Tactical AgentScout 2
project and we improved the performance in the problem of protecting convoys crossing
an adversarial area compared to the existing algorithms.

Successful results of this workpackage give several directions that can be further explored.
From the theoretic view, the notion of the distance graph has to be analyzed in more detail
to establish a clear definition of a usable abstraction for the multi-target scenarios. Proper
definition of the distance graph and proofs of the equivalence (or approximation) of the
solutions will further improve the applicability of the game-theoretic model of patrolling
games to real-world scenarios. Moreover, the relation to the security games, and the
extensive form of security games need to be established in order to improve the algorithms
computing the solutions of patrolling games, and to utilize existing fast algorithms for
computing solutions in security games.

On the other hand, several practical questions have appeared during the implementation
phase of the workpackage. Currently, the patroller had only a single task – to follow the
randomized policy in the patrolling scenario. However, while creating a more complex
behavior of an agent a combination of such tasks can be desirable. Hence new methods of
implementation of the randomized policy to the agents’ behavior will have to be explored.
Completing this task will improve possibilities of deployment of this approach on real
unmanned aerial systems.

6.2. Adversarial planning: modelling smart targets

In the workpackage WP2, we developed algorithms for controlling a smart target that
actively avoids detection, tracking and capture by a team of pursuers. Furthermore, we
developed algorithms for the team of pursuers that perform these tasks. The techniques
are relatively computationally demanding and in result do not scale very well with the
number of players in the game. As one of the potential vectors of further development, in

113

our future work we will attempt to speed up the approach by incorporation of procedural
background knowledge about the particular instances of the pursuit-evasion game into the
state-space search. Another interesting, and highly actual vector of further research along
these lines is decentralization of the proposed algorithms and consequently their scalability
to larger numbers of players. Finally, a lesson learned from the work on the finished project
is that in the future incarnations of the technique, much more attention has to be paid to
performance tuning of various domain-dependent parameters. As one of interesting lines of
further work is development of heavy simulations for the Monte Carlo search algorithms.

6.3. Multi-agent re-planning and plan repair
In the workpackage WP3, we successfully designed, implemented and evaluated a series of
multi-agent plan repairing algorithms. We finally also integrated the algorithms with the
simulation platform and developed an integrated scenario employing one of the plan repair
techniques as a means of coordination of two, otherwise independent, multi-agent teams.

In our future work, we plan to further extend this line of research and work towards a
number of open challenges. In particular, we will perform a more thorough evaluation of
the more advanced multi-agent plan repair algorithms (BRA and LRA) in both synthetic,
as well as real-world scenarios. We plan to use the research community benchmarks from
the ICAPS planning competition, as well as implement further multi-agent planning/plan
repair scenarios in the future projects of our research group. In order to facilitate easy
integration with software components using general planning algorithms and test our ap-
proaches in head-to-head settings, we plan to implement modules facilitating standardized
planning input languages, such as e.g., PDDL.

One of the observations from the finished project is that there is still a lot of space
for further improvements in multi-agent plan repair algorithms. One of the interesting
vectors is a thorough analysis of the problem’s communication complexity and the related
trade-offs w.r.t. resulting plan quality.

6.4. Coordination and teamwork
In the context of the project, we advanced our approach to mission specification frame-
works, we started to work towards in the context of the project Tactical AgentFly 2. Even
though the results are promising, they leave quite a lot to be desired. In particular, in our
future work, we will work toward development of a complete formal model of teamwork.
The approach used in this project was based upon the formalism of Distributed Commit-
ment Machines and, even though it seemed to be promising at the beginning of the project,
during the application of the approach to the multi-robot scenario, we identified a number
of issues with it. One of most pressing problems is its tight integration with particular
actions/capabilities of the team members. In the future, we will work towards develop-
ment of a purely declarative framework, which will allow us to specify missions in terms

114

of plain achievement and maintenance goals, completely disregarding the particularities of
the agents’ capabilities and treating these as pluggable behaviors.

115

Bibliography

[1] IBM ILOG CPLEX optimizer,
http://www.ibm.com/software/integration/optimization/cplex-optimizer.

[2] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter patrol in adversarial
settings. In ICRA, pages 2339–2345, 2008.

[3] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus. The impact of adversarial
knowledge on adversarial planning in perimeter patrol. In AAMAS, pages 55–62,
2008.

[4] T.-C. Au, H. Muñoz-Avila, and D. S. Nau. On the complexity of plan adaptation by
derivational analogy in a universal classical planning framework. Advances in Case-
Based Reasoning, pages 199–206, 2002.

[5] A. Aziz, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. It usually
works: The temporal logic of stochastic systems. In Proceedings of CAV, volume 939
of LNCS, pages 155–165, 1995.

[6] A. Baltag. A logic for suspicious players. Bulletin of Economic Research, 54(1):1–46,
2002.

[7] T. Bandyopadhyay, Y. Li, M. H. A. Jr., and D. Hsu. Stealth tracking of an unpre-
dictable target among obstacles. In Proceedings of the International Workshop on the
Algorithmic Foundations of Robotics, 2004.

[8] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower strategies for robotic patrolling
in environments with arbitrary topologies. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1, volume pages,
pages 57–64. International Foundation for Autonomous Agents and Multiagent Sys-
tems, 2009.

[9] N. Basilico, N. Gatti, T. Rossi, S. Ceppi, and F. Amigoni. Extending algorithms for
mobile robot patrolling in the presence of adversaries to more realistic settings. In
WI-IAT, pages 557–564, 2009.

[10] N. Basilico, N. Gatti, and F. Villa. Asynchronous Multi-Robot Patrolling against
Intrusion in Arbitrary Topologies. In AAAI 2010, 2010.

117

[11] R. Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,
6:679–684, 1957.

[12] K. Bennett and O. Mangasarian. Bilinear separation of two sets inn-space. Computa-
tional Optimization and Applications, 2(3):207–227, 1993.

[13] S. Bhattacharya, S. Candido, and S. Hutchinson. Motion strategies for surveillance.
In Robotics: Science and Systems, 2007.

[14] S. Bhattacharya and S. Hutchinson. Approximation schemes for two-player pursuit
evasion games with visibility constraints. In Robotics : Science and Systems IV, 2008.

[15] S. Bhattacharya and S. Hutchinson. On the existence of nash equilibrium for a two-
player pursuit-evasion game with visibility constraints. Int. J. Rob. Res., 29(7):831–
839, 2010.

[16] R. H. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J. J. Gomez-Sanz,
J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey of programming languages
and platforms for multi-agent systems. Informatica, 30:33–44, 2006.

[17] E. Börger and R. F. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, 2003.

[18] B. Bosansky, V. Lisy, M. Jakob, and M. Pechoucek. Computing time-dependent
policies for patrolling games with mobile targets. In Tenth International Conference
on Autonomous Agents and Multiagent Systems (to appear), 2011.

[19] R. I. Brafman and C. Domshlak. From one to many: Planning for loosely coupled
multi-agent systems. In J. Rintanen, B. Nebel, J. C. Beck, and E. A. Hansen, editors,
ICAPS, pages 28–35. AAAI, 2008.

[20] G. W. Brown. Iterative solution of games by fictitious play. Activity Analysis of
Production and Allocation, 1951.

[21] V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. In
Proc. of the 7th ACM conference on Electronic commerce, pages 82–90. ACM, 2006.

[22] J. Derenick, J. Spletzer, and A. Hsieh. An optimal approach to collaborative target
tracking with performance guarantees. J. Intell. Robotics Syst., 56(1-2):47–67, 2009.

[23] P. Drake and S. Uurtamo. Move ordering vs heavy playouts: Where should heuristics
be applied in Monte Carlo Go. In Proceedings of the 3rd North American Game-On
Conference. Citeseer, 2007.

[24] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. Elsevier Science Publishers,
1990.

118

[25] P. Fabiani, H. H. Gonzalez-Banos, J. C. Latombe, and D. Lin. Tracking an unpredict-
able target among occluding obstacles under localization uncertainties. Robotics and
Autonomous Systems, 38(1):31 – 48, 2002.

[26] A. Farinelli, A. Rogers, and N. R. Jennings. Bounded Approximate Decentralised
Coordination using the Max-Sum Algorithm. In Distributed Constraint Reasoning
2009.

[27] H. Finnsson and Y. Bj
”ornsson. Learning Simulation Control in General Game-Playing Agents. In Proceeding
of AAAI, 2010.

[28] B. P. Gerkey, S. Thrun, and G. J. Gordon. Visibility-based pursuit-evasion with
limited field of view. I. J. Robotic Res., 25(4):299–315, 2006.

[29] G. J. Gordon. No-regret algorithms for online convex programs. In Advances in Neural
Information Processing Systems (NIPS), pages 489–496, 2006.

[30] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. A visibility-based
pursuit-evasion problem. Int. J. Comput. Geometry Appl., 9(4/5):471–, 1999.

[31] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

[32] D. Harel and D. Kozen. Process logic: Expressiveness, decidability, completeness.
Journal of Computer and System Sciences, 25(2):144–170, 1982.

[33] I. Harmati and K. Skrzypczyk. Robot team coordination for target tracking using
fuzzy logic controller in game theoretic framework. Robotics and Autonomous Systems,
57(1):75 – 86, 2009.

[34] T. Ishida and R. E. Korf. Moving target search. In IJCAI’91: Proceedings of the 12th
international joint conference on Artificial intelligence, pages 204–210, San Francisco,
CA, USA, 1991. Morgan Kaufmann Publishers Inc.

[35] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion with local visibility.
SIAM J. Discret. Math., 20(1):26–41, 2006.

[36] V. Isler and N. Karnad. The role of information in the cop-robber game. Theoretical
Computer Science, 399(3):179–190, June 2008.

[37] M. Jain, E. Karde, C. Kiekintveld, F. Ordóñez, and M. Tambe. Optimal defender
allocation for massive security games: A branch and price approach. In Autonomous
Agents and Multi-Agent Systems, 2010.

[38] J. G. Kemeny, L. J. Snell, and A. W. Knapp. Denumerable Markov Chains. Van
Nostrand, 1966.

119

[39] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe. Computing
optimal randomized resource allocations for massive security games. In AAMAS,
pages 689–696, 2009.

[40] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. Lecture Notes in
Computer Science, 4212:282, 2006.

[41] A. Kolling and S. Carpin. Multi-robot surveillance: an improved algorithm for the
graph-clear problem. In Robotics and Automation, 2008. ICRA 2008. IEEE Interna-
tional Conference on, pages 2360–2365. IEEE, 2008.

[42] D. Korzhyk, V. Conitzer, and R. Parr. Complexity of Computing Optimal Stackel-
berg Strategies in Security Resource Allocation Games. In AAAI Conf. on Artificial
Intelligence, 2010.

[43] D. Korzhyk, V. Conitzer, and R. Parr. Security games with multiple attacker resources.
In IJCAI (to appear), 2011.

[44] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling. Monte carlo sampling for
regret minimization in extensive games. In Advances in Neural Information Processing
Systems (NIPS), pages 1078–1086, 2009.

[45] J. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

[46] S. M. LaValle, H. H. GonzÃąlez-BaÃśos, C. Becker, and J. claude Latombe. Motion
strategies for maintaining visibility of a moving target. In In Proc. of the IEEE
International Conference on Robotics & Automation (ICRA, pages 731–736, 1997.

[47] S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion: The case of curved
environments. In ICRA, pages 1677–1682, 1999.

[48] V. Lisý, B. Bošanský, M. Jakob, and M. Pěchouček. Adversarial search with pro-
cedural knowledge heuristic. In Proc. of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), 2009.

[49] V. Lisý, B. Bošanský, R. Vacuĺın, and M. Pěchouček. Agent subset adversarial search
for complex non-cooperative domains. In IEEE Conference on Computational Intelli-
gence and Games, pages 211–218, 2010.

[50] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[51] C. Moldenhauer and N. R. Sturtevant. Evaluating strategies for running from the cops.
In IJCAI’09: Proceedings of the 21st international jont conference on Artifical intelli-
gence, pages 584–589, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers
Inc.

120

[52] K. C. Nguyen, T. Alpcan, and T. Basar. Security Games with Decision and Observa-
tion Errors. Computing Research Repository, pages 510–515, 2010.

[53] R. Nissim, R. I. Brafman, and C. Domshlak. A general, fully distributed multi-agent
planning algorithm. In W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck,
and S. Sen, editors, AAMAS, pages 1323–1330. IFAAMAS, 2010.

[54] R. Nissim, R. I. Brafman, and C. Domshlak. A general, fully distributed multi-agent
planning algorithm. In Autonomous Agents and Multiagent Systems, pages 1323–1330,
2010.

[55] P. Novák. Jazzyk: A programming language for hybrid agents with heterogeneous
knowledge representations. In Proceedings of the Sixth International Workshop on
Programming Multi-Agent Systems, ProMAS’08, volume 5442 of LNAI, pages 72–87,
May 2008.

[56] P. Novák and J. Dix. Modular BDI architecture. In H. Nakashima, M. P. Wellman,
G. Weiss, and P. Stone, editors, AAMAS, pages 1009–1015. ACM, 2006.

[57] P. Novák and W. Jamroga. Code patterns for agent oriented programming. In Pro-
ceedings of AAMAS’09, pages 105–112, 2009.

[58] P. Novák and W. Jamroga. Agents, Actions and Goals in Dynamic Environments. In
Proceedings of the Twenty-Second International Joint Conference on Artificial Intel-
ligence, Barcelona, Spain; IJCAI 2011, July 2011.

[59] P. Novák and M. Köster. Designing goal-oriented reactive behaviours. In Proceedings
of the 6th International Cognitive Robotics Workshop, CogRob 2008, ECCAI co-located
workshop, July 21-22 in Patras, Greece, pages 24–31, July 2008.

[60] A. Parker, D. Nau, and V. Subrahmanian. Overconfidence or paranoia? search in
imperfect-information games. In AAAI Conf. on Artificial Intelligence, volume 21,
page 1045, 2006.

[61] A. Parker, D. S. Nau, and V. S. Subrahmanian. Paranoia versus overconfidence in
imperfect-information games. In Heuristics, Probabilities, and Causality: A Tribute
to Judea Pearl, pages 63–87, 2010.

[62] P. Paruchuri, J. Pearce, J. Marecki, M. Tambe, F. Ordonez, and S. Kraus. Playing
games for security: an efficient exact algorithm for solving Bayesian Stackelberg games.
In Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems-Volume 2, number Aamas, pages 895–902. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2008.

[63] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus. An Efficient Heuristic
for Security Against Multiple Adversaries in Stackelberg Games. In AAMAS, 2007.

121

[64] J. Pita, M. Jain, J. Marecki, F. Ordó nez, C. Portway, M. Tambe, C. Western,
P. Paruchuri, and S. Kraus. Deployed ARMOR protection: the application of a game
theoretic model for security at the Los Angeles Int. Airport. In AAMAS, pages 125–
132, 2008.

[65] A. Pnueli. The temporal logic of programs. In Proceedings of FOCS, pages 46–57,
1977.

[66] E. Raboin, D. Nau, U. Kuter, S. Gupta, and P. Svec. Strategy generation in multi-
agent imperfect-information pursuit games. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1,
pages 947–954. International Foundation for Autonomous Agents and Multiagent Sys-
tems, 2010.

[67] R. Rosner and A. Pnueli. A choppy logic. In Proceedings of LICS, pages 306–313,
1986.

[68] M. Shafiei, N. Sturtevant, and J. Schaeffer. Learning Simulation Control in General
Game-Playing Agents. In IJCAI Workshop on General Game Playing, 2009.

[69] S. J. J. Smith, D. S. Nau, and T. A. Throop. Computer bridge - a big win for AI
planning. AI Magazine, 19(2):93–106, 1998.

[70] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region.
SIAM J. Comput., 21(5):863–888, 1992.

[71] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and M. Tambe. IRIS - A Tool for
Strategic Security Allocation in Transportation Networks Categories and Subject
Descriptors. In AAMAS, pages 37–44, 2009.

[72] R. van der Krogt and M. de Weerdt. Self-interested planning agents using plan repair.
In Proceedings of the ICAPS 2005 Workshop on Multiagent Planning and Scheduling,
pages 36–44, 2005.

[73] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry. Probabilistic pursuit-
evasion games: Theory, implementation and experimental evaluation. IEEE Transac-
tions on Robotics and Automation, 18:662–669, 2002.

[74] M. Winikoff. Implementing flexible and robust agent interactions using distributed
commitment machines. Multiagent and Grid Systems, 2(4):365–381, 2006.

[75] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and M. Tambe. Stackelberg vs. Nash
in security games: Interchangeability, equivalence, and uniqueness. In AAMAS, pages
1139–1146, 2010.

122

[76] P. Yolum and M. P. Singh. Commitment machines. In J.-J. C. Meyer and M. Tambe,
editors, ATAL, volume 2333 of Lecture Notes in Computer Science, pages 235–247.
Springer, 2001.

[77] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in
games with incomplete information. Advances in Neural Information Processing Sys-
tems (NIPS), 20:1729–1736, 2008.

123

A. Demonstrators

One of the main deliverables of the Tactical AgentScout 2 project is a series of executable
demonstrators showcasing the achievements of the individual workpackages, together with
a commented videos annotating their execution. In the following, we briefly describe the
demonstrators and videos linking them to the individual workpackages.

Prerequisities

WP1: Patrolling of mobile targets

Demonstrators and videos

wp1-patrolling the demonstrator shows patrolling scenario in 3D urban environment with
two convoys protected by a single VTOL. The task of the convoys is to drive through
the urban area according to some pre-defined path. The task of the VTOL is to guard
the convoys by keeping them in the range of its sensors, depicted by a red cone. The
VTOL flies according to a pre-planned randomized trajectory so as to minimize the
probability that the convoys will be attacked during the period when the VTOL is
not watching the particular convoy.

WP2: Modelling of smart targets

Demonstrators and videos

wp2-full-info the demonstrator shows two pursuers (green) attempting to detect, track and
finally capture an evader (red) in a 3D urban environment. The players are moving
in a synchronous manner and try to react to each others moves in the mest possible
fashion (best-response strategy).

wp2-heterogeneous shows the pursuit-evasion game with a heterogeneous team of pursuers.
One of the pursuers is a fixed-wing UAV with a cone camera sensor. The demonstrator
showcases the flexibility of the used approach allowing straightforward integration of
heterogeneous assets with differing properties w.r.t. the movement model, speed and
type of sensors used.

wp2-occlusions demonstrates the pursuit-evasion game with incomplete information and
highlights the visibility model used by the players and its consequences on their
behaviour computed by the developed adversarial planning algorithms.

125

WP3: Multi-agent re-planning and plan repair
Demonstrators and videos

wp3-plan-repair the demonstrator showcases the functionality of the plan repair algorithm.
A squad of troops is moving on the ground (green) and jointly works towards accom-
plishing a mission modelled as VIP evacuation from a safe house in the town. The
team is supported by two Skeldar VTOLS providing an overwatch for the team (red
cone camera sensor) and two small-sized AESIR Vidar single-rotor VTOLS provid-
ing autonomous reconnaissance and cover services to the team. As the squad moves
through the town, the multi-robot team is continuously adapting its plans so as to
both: satisfy their own mission (obtain imagery from the area around the safe-house)
and at the same time, provide protection to the human squad.

WP4: Coordination and teamwork
Demonstrators and videos

wp4-teamwork the final demonstrator shows the detailed behaviour of the human squad
from the demonstrator of the workpackage WP3. The team is moving through the
3D urban area so as to continuously protect itself and flexibly react to unexpected
interruptions from the environment – modelled as encounters with red troops. When
a green team member spots a red unit in its visibility range, it points its sensors
to it and waits until the entity moves away. The behaviour of the red troops is to
model avoidance of the red troops which watch it (modelling an adversarial encounter
between the two).

126

