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Abstract. Cooperative pathfinding is a problem of finding a set of non-conflicting
trajectories for a number of mobile agents. Its applications include planning for
teams of mobile robots, such as autonomous aircrafts, cars, or underwater ve-
hicles. The state-of-the-art algorithms for cooperative pathfinding for embod-
ied robots typically rely on some heuristic forward-search pathfinding technique,
where A* is often the algorithm of choice. Here, we propose MA-RRT*, a novel
algorithm for multi-agent motion planning that builds upon a recently proposed
asymptotically-optimal sampling-based algorithm called RRT*. In this paper, we
focus on the case where the agents’ mobility model is a discrete graph. We eval-
uate the performance of the proposed algorithm and its scalability with respect
to the number of agents and the size of the environment. Our results show that
the sampling-based approach offers better scalability than the classical forward-
search approach in relatively sparse environments, which are typical in real-world
applications such as multi-aircraft collision avoidance.

1 Introduction

Consider a group of mobile robots, such as autonomous aerial, ground, or underwater
vehicles operating in a shared space. One of the fundamental issues in scenarios involv-
ing such agents is the problem of planning trajectories for the individual agents so as to
avoid collisions between them.

The problem of collision avoidance for mobile robots, such as aircrafts can be mod-
eled as an instance of cooperative pathfinding, a relatively well studied problem of
finding a set of non-conflicting trajectories for a number of mobile agents. The gen-
eral setting for cooperative pathfinding problem involves an environment shared by a
number of agents defined by its starting and its destination positions. Optionally, the en-
vironment can be structured and contain obstacles, possibly the problem description can
involve also a model of the agents’ physical dynamics, in the case of physical embodied
agents. Traditionally, cooperative pathfinding has been modeled in highly structured en-
vironments, such as grids either including a relatively large number of obstacles, and/or
with a relatively high number of agents. The problem of cooperative pathfinding is
known to be PSPACE-hard [4].

Modeling collision avoidance for vehicles, such as autonomous aircrafts, or un-
derwater vehicles, as an instance of cooperative pathfinding leads to instances with a
relatively small number of agents operating in relatively large environments involving



relatively few, however possibly large, obstacles. In general, while focusing on the com-
binatorially intensive instances of cooperative pathfinding it is important to ensure the-
oretical properties, such as completeness, or optimality. The straightforward complete
approach to the problem is to search the solution in what we call a joint-state space.
Such a state space is constructed as the Cartesian product of the state spaces of the indi-
vidual agents. A state in joint-state space is a tuple of the positions of individual agents.
A transition between two states in such a space are done in terms of joint-actions, which
are again tuples of actions of individual agents. The solution is a joint plan for the agent
team, so that all the agents reach their final destinations by a series of valid move-
ments without colliding with each other. Such a space is typically searched using some
heuristic forward search algorithm, such as A* [3]. The performance of forward search
algorithms hinges on low branching factor of the search space, which is in joint-action
spaces often exponential in the number of agents. Suppose for example that an agent
can move in four directions and that the problem involves six agents. Then, there is
46 = 4096 possible joint actions at each timestep! One can see that the completeness
of such an approach is traded off for a prohibitive computational cost.

Recently, Karaman and Frazzoli [7] introduced a novel sampling-based motion
planning algorithm that offers a good scalability to large high-dimensional environ-
ments, while at the same time it guarantees asymptotic convergence to an optimal solu-
tion. The approach typically discovers an any-quality solution relatively fast and spends
the remaining time on improving the solution. In solving collision avoidance for multi-
robot teams, while still important, optimality is not of the primary concern. Rather, it
is the speed of planning which is more important, even if the cost should be a slight
decrease in solution quality.

The main contribution of this paper is MA-RRT* – a sampling-based algorithm for
cooperative pathfinding. At the core, the algorithm marries two approaches: while rely-
ing on planning of agents’ movements in their joint-state space, it replaces the A*-based
heuristic search in the joint-state space by RRT*, a fast sampling-based algorithm (Sec-
tion 4). In Section 5 we extensively evaluate the performance, scalability, as well as the
quality of solution produced by the algorithm and show that for sparsely populated large
environments the sampling algorithm outperforms Standley and Korf’s optimal anytime
algorithm (OA) in terms of runtime and success rate, while still maintaining reasonable
quality of the solution. We conclude the discourse in this paper by a discussion of the
algorithm’s limitations, as well with final remarks on ongoing and future work towards
its promising extensions.

2 Related Work

In 2010, Standley [12] introduced an optimal and complete cooperative pathfinding
solver based on A* heuristic search coupled with two efficient search strategies: (i)
independence detection (ID) and (ii) operator decomposition (OD). The ID strategy
starts by identifying subproblems that can be solved independently without harming
the optimality of the solution. First, a path is planned for each agent independently.
Then, the resulting paths are checked for mutual conflicts. Non-conflicting paths are
kept as a part of the global solution, the conflicting paths are joined to groups and solved



in the agents’ joint-state space. The joint-state space is searched using the operator
decomposition technique that decomposes joint-actions to trees of single-agent actions,
which allows more efficient pruning during the search process. The OD+ID technique
was further extended to an optimal anytime algorithm (OA) by Standley and Korf in
2011 [13]. In OA algorithm, a path is found for each agent independently. If the conflict
between two paths is detected, the algorithm tries to avoid joining the paths into a group
by generating an alternative path for one of the agents that avoids conflict with the
other agent, who is represented as a moving obstacle for the path planner. Usually, such
alternative paths can be found, but they are often suboptimal. When the first feasible
solution is found and returned, the algorithm uses the remaining time to improve the
solution. The algorithm takes the paths that previously conflicted (and thus may be
suboptimal), joins them into a group and searches for optimal multi-agent solution in
joint-state space consisting of all agents in the new group. The OA algorithm has been
originally defined for agents moving on a grid., It can be trivially extended to agents
moving on graphs as long as the motions of individual agents have identical durations.

Besides the above presented approaches based on optimal forward search, there
is also a class of methods for cooperative pathfinding, such as Push and Swap [9] or
BIBOX [14], that do not target the quality of the solution, but attempt to constructs any
feasible multi-agent plan.

In the recent two decades, incremental sampling based techniques for motion plan-
ning gained popularity for its ability to quickly find solutions to hard high-dimensional
motion-planning problems. Probably the most well-known class of sampling-based al-
gorithms are the rapidly exploring random trees (RRT) [8]. The main principle behind
the algorithm is incremental construction of a tree of states that starts at the start state
and grows towards random samples taken from the state space. When a new random
state is sampled, the algorithm finds the nearest state (with respect to some distance
metric) that is already in the tree and extends the tree from that state to the random sam-
ple. The algorithm has been proved to be probabilistically complete, i.e. the probability
that the algorithm fails to find a solution exponentially decays to zero with increasing
number of samples. The main drawback of the algorithm is that it does not pay any
attention to quality of the solution.

An important progress in the field of sampling-based planning was made in 2011,
when Karaman and Frazzoli [7] published the RRT* algorithm, an anytime extension
of RRT that converges to optimal solutions. Unlike RRT, RRT* does not connect the
random sample to the nearest state already in the tree, but instead it considers all states
from the tree that lie in a ball of certain radius centered at the random sample. From
these “near” states, it connects the random sample to a near state that leads to to the
lowest-cost path from the start state. Building on the random graph theory, the authors
of the algorithm were able to prove that if the ball is above certain volume, the algo-
rithm (almost surely, under some mild technical assumptions [7]) converges to a tree
that contains optimal paths to all points in the space. Unlike search-based path planning
methods that search for a solution that is optimal with respect to the chosen discretiza-
tion of the state space, RRT* converges to a continuously optimal solution, which makes
both approaches directly incomparable.



There have been attempts to use RRTs for search in joint-state space of a number of
robots for multi-robot path planning. Most of the work is based on non-optimal RRTs
and therefore these approaches cannot offer convergence to an optimal solution, e.g.
[6]. The closest work to our approach is the search in multi-robot joint-state space using
Anytime RRT technique, which is based on a series of repeated RRT runs, where the
maximum cost of each search is bounded by the cost of solution from the previous run
[10, 2]. None of these works, however, attempts to make a comparison to the state-of-the
art techniques developed in the field of cooperative pathfinding as we do here.

The forward-search techniques applied to motion planning problems search for an
optimal path on [2, 10] a discretization of the state space given in form of a graph. One
of the popular discretization techniques for continuous configuration spaces are state
lattices proposed by Pivtoraiko et al. [11]. Such a discretization is commonly used to
model dynamics and find feasible paths in wide variety of real-world motion planning
problems including planning for autonomous cars (e.g. DARPA Urban Challenge win-
ner in 2007 [1]) or UAVs [5]. The main advantage of the state lattice representation
is that it is regular and thus it can be made implicit, i.e. the nodes and edges of the
graph can be computed on the fly only when they are requested. A specific instance of
a state lattice is a motion graph GM = (W,M) that discretizes given Euclidean space
into a finite set of spatial waypoints W and a finite set of motion primitives M that
represent feasible motions agents may execute to move between two waypoints in W .
In the following we show the performance of our technique for multi-agent pathfinding
on motion graphs.

3 Problem Formulation

To allow fair comparison with the OA algorithm we define the cooperative pathfinding
problem as follows. Consider n agents labeled 1, . . . , n operating in an Euclidean space.
The motion model of the agent i is described by a corresponding motion graph denoted
asGM

i = (Wi,Mi). For simplicity, we assume that all motion primitives have the same
duration, i.e. ∀i ∈ {1, . . . , n} : ∀m ∈ Mi : dur(m) = c, where dur(m) is the time-
duration of a motion primitive m and c is a constant. The starting positions of all agents
are given as an n-tuple (s1, . . . , sn), where si ∈Wi is the starting waypoint of agent i.
Similarly, (d1, . . . , dn) is an n-tuple of destination waypoints di ∈ Wi of each agent.
The task is to find a sequence of motion primitives, i.e. a path pi in the motion graphGM

i

for each agent i, such that startvertex(pi) = si and endvertex(pi) = di and the paths
are separated, i.e. ∀j, k : j 6= k ⇒ sep(pj , pk), where sep(pi, pj) denotes a space-time
separation relation between paths pi and pj . We say that trajectories are separated with
respect to the given separation distance dsep if and only if dE(pi[t′], pj [t′]) > dsep for
all time points t′, where dE(·, ·) is the Euclidean distance. The solution to the problem
is therefore an n-tuple of paths (p1, . . . , pn). As the solution quality metric we use the
sum of times each of the agents spends outside his destination waypoint. Formally,

cost(p) =

n∑
i=1

∑
m∈pi

{
0 if s(m) = d(m) = di

dur(m) otherwise
,



where s(m), d(m) and dur(m) denote the start vertex, the destination vertex and
the time-duration of the motion primitive m. Such a metric can account for situations
in which an agent must leave his destination to pass through another agent. Further, it
was used by Standley [12, 13] for evaluation of ID, OD and OA algorithms. We adopt
the metric as well to simplify the comparison with other state-of-the-art methods.

4 Sampling-based approach

Our approach to cooperative pathfinding builds upon a novel sampling-based motion
planning algorithm called RRT* [7]. The algorithm is designed for continuous state
spaces in which it can efficiently find a path from a given start state to a given goal
region3 by incrementally building a tree that is rooted at the start state and spans towards
randomly sampled states from some given state space. Once such a tree first reaches the
goal region, we can follow its edges backwards to obtain the first feasible path from
start state to the target region. However, even after the first solution is returned, the
algorithm does not stop, but instead it continues extending the tree by drawing new
random samples, which leads to incremental discovery of new lower-cost paths. Before
exposing the details of the algorithm, we have to provide definitions of the following
primitive procedures. In the definitions we assume that the vertices in the graphs are
states from some given state space C and the distance function dist(x, y) is a function
that returns some lower bound on the cost of a path between x, y, where x, y ∈ C.

Nearest Neighbor: Given a graph T = (V,E) and a state x ∈ C, the function
Nearest(T, x) returns a vertex v ∈ V that is the closest to state x in terms of the given
distance metric.

Near Vertices: Given a graph T = (V,E), a state x ∈ C and the numbers n,m ∈ N,
the function Near(T, x, n,m) returns a set of all vertices within a closed ball of radius
rn centered at x, where rn = max

{
γ(log n /n)1/d, m

}
, γ is a constant and d is the

dimensionality of the space C.
Local Steering Procedure: Given a graph T = (V,E) and two states x and y the

domain-specific local steering procedure determines whether and how x can be ex-
tended towards y. The result is a point xnew that is closer to y than x is and trajec-
tory/path in the state space from x to xnew. Note that it is possible that xnew 6= y.

The main loop of the RRT* algorithm is exposed in Algorithm 1. Until interrupted,
the algorithm samples states from the state space and uses the drawn random sample to
extend the tree. .

TheExtend(T, xrand) routine consists of three main steps. First, it finds the nearest
neighbor xnearest = Nearest(T, xrand). Then, it tries to extend the tree from xnearest
towards xrand using the local steering procedure. The result of steering is a new point in
the state space denoted as xnew. Then, a set of of vertices Xnear that are near the xnew
state is constructed by calling the Near(T, xnew, |V | ,m) procedure. The Xnear set is
constructed for two purpose. Firstly , the algorithm examines all vertices in Xnear and
picks the vertex from Xnear that yields the lowest cost if it is chosen as a parent. After
that, the new vertex is added to the tree as a child of the chosen parent. The final step is

3 Sampling-based algorithms work with the concept of goal region instead of the goal as a single
point.



Algorithm 1 RRT*
1: V ← {xinit}; E ← ∅;
2: while not interrupted do
3: T ← (V,E);
4: xrand ← SAMPLE

5: (V,E)← EXTEND(T, xrand)
6: end while

rewiring. The algorithm examines all vertices from Xnear to see whether their cost can
be improved by going through the new vertex. If there are any such vertices, the tree is
rewired so that these vertices become children of the new vertex, which allows them to
improve the cost of their path from the start state.

4.1 Graph version of RRT*

Original formulation of RRT* is designed for continuous configuration space. In this
section we introduce a modified graph version of RRT* (G-RRT*) that works on a state
space that is discretized in form of a motion graph. The motivation for this is twofold.
First, the G-RRT* will allow us to compare performance of our multi-agent algorithm
with the other state-of-the-art methods on the same problem instances. Second, (as a
by-product) it allows us to show the applicability of sampling-based planning to graph
search problems.

The main loop of the G-RRT* algorithm is identical to the original RRT* with
the following modifications. The starting state xinit is the start waypoint s. The target
region is only the vertex d. The EXTEND procedure is shown in Algorithm 2. The core
difference is in the implementation of the steering procedure, which is in G-RRT* done
using heuristic-guided greedy search in the motion graph as shown in Algorithm 3,
where h(·) is a heuristic function guiding the greedy search and the parameter cmax

is a user-specified threshold after which is the search terminated. This way, G-RRT*
incrementally constructs a tree that is rooted at the start vertex and spans to the randomly
sampled vertices from the motion graph. Then, the edges in such a tree represent paths
in the motion graph GM .

Let GM = (W,M) be a connected motion graph and s, d ∈ W be starting and
destination waypoints in GM respectively. We also assume SAMPLE samples every
vertex of GM with a non-zero probability and h(·) is a metric, hence it satisfies the
triangle inequality. Further, we assume that the m parameter of NEAR procedure that
bounds the minimum radius of the near-ball is greater or equal than the length of the
longest edge in GM .

Lemma 1. The algorithm G-RRT* with arguments GM , s and d will eventually gen-
erate a tree T containing all the vertices from GM and a path from s to d in T that
corresponds to an optimal route from s to d in GM .

Proof. (sketch) Note, the edges in the constructed graph T represent paths between
nodes in the motion graph GM . That is, the existence of the edge (x1, x2) in T means,



Algorithm 2 EXTEND(T, x)
1: V ′ ← V ; E′ ← E
2: xnearest ← NEAREST(T, x)
3: (xnew , pnew)← GREEDY(GM , xnearest , x)
4: if pnew 6= ∅ then
5: V ′ ← V ′ ∪ {xnew}
6: xmin ← xnearest

7: Xnear ← NEAR(T, xnew, |V |)
8: for all xnear ∈ Xnear do
9: (x′, p′)← GREEDY(GM , xnear , xnew )

10: if x′ = xnew then
11: c′ ← cost(xnear) + cost(xnear, xnew)
12: if c′ < cost(xnew) then
13: xmin ← xnear

14: end if
15: end if
16: end for
17: E′ ← E′ ∪ {(xmin, xnew)}
18: for all xnear ∈ Xnear \ {xmin} do
19: (x′′, p′′)← GREEDY(GM , x, xnear)
20: if x′′ = xnear and cost(xnear) > cost(xnew) + cost(xnew, xnear) then
21: xparent ← parent(xnear)
22: E′ ← E′ \ {(xparent, xnear)}
23: E′ ← E′ ∪ {(xnew, xnear)}
24: end if
25: end for
26: return G′ = (V ′, E′)
27: end if

Algorithm 3 GREEDY(GM , s, d)
1: procedure GREEDY(GM , s, d)
2: x← s; c← 0; path ← ∅
3: while x 6= d and c ≤ cmax do
4: x′ ← argminx∈children(GM ,x) h(x)
5: c = c+ cost(x, x′); path = path ∪ (x, x′); x = x′

6: end while
7: return (x, path)
8: end procedure



that it is possible to reach x2 from x1 by simply relying on greedy search based on the
Euclidean distance h(·) to the target vertex.

convergence: the sampling function is fair in that in an infinite time, it would select
each vertex of GM infinitely often. The idea underlying the EXTEND routine is that it
tries to extend the graph G either with a new randomly sampled vertex if such can be
reached from the nearest vertex in T by greedy search, or some other vertex, such that
there exists a greedy path from the nearest vertex in T to that vertex. Realize however,
that since the graphGM is connected, it is always possible to extend it with some vertex
of GM which is a neighbor of some existing vertex of T and since there exists a path
between the vertex s and every other vertex of GM , there also exists a sequence of
vertices which can be pairwise connected by greedy search so that eventually the last
vertex on that path can be reached. The paths are finite, hence the probability that the
fair sampling routine eventually samples all the vertices along every finite path is non-
zero, and in turn eventually all the vertices of GM get included in T at which moment
the algorithm converges to the point when it contains paths to all vertices in GM .

soundness: first realize, that at every moment, the graph T is a tree rooted in s.
This is ensured by the fact that s is the first vertex with which the construction of T is
initialized and then by the way how the new edges are added to the graph. It is always
a new vertex, without any child vertices, that is connected to a near vertex already
present in T , its new parent. Furthermore, whenever some vertices are rewired, they are
first disconnected from their old parents and only then connected to new ones. This way,
every vertex has always exactly one single parent, hence at every moment T is a tree.
Secondly, see that every path of the tree T rooted in s corresponds to a valid path in
GM . Given a path s = x0, . . . , xn in T , the corresponding path in GM can be obtained
by joining all the vertex sequences resulting from a greedy search between each pair
(xi, xi+1). In a consequence, at any moment when the destination vertex d is already
included in T , the path from s to d is a valid traversable path in GM .

completeness: we need to show that whenever a path between s and d exists inGM ,
the algorithm G-RRT* will find it. This straightforwardly follows from the proofs of
the algorithm’s convergence and soundness. Eventually, T will be extended with d and
from that moment on, there will exist a path in T that corresponds to some path from s
to d in GM .

optimality: denote the optimal path between the vertices s and d on graph GM as
(s = v1, . . . , vk = d). The fact that the radius of the near search rn is bigger than the
longest edge in graph GM implies that if a vertex is sampled, all his neighbors on the
GMgraph will be in the Xnear set. We can recall that the NEAR procedure operates
on the contents of Xnear. It connects a vertex v to the best parent from Xnear and it
rewires other vertices to the vertex v if it leads to improvement of their cost. From fair
sampling assumption we know that each of the vertices on the optimal path will be
sampled infinitely many times. Eventually, the start vertex v1 will be sampled, which
will lead to rewiring of the vertex v2 so that it is connected to v1. This path ending in v2
is an optimal one and as such it won’t be changed during subsequent sampling. After
the vertex v2 has been fixed at optimum cost, the sampling procedure will eventually
pick vertex v3 that will necessarily connect to v2 and rewires v4. We can continue by
induction up to the vertex vk, which is the last vertex of the optimal path. ut



When implementing G-RRT*, one has to be careful to limit the shrinkage of the
near-ball during the sampling. If the radius of the ball gets smaller than the length
of the shortest edge in the graph, then the Xnear set will be always empty and the
algorithm will stop optimizing the paths. On the other hand, the value of rn never needs
to be larger than cmax parameter of the GREEDY procedure, since states that are further
away than cmax will not be reachable by the greedy search.

4.2 Multi-Agent Graph RRT*

The multi-agent version of G-RRT* (MA-RRT*) allows us to solve cooperative pathfind-
ing problems where agents move on motion graphs. The formulation of the algorithm is
identical to the G-RRT*, execept that the algorithm performs the search in the agents’
joint-state space. This leads to the following modifications. A state in the MA-RRT*’s
state space becomes n-tuple(w1, . . . , wn), where wi is the waypoint occupied by the
agent i. The starting state xinit is an n-tuple s = (s1, . . . , sn), where si is the start way-
point of agent i. Similarly, the target region contains only one state d = (d1, . . . , dn),
where di is the target waypoint of agent i. The SAMPLE procedure returns an n-tuple
(w1, . . . , wn), where wi is a waypoint for agent i taken at random from the agent’s mo-
tion graph GM

i . The EXTEND procedure is identical to that of G-RRT*, but instead of
states representing position of one agent, here they represent the position of all agents.
The greedy search is performed by generating a sequence of joint actions as described
in Algorithm 4. After each joint-action is generated in the greedy search, the n-tuple of
action is checked for possible separation breach between the agents. This ensures that
the paths of individual agents stay separated. Typical outcome of such a greedy search
is a path that leads each of the agents to his target waypoint and when the target is
reached, the agents wait for the longest traveling agent. Note that we do not specify the
time at which such a state should be achieved.

For a good function of the RRT* algorithm, one needs to specify a suitable distance
function to influence the behavior of NEAR and NEAREST functions. Here we define the
distance between two joint-states (x1, . . . , xn) and (y1, . . . , yn) as

∑n
i=1 cost

LB
i (xi, yi),

where costLB
i (x, y) is the lower bound on the cost of move from x to y for agent i.

Since we define cost in terms of travel time, a suitable definition of such a function is
dist(x,y)

maxspeedi
, where dist(x, y) is the distance between waypoints x and y andmaxspeedi

is the maximal speed at which agent i can move. We chose such a function, because
it represents a lower-bound on the cost of transition between two joint-states. To see
why, imagine two agents moving from the joint state (s1, s2) to joint state(d1, d2). If
dist(s1, d1) < dist(s2, d2) then the first agent will arrive to d1 before the second agent
arrives tod2 and the first agent will have to wait for the second agent. Now, recall that
the solution quality metric we use is the sum of time the agents spent outside their goal
positions. Therefore, waiting for other agents contributes to the global solution cost,
with single exception when the agent is on its target waypoint, where the waiting is
“free”. Therefore, the sum of minimum travel times for each agent represents a cor-
rect lower bound on the cost of transition between two joint states with respect to our
solution quality metric.

Lemma 2. The MA-RRT* algorithm inherits convergence, soundness, completeness
and optimality properties from the G-RRT* algorithm.



Algorithm 4 GREEDY(GM , s,d)
1: x← s; c← 0; path← (∅, . . . , ∅)
2: while x 6= d and c ≤ cmax do
3: (pathi, . . . , pathn)← path
4: for all xi ∈ x do
5: N ← children(GM , xi)
6: x′ ← argminx∈children(GM ,xi) h(xi)
7: c← c+ cost(xi, x

′
i); pathi ← pathi ∪ (xi, x

′
i);

8: xi ← x′i
9: end for

10: if not COLLISIONFREE(path1, . . .,pathn) then
11: return path
12: else
13: path← (path1, . . . , pathn)
14: end if
15: end while
16: return (x,path)

Proof. Follows from the fact, that the distance in the multi-agent case is a proper metric
and satisfies the triangle inequality, otherwise the Cartesian product of the individual
motion graphs can be converted into a new graph with joint vertices, that is to the joint-
state space graph. ut

4.3 Informed Sampling

The above presented version of MA-RRT* samples the agents’ joint-state space with
uniform probability distribution. The performance of the algorithm (on average problem
instance) can be improved by instructing the algorithm that some regions of the state
space are more likely to contain high-quality solutions than others. This can be done by
changing the distribution of samples so that the algorithm samples more frequently the
promising regions of the state space.

For sparse instances of cooperative pathfinding problems, the global solutions typ-
ically consist of paths that are identical to the agent’s optimal path in the absence of
other agents or contain only minor diversions from the agent’s optimal path. Therefore,
we propose a sampling strategy that strongly favors regions around optimal paths of the
individual agents. We call this informed-sampling version of MA-RRT (isMA-RRT).

The isMA-RRT algorithm runs side by side a number of G-RRT* solvers for each
agent for finding their locally optimal paths and one MA-RRT* planner for finding a
global solution to the multi-agent problem. The pseudocode of isMA-RRT solver is
in Algorithm 5. First, the single-agent planners are iterated in order to find a path for
each agent involved in the problem. When the single-agent paths are known for each
agent, we start iterating the multi-agent solver with a modified sampling function, which
takes the samples from the Gaussian neighborhood of the single-agent paths as show in
Algorithm 6.



Algorithm 5 isMA-RRT*
1: while not interrupted do
2: for i =1 . . . n do
3: run one iteration of G-RRT* solver for agent i
4: end for
5: if all single-agent solver found some path then
6: run iteration of MA-RRT* with modified sampling
7: end if
8: end while

Algorithm 6 SAMPLE(GM , (path1, . . . , pathn), σ)
1: tmax ←time when the last agent arrives to its destination
2: t←uniform random from (0, tmax)
3: for i = 1 . . . n do
4: (x, y)← pathi(t)
5: x← x+N(0, σ); y ← y +N(0, σ)
6: wi ←nearest vertex in GM to position (x, y)
7: end for
8: return (w1, . . . , wn)

4.4 Other Optimization

Practical implementations of sampling based algorithms typically contain two other
optimizations. Firstly, it is often beneficial to sample the target state with a given prob-
ability, since it promotes the growth of the tree in the direction of the goal. Secondly,
once a new solution is found one can use it as an upper bound for the subsequent sam-
pling. This means that a new vertex v will not be added to the tree if the cost of the
vertex together with the lower-bound estimate on the path from v to the goal region ex-
ceeds the cost of the currently best solution. In our implementation, we use both these
techniques.

5 Evaluation

We compared the performance of the unbiased version of MA-RRT* (MA-RRT*) and
informed-sampling MA-RRT* (isMA-RRT*) with A* search in joint-state space (JA)
and optimal anytime algorithm (OA) in terms of scalability and solution quality. All
three algorithms were implemented in Java in a one common framework. Where pos-
sible, the implementations of the individual algorithms shared code. I.e. all algorithms
use identical collision-checking routine, graph structures etc.

We evaluated the performance of the algorithms on the following set of synthetic
problem instances. The agents move on a square-shaped grid-like motion graph, where
the waypoints are placed on the grid having the step of 1 meter and the motion prim-
itives are straight moves at the constant speed of 1 m/s connecting the vertices in 4-
neighborhood. Further, a single second long waiting motion primitive is available at
each waypoint. Random ten percent of the vertices of the motion graph is removed to



represent obstacles. A unique start waypoint and unique destination waypoint is cho-
sen randomly for each agent. Further, for each such instance we check if all agents can
reach their destination to ensure that the instance admits a solution.

Obviously, this represents a commonly used unit-grid modeled in the framework
of motion graphs. The main difference is that in unit grids the agents “jump” between
the vertices, here they follow a trajectory defined by the motion primitive and thus the
collision checking is done on the actual trajectories of the agents. We chose such a
representation for two reasons. First, it allows us to set the separation distance indepen-
dently to the size of grid as is common in many domains, e.g. in UAV conflict resolution.
Second, since the moves between the points in the grid are modeled as proper motion
primitives, we expect that despite the simplicity of our experimental environment the
results will generalize better to more complex real-world domains.

Our set of problem instances contained instances that varied in the size of the grid
and in the number of agents. We used the following values of the two parameters. Grid
sizes: 10x10, 30x30, 50x50, 70x70, 90x90. Numbers of agents: 1, 2, 3, 4, 5, 6, 7, 8,
9, 10. The separation distance was set to a constant 0.84. The problem instance set
contains 120 random instances (with random obstacles and random start and destination
positions) for each combination of the grid size and the number of agents. Thus, in total
the experiment contained 6000 different problem instances. Each of the algorithms was
executed on every instance with the runtime limit of 5 seconds. An illustrative example
of one such instance is in Figure 1. The experiments were executed in HotSpot 1.6
64-bit Java VM running on AMD FX-8150 3.6 GHz CPU.

5.1 Results

To convey how successful were the algorithms on our problem instance set, we plot the
performances curves (proposed in [12]) for each algorithm. We record the runtime to
find the first valid solution to the problem instance for each algorithm. Then, we sort
the instances according to the that runtime for each algorithm independently. The results
are plotted in Figure 2. On the x-axis is the index of instance in the algorithm’s sorted
sequence, on the y-axis is the runtime the algorithm needed to find the first solution to
that problem instance. It should be noted that the ordering of the instances is different
for each algorithm. The x-position of the last point in the performance curve can be
interpreted as the number of instances of the total 6000 instances the algorithm solved
in the runtime limit of 5 seconds. We can see that JA resolved 21% of the instances, OA
38%, MA-RRT* 56% and bsMA-RRT* 77 % of instances from our problem instance
set.

Figure 3 show the comparison of relative solution quality for the anytime algo-
rithms, JA is not plotted since it always returns optimal solutions. For all algorithms
we show the quality of the first returned solution and the quality of the best solution
found in the 5 second runtime limit. The suboptimality is measured only on a subset of
instances for which either JA or OA returned provably optimal solution, which was in
our case 2348 instances. The suboptimality measure is expressed in percent as

4 We also tried to vary separation distance and the average size of an obstacles, but found that
these parameters have no significant influence on the scalability of the algorithms.



suboptimality =

(
cost of returned solution
cost of optimal solution

− 1

)
· 100.

Figure 4 (left) shows the percentage of successfully solved instances for different
widths of the grid. The dependence is shown in sections for three different numbers of
agents. Similarly, Figure 4 (right) shows the percentage of successfully solved instances
for increasing number of agents. Again, we show the values for three different grid sizes.
Each of the plotted points represents an aggregation from 120 random instances.

The plots indicate how the individual algorithms scale with respect to the size of
environment and the number of agents. As expected, the A* search in joint-state space
scales poorly with the number of agents. In fact, we observed that there are two typical
cases when JA succeeds to find a solution in the limited time. Firstly, JA is able to
solve instances with two or three agents relatively easily, since these are relatively low
exponents. See Figure 4 (right) for the clear drop of success rate for the numbers of
agents above 3. Secondly, JA seems to be successful in instances that do not contain
local minima and thus can be solved simply by following the heuristics. An example
of such an instance is when the agents have no obstacles to avoid on the paths to their
destinations and further their are paths are mutually conflict-free. We can see that even
in large environments (3rd plot on the right in Figure 4), there are some instances that
JA was able to solve. However, for all other cases JA fails to scale.

An interesting case is the scalability of the OA algorithm. The main idea behind the
algorithm is to avoid expensive planning in the joint-state space by performing a number
of single-agent searches for alternative paths in presence of dynamic obstacles (other
agents). Our experiments show that the idea works nicely for the small environments,
but it starts to collapse in larger environments, since in large environments each of such
searches takes significant time that may be higher than focused joint-state space search
(see Figure 4, left).

The sampling-based algorithms MA-RRT* and isMA-RRT*, on the other hand,
show no such performance decline when the size of the environment grows. On the
contrary, we can see that in the scenarios with many agents, the performance of the al-
gorithms drops if the space is too “tight”. That is, the algorithm works best if the space
is sufficiently large for the number of agents.

6 Conclusion

In this paper we proposed MA-RRT*, a novel anytime algorithm for solving cooper-
ative pathfinding problems. Unlike other state-of-the art approaches, which are build
upon forward-search, our technique exploits the new advancements in sampling-based
motion planning and searches for a solution in agents’ joint-state space using random-
ized sampling. We compared the performance of our approach with the A* search in
joint-state space and with the current state-of-the-art anytime algorithm. Our experi-
ments demonstrate the limits of the forward-search based approaches to cooperative
pathfinding in large, but sparse environments. Our results show that these instances can
be efficiently solved using one of our sampling-based algorithms for the price of a slight
decrease in the solution quality.



Fig. 1. An example problem instance
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Fig. 3. Solution quality

As a by product, we translated the original RRT* algorithm for continuous state
spaces to graphs and devised a new algorithm for finding shortest path on spatial graphs
using randomized sampling.

The presented results admit various direction of future work. Our algorithm repre-
sents an efficient anytime method for search in joint-state spaces. It can be seen as a
scalable, sampling-based counterpart of the JA algorithm. We are currently working on
a sampling-based counterpart of the OA algorithm, i.e. on an extension of MA-RRT*
that will change its sampling strategy based on the detected independences.

In this paper, we have formulated the algorithm on a motion graph, but the approach
admits a straightforward extension to continuous state spaces. This can be done by sam-
pling the continuous joint-state space of all agents and by using straight-line visibility
checks in the place of greedy search procedure.
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