
Reconfiguration of Large-Scale Surveillance Systems

Peter Novák and Cees Witteveen

Algorithmics Group, Faculty EEMCS
Delft University of Technology

The Netherlands
{P.Novak, C.Witteveen}@tudelft.nl

Abstract. The METIS research project aims at supporting maritime safety and
security by facilitating continuous monitoring of vessels in national coastal wa-
ters and prevention of phenomena, such as vessel collisions, environmental haz-
ard, or detection of malicious intents, such as smuggling. Surveillance systems,
such as METIS, typically comprise a number of heterogeneous information sources
and information aggregators. Among the main problems of their deployment lies
scalability of such systems with respect to a potentially large number of moni-
tored entities. One of the solutions to the problem is continuous and timely adap-
tation and reconfiguration of the system according to the changing environment
it operates in. At any given timepoint, the system should use only a minimal set
of information sources and aggregators needed to facilitate cost-effective early
detection of indicators of interest.
Here we describe the METIS system prototype and introduce a theoretical frame-
work for modelling scalable information-aggregation systems. We model infor-
mation-aggregation systems as networks of inter-dependent reasoning agents,
each representing a mechanism for justification/refutation of a conclusion de-
rived by the agent. The proposed continuous reconfiguration algorithm relies on
standard results from abstract argumentation and corresponds to computation of a
grounded extension of the argumentation framework associated with the system.

1 Introduction

The METIS project [4, 6] studies techniques supporting development of large-scale de-
pendable systems of systems which aggregate multiple sources of information, analyse
them, compute risk factors and deliver assessments to system operators. In this paper
we introduce the METIS project’s prototype application, which applies the developed
concepts to the domain of maritime security and aims to provide advanced situation
awareness capabilities for monitoring maritime traffic in national coastal waters. By
’Systems-of-systems’ we mean large-scale integrated systems that are heterogeneous
and independently operable on their own, but are networked together for a common
goal [7]. One of the prominent problems in development of such systems is their scala-
bility. Our focus here is on supporting scalability of the system by means of continuous
reconfiguration, i.e., adaptation to changes in its environment.

The METIS system is a large-scale surveillance system operating in a mixed phys-
ical and software environment. It comprises a number of cooperative agents serving as
information sources and aggregators. Typically, these would be either situated physical

agents, such as cameras, satellites or human patrols, or software components interfacing
various public, or proprietary databases, web resources, etc.

In the implemented prototype scenario, METIS aims at detection of ships suspected
of smuggling illegal contraband during their approach to the port under surveillance.
For every vessel in the zone of its interest, the system accesses the various informa-
tion sources and subsequently processes the extracted information so as to finally iden-
tify vessels which require operator’s attention. The available sources provide informa-
tion about the ships, including their identifications, crew, ports-of-call, various physical
characteristics, possibly even digest of news articles reporting on events involving the
vessel, or the crew. Quite often, such information would yield inconsistent, or even
contradictory information, which needs to be cross-validated and processed in order to
infer the most likely values. The resulting information is aggregated by a hierarchy of
information aggregators so that the system is ultimately able to determine whether a
particular vessel should be considered a smuggling suspect, or it is able to justify that it
is innocuous given the available information. In the prototype scenario, the individual
aggregators are represented by various information-fusion components operating over
a shared data warehouse, but could include also external agents, such as human experts.

METIS should be deployable both on land, as well as on board of independently
operating ships. As a consequence, querying individual information sources and subse-
quent information aggregation could incur non-negligible financial and computational
costs. While accessing a publicly available Internet resource via a fixed broadband con-
nection can be relatively cheap, the bandwidth of satellite communication links used on
board of maritime vessels is limited and data transfers incur external costs too. Simi-
larly, accessing proprietary industrial databases, or utilisation of physical agents, such
as aerial drones, imaging satellites, etc. can incur rather significant costs to the system’s
operation. Hence, using all available information sources and information fusion com-
ponents is not always feasible and in turn one of the problems central to development
of such a large-scale surveillance multi-agent system is their scalability.

The problem of configuration and dynamic reconfiguration according to the current
system’s needs can be thus formulated as follows: Which information sources and ag-
gregators should be active over time so as to maximize the likelihood of early detection
of malicious intents in the most cost-efficient manner?

Here, we propose an approach to (re-)configuration of large-scale information ag-
gregation systems by modelling the interactions between the individual components in
terms of an argumentation framework [2]. After introducing the basic concepts (Sec-
tion 2), in Section 3, we present the problems of configuration and reconfiguration of
information-aggregation systems to account for changes in their environments. Subse-
quently, in Section 4, we show that suitable system configurations correspond to the
concept of grounded extensions of an associated argumentation framework. The so-
lution concept is closely related to the well-founded semantics of logic programs, so
the relationship opens the door for further study of reconfiguration in relation to stan-
dard results in logic programming. A discussion of on-going and future work along the
presented line of research concludes the paper. Throughout the paper, in a series of ex-
positions, we describe the relevant parts of the METIS system and identify a class of
relevant solution concepts.

METIS 1 In the prototype scenario, METIS should continuously monitor vessels in the
coastal waters in the Dutch Exclusive Economic Zone, source information about them
and process it, so as to finally identify vessels which are suspect of smuggling. Upon
detection of a suspicion, the system should notify the user, a Netherlands Coastguard
officer, who then decides on the subsequent course of action. To put the scenario in
perspective, note that the monitored area covers more than 63.000 km2 and typically
contains around 3-4.000 vessels at any given moment in time.

In the system exposure we consider the following simplified fragment of the pro-
totype scenario: Information-sources available to the system comprise a local copy of
IHS Fairplay [5] database and web-portals of MyShip.com [11], MarineTraffic.com [10]
and its Ports of Call. There are also three physical sensors: a human coast-guard patrol
in the field, a receiver for Automatic Identification System (AIS) [1] messages, and a
radar providing kinematic signatures of vessel tracks as interpreted from the readings
of the detected spot positions of the vessel over time. Every vessel from a certain size
is required to be equipped with an AIS transmitter and regularly broadcast its iden-
tity, type, ports of call, etc. Besides cross-validation and and probabilistic inference
over the received data, the individual information-processing components also derive
meta-information about quality, certainty and trust of the aggregated information.

2 Preliminaries

An instance of a multi-agent surveillance system such as METIS, comprises a set of in-
formation processing agents and a shared database. Information source agents operate
in a dynamic environment and feed a shared data store which is further processed by a
set of information aggregators agents. The system’s objective is to determine the truth
value of a set of distinguished indicators, information elements corresponding to some
non-trivially observable properties of the monitored entities, such as whether a ves-
sel is a smuggling suspect. Below, we introduce the formal framework for modelling
information-aggregation systems, together with the related terminology and notation.

2.1 Information-aggregation system

We model an abstract information-aggregation system as a tuple S = (A,D, cost)
comprising a finite set of information-processing agents, a database schema and a cost
function respectively. A shared data store of the system is represented by a 3-valued
database schema D comprising a finite set of propositional variables over the domain
Dom = {>,⊥,∅} representing the truth values true, false, and unknown respectively.
In practice, Dom could include an arbitrary number of distinct crisp values and the
METIS system exposure indeed assumes an extended domain of the database schema.
Without loss of generality, we also do not distinguish between different interpretations
of the unknown value ∅: no information and value existent, but unknown [8]. A database
snapshotD : D → Dom of the schemaD at a given timepoint is a ground interpretation
of variables ofD. That is, each variable ofD takes a truth value from the domain Dom .
D|x denotes the value of the variable x in D. D∅ denotes a database snapshot with all

variables valued as unknown, i.e., for all x ∈ D, we have D∅|x = ∅. For convenience,
we use the term database snapshot interchangeably with the term database.

The information processing agents A = {A1, . . . , An} of the system are modelled
as function objects over interpretations of the schema D, formally Ai : D × Dom →
D × Dom for each A ∈ A. That is, given a database snapshot D, an information-
processing agent A takes as an input a set of D-valuations of database variables inA ⊆
D and produces a set of new valuations for database variables outA ⊆ D. D|inA
and D|outA respectively denote value assignments to variables of inA and outA cor-
responding to those in the snapshot D. The sets D|inA and D|outA can be seen as
partial interpretations of the schema D. Given two snapshots D and D′, we denote
A(D|inA) = D′|outA relying on agents as partial functions over database snapshots.
We model information-source agents as standard information-processing agents with an
empty set of input variables in = ∅ and a non-empty set of output variables out 6= ∅.

The cost function cost : A → R+ models the costs involved in a single computation
run of an agent. Without loss of generality we assume that the computation of valuations
of the output variables cannot be disentangled and must be carried out as an atomic
operation. Informally, the cost of executing an information source agent corresponds to
the aggregate cost of sensing its input variable in the environment. Whenever the cost
function is irrelevant in the given context, we simply write S = (A,D).

A configuration C ⊆ A of a system S = (A,D, cost) is a set of information
processing agents active in S in a given timepoint. Notation for input and output vari-
ables of an agent naturally extends to configurations, that is inC =

⋃
A∈C inA and

outC =
⋃
A∈C outA. Assuming a single execution of each agent in C, the cost func-

tion straightforwardly extends to configurations too: cost(C) =
∑
A∈C cost(A).

Given a configuration C ⊆ A of a system S = (A,D) and a database snapshot
D of the schema D, we say that a database D′ is an update of D by C iff for each
variable x ∈ D, such that D|x 6= D′|x, there exists an agent A ∈ C, such that D′|x =
A(D|inA)|x. That is, each variable modified in the update D′ w.r.t. its original value in
D, is a result of a computation of some agent from the configuration C. We say that a
configuration C is supported by a database snapshotD iff for all agentsA ∈ C we have
both A(D|inA) ⊆ D, as well as A(D|outA) ⊆ D. That is, the information processing
performed by each agent A of the configuration C is reflected in the snapshot D.

C(D) = D′ denotes an update D′ of D by a configuration C. Note, not all of
the outcomes produced by all agents of C need to be reflected in the database update.
Alternatively, we say that D′ is an update of D by a partial database Du iff whenever
D|x 6= Du|x 6= ∅, we have that D′|x = Du|x and D′|x = D|x otherwise, and we
also denote D′ = D ⊕ Du. We model evolution of a system S under a configuration
C ⊆ A as a (possibly infinite) sequence of database snapshots λD = D0, . . . , Dk, . . .,
such that each Di+1 = C(Di) is an update of Di for all i ∈ N0. Such a λD is called
a C-evolution of S from D0 on. Finally, note that given a configuration C which is
supported by a database snapshot D, every update C(D) equals D. In that case, we say
that D is stable w.r.t. C.

Evolution of a system strongly depends on both the nature of the active configura-
tion, as well as the particular order in which the agents of the configuration work over
the database. We say that a configuration C ⊆ A of a system S = (A,D) is normal

agent in out cost
AIS ∅ aisID∗, aisType′ 10
FairPlay ∅ fpID∗ 10
MyShip ∅ myShipID† 200
MarineTraffic ∅ mtID† 300
MarineTraffPorts ∅ portCalls‡ 1000
Radar ∅ track′ 2000
Patrol ∅ isSpoofingID‡ 9500
TrackAnalyser marked ′ vesselType‡ 1000
CheckDefault marked ∗ isSuspectID† 200
CheckSpoofing marked † isSpoofingID‡ 800
checkSmuggling marked ‡ isSmuggling 2000

Fig. 1. METIS system agents (left) and their interdependencies (right).

iff all C-evolutions of S from every database snapshot D0 on, eventually stabilise, i.e.,
reach the same stable state regardless of the order of execution of the individual agents
in C. More formally, there is a unique database snapshot C∗(D0) of the schema D,
so that for all C-evolutions λD = D0, . . . , Dk, . . . of S from D0 on, there is an index
kλD ≥ 0, such that for all i ≥ kλD , Di = DkλD

= C∗(D0) and C is supported by Dk.

METIS 2 (system structure) In the prototype scenario (Figure 1), METIS features 7
information-source agents (white), including 3 physical sensors (dotted), and three non-
trivial information-aggregation agents (grey). The costs of accessing the information
sources are only illustrative and estimate the communication bandwidth to access the
databases, or the cost of querying the physical sensors. The costlier databases tend
to provide richer information about vessels. The cost associated with an information-
aggregation agent roughly estimate the computational costs of its execution. In the
figure, the dotted lines indicate input-output dependency of information-aggregation
agents, while the solid line arrows indicate merely that the agent derives a given vari-
able, otherwise indicated by putting the variable bullet on top of the corresponding
agent triangle.

The CheckDefault aggregator consults the local physical sensor and cross-validates
the self-transmitted vessel identity with those listed in the IHS FairPlay database. Upon
a failure to match the identities of the vessel, the system performs a deeper check of the
vessel’s identity (CheckSpoofing) in order to determine whether it does not actively
spoofing it, that is whether it actively lies about its identity. The physical sensor Pa-
trol involves a coast-guard patrol either physically checking the identity of the vessel,
or possibly sending an unmanned aircraft to perform the task. Similarly to Check-
Spoofing information-aggregator, the Patrol information source is capable to deter-
mine whether the vessel is actively spoofing it’s identity. It is of course possible that
the two inferred valuations of the isSpoofingID variable do not match and the conflict
needs to be resolved.

Should the system indeed conclude that the vessel is spoofing its identity, it es-
calates to the highest-level information-aggregator CheckSmuggling consulting the

most expensive information sources and performing the deepest analysis of the vessel’s
background so as to assess its potential involvement in smuggling. The TrackAnalyser
processor matches the vessel’s kinematic track signature from the Radar sensor to the
vessel type retrieved from AIS. Should the vessel turn out to be a suspect smuggler ac-
cording to the METIS’s analysis, the valuation of isSmuggling information element is
communicated to the system operator via a GUI warning. Note, all the involved agents
assume a domain of the underlying database extended with enumerations of possible
identities, etc. and can also produce the unknown valuation ∅ for each of their output
variables.

2.2 Environment
An information-aggregation system, such as METIS, is situated in a dynamic environ-
ment which changes over time. It reads values from it, monitors it, and derives non-
trivial information on the basis of the collected evidence. We model an environment as
a database schema E over crisp truth values {>,⊥}.

A system S = (A,D) can be embedded in an environment E when the two database
schemas coincide in exactly the variables produced by the information-source agents of
S. That is, each variable x ∈ outA of an agent A ∈ A with inA = ∅ is included in the
environment too, i.e., x ∈ E ∩D and we denote DEin = E ∩D. A variable x ∈ DEin in a
database snapshot D of S reflects the state of the environment E iff D|x 6= ∅ implies
D|x = E|x. We say that the system S is embedded in E iff computations of all the
information-source agents reflect the state of the environment. That is, for all A ∈ A
with inA = ∅ all variables from outA in the snapshot A(D) reflect E.

The dynamics of the environment is captured by its evolution over time modelled
as a (possibly infinite) sequence of database snapshots λE = E0, . . . , Ek, . . . To ensure
correspondence between an evolution λE of the environment E and an evolution λD =
D0, . . . , Dl, . . . of a system S = (A,D) embedded in E , we require that there exists
a sequence of indices i0, . . . , im, . . . ∈ N0, such that the variables from DEin in Di

with i ∈ ij . . . (ij+1 − 1) reflect the environment state Ej for j ≥ 0. That is, at every
timepoint, the system is embedded in the current state of the environment.

METIS 3 (evolution example) A configuration capable to produce the system evo-
lution depicted in Figure 2 could include the agents AIS, FairPlay, CheckDefault,
Radar and TrackAnalyser executed subsequently in that order up to the database
snapshot D4. In the 5th evolution step, the AIS agent would produce an unknown val-
uation ∅ for the aisID variable due to a failure to retrieve a crisp information from
the environment (e.g., due to a failure of the vessel’s AIS transmitter). Subsequently the
CheckDefault agent would have to produce ∅ also for the isSuspectID variable too as
one of its inputs is ∅. The total cost of execution of this configuration would be 3420.
The environment of the system evolves in a sequence E0, E1, E2 and its changes are
reflected in the evolution of the system’s database snapshots.

3 Configuration and reconfiguration problems

Assessments of a surveillance information-aggregation systems like METIS could have
real-world repercussions. For instance, after deriving that a vessel could be a smuggling

D0,E0 D1 D2 D3,E1 D4 D5,E2 D6

aisIDE aisID aisID aisIDE aisID
aisTypeE aisType aisType aisTypeE aisType aisTypeE aisType

fpID fpID fpID fpID fpID fpID
isSuspectID isSuspectID isSuspectID isSuspectID

trackE track trackE track
isSuspectType isSuspectType isSuspectType

Fig. 2. An example evolution of the METIS system database. Only variables valued > are listed.
The variables marked E are read from the corresponding environment update.

suspect, a warning would be indicated to the operator, who might then consider con-
tacting the vessel himself, possibly even sending a patrol to the location. Such actions,
however, need to be justified in the operational scenario. In consequence, any crisp con-
clusion computed by the system must be explainable and defensible by inspecting the
structure of inferences from basic evidence in the environment. In turn, we are inter-
ested in system configurations, which can either crisply answer distinguished queries,
such as suspicion of smuggling, or, if that is not possible, the operator needs to be sure
that there is no such configuration given the current state of the environment and the
system’s implementation. In the following, we implicitly assumes that the system is
embedded in an environment state reflected in its current (initial) database snapshot.

Problem 1 (configuration problem). Given a tuple C = (S, φ,D), with S = (A,D, cost)
being an information-aggregation system, φ ∈ D a query variable, and D being an ini-
tial snapshot of D, the information-aggregation system configuration problem is to find
a normal configuration C, a solution to C, such that all evolutions of S rooted in D
stabilise in the snapshot C∗(D) and C satisfies the following:

1. φ ∈ outC , i.e., C contains at least one agent A ∈ C capable to derive φ. The
resulting query solution is a valuation C∗(D)|φ computed by the configuration C;

2. for each variable x ∈ inC , we have x ∈ outC and C∗(D)|x 6= ∅; and finally
3. there is no configuration C ′ with C ⊂ C ′ satisfying 1 and 2, such that C ′∗(D)|φ 6=
C∗(D)|φ. In that sense, C is maximal.

We say that a configuration C is an optimal solution to the reconfiguration problem C
iff cost(C) is minimal among the solutions of C.

Condition 1 of the definition above stipulates that the solution configuration indeed pro-
vides a valuation of the query, although this can still be valued as unknown ∅. Condi-
tion 2 formalizes the intuition that the query solution can be traced back to the evidence
from the environment and computations of a series of crisp variable valuations by the
individual agents of the system, that is a justification for the query solution. While the-
oretically it would acceptable to base computations of a crisp conclusions on unknown
valuations of input variables for the interpretation of ∅ value existent, but unknown, it
wouldn’t be so for inferences based on no information valuations. In the former case, the
interpretation would behave rather as a kind of a crisp valuation. Consequently, with-
out loss of generality we assume interpretation of ∅ to equal no information. Finally,
condition 3 ensures that there is no doubt about the computed query solution.

A solution to configuration problem does not always exist. Consider for instance a
system including two agents deriving conflicting values for the same variable, or cycli-
cally dependent agents. In such situations, the system evolution could oscillate and
never stabilise. In Section 4 we identify a class of information-aggregation systems for
which existence of a solution is always ensured.

Through information-source agents, a dynamic environment serves as the main
driver of change within the system. Situating the configuration problem into a changing
environment, repeated configuration becomes a means for continuous adaptation of the
system to the updates coming from its environment.

Problem 2 (reconfiguration problem). Given a tuple R = (λE ,S, φ), where λE =
E0, . . . , Ek, . . . is an evolution of an environment E , S = (A,D, cost) is a information
aggregation system embedded in E , and φ ∈ D is a query variable, the information-
aggregation reconfiguration problem is a search for a sequence of configurationsC0, . . . ,
Cl, . . ., a solution to R, such that eachCi is a solution to the configuration problem Ci =
(S, φ,Di) for i > 0, where Di = C∗i−1(Di−1) ⊕ Ei|DEin and D0 = D∅ ⊕ E0|DEin .
We say that a sequence of configurations C0, . . . , Cl, . . . is a weak solution to R, iff Ci
is a solution to Ci = (S, φ,Di) if it exists and can be arbitrary otherwise.

Informally, a reconfiguration problem solution is a sequence of configurations produc-
ing a database evolution reflecting the changes of the system’s environment. The se-
quence of configurations in a weak solution to the reconfiguration problem captures the
intuition that the system tries its best to compute a query solution upon each environ-
ment update, which, however, not always exists.

METIS 4 (configuration) Consider the METIS prototype scenario introduced in the
previous expositions. An example configuration problem could be C = (SMETIS, isSmug-
gling , D3). As stated, there is no solution to C as it is not possible to determine whether
the vessel is possibly spoofing it’s identity (isSpoofingID) and in turn also whether
it is a smuggling suspect (isSmuggling). A solution would exist for a configuration
problem over a database including crisp valuations for all the variables produced by
information-source agents. Furthermore, the output of the Patrol agent would have to
match that of CheckSpoofing aggregator. In that case, the solution to C would com-
prise all the agents of the system. There would also exist solutions for configuration
problems over databases in which the Patrol information-source produces an unknown
for the isSpoofingID variable, but CheckSpoofing aggregator derives a crisp valua-
tion for it, or vice versa.

4 Solving configuration and reconfiguration problems

The individual agents of an information-aggregation system perform inference over
valuations of their input variables, premises, and thus provide support to the output
variables, conclusions. In turn, Dung’s theory of abstract argumentation [2] provides a
natural model of computation of information-aggregation systems. Here, we propose
an approach to solving (re-)configuration problems rooted in sceptical semantics of
argumentation. The terminology introduced below is adapted from [2].

Let S = (A,D) be a system and D be a database snapshot of D. We construct a
configuration argumentation framework CAF = 〈A,≺〉 associated with S over D.

Arguments correspond to information-processing agents A and embody a set of in-
terrelations among variables of the schemaD. The input variables inA provide the basis
for inferring the conclusions outA of the argument A ∈ A. We say that an argument is
valid w.r.t. a database snapshot D iff A(D|inA) ⊆ D and for all variables x ∈ inA, we
have D|x 6= ∅. Informally, a valid argument is supported by a given database snapshot
in that the input/output characteristics of the internal computation of the agent is truth-
fully reflected in the database. From now on, we will use the notions of an argument
and an agent interchangeably according to the context.

We say that valid argument A ∈ A attacks another argument A′ ∈ A denoted A′ ≺
A, on a variable x ∈ outA∩outA′ w.r.t. a given database snapshotD iffA(D|inA)|x 6=
∅ and A(D|inA)|x 6= A′(D|inA′)|x. That is, the agent A derives a crisp valuation for
x which disagrees with the one derived by the agentA′. We also say thatA is a counter-
argument to A′, or that A is controversial. Finally, an argument A ∈ A attacks a set of
arguments C ⊆ A iff there exists A′ ∈ C attacked by A.

Note, the attack relation is defined only for valid arguments supporting their conclu-
sions by crisp valuation of their input. The conclusion, however, does not necessarily
need to be crisp itself. Also, the attack relation is not symmetric in that a valid argument
supporting a crisp conclusion can attack an argument providing unknown valuation to
the same conclusion, but not vice versa.

Consider a fixed argumentation framework CAF associated with a system S =
(A,D) over a database D. A configuration C is said to be conflict-free if there are no
agentsA,B ∈ C, such thatA attacksB w.r.t. CAF . A valid argumentA ∈ A (agent) is
acceptable to C iff for each A′ ∈ A in the case A′ attacks A, then there exists another
argument A′′ in C, such that A′ is attacked by A′′ all w.r.t. the database snapshot D.

In security-related information-aggregation systems, such as METIS, computed as-
sessments need to be justified in order to preserve presumption of innocence of the
monitored entities. That is, the resulting crisp valuation must be traceable to and justi-
fiable by the evidence coming from the environment. Reasoning of such a systems is
sceptical in that only conclusions which the system is sure about can be inferred, given
the environment evidence and the system’s design. The notion of a grounded extension
of an argumentation framework based on a fix-point semantics captures this intuition.

A grounded extension of an argumentation framework CAF = 〈A,≺〉, denoted
GECAF , is the least fix-point of its characteristic function FCAF : 2A → 2A defined
as FCAF (C) = {A | A ∈ A is acceptable to C}. GECAF is admissible, i.e., all agents
in GECAF are also acceptable to GECAF over D, and complete, i.e., all agents which
are acceptable to GECAF , also belong to it.

A grounded extension of CAFC always exists and FCAF is monotonous with re-
spect to set inclusion. In general, an argumentation framework can have multiple groun-
ded extensions, a property undesirable to security-related systems, where assessments
should be unambiguous. Dung in [2] shows that argumentation frameworks without in-
finite chains of argumentsA1, . . . , An, . . ., such that for each i,Ai+1 attacksAi, have a
unique grounded extension. A way to ensure that property is to consider only stratified
systems. That is those, for which there exists a stratification, a decomposition into a

sequence of strata (layers) A = A0, . . . ,Ak, where A0 = {A ∈ A | inA = ∅} and
Ai = {A ∈ A | inA ⊆ out⋃

j=1..i−1 Aj} for all i = 1..k. We say that A is the most
compact stratification of S iff all agents belong the lowest possible layer of A. Formally,
for all stratifications A′ of S, A ∈ Ai implies A ∈ A′j with j ≥ i.

The following proposition establishes the correspondence between solutions to con-
figuration problems for stratified systems and grounded extensions of their configura-
tion argumentation frameworks.

Proposition 1. Let C = (S, φ,D) be a configuration problem with a stratified system
S. Let C = GEC be the grounded extension of CAFC, an argumentation framework
associated with S over the database C∗(D). If φ ∈ outC , then C is a solution to C.

Proof. Let A be the most compact stratification of S and let F iCAF denote the i-th
iteration of FCAF , with F 0

CAF = FCAF (∅). Firstly, we show that iteration of FCAF

preserves the condition 2 of Problem 1, namely that for each x ∈ inF iCAF
, also x ∈

outF iCAF
and C∗(D)|x 6= ∅. The proof proceeds by induction on layers of S.

Initial step: By necessity, A0 includes only information-source agents. In turn,F 0
CAF ⊆

A0 excludes only those agents, for which there exists a counter-argument (agent) in A0.
Since inF 0

CAF
= ∅, the property is trivially satisfied.

Induction step: Let the property be satisfied for all F iCAF with i = 0..k. F k+1
CAF =

FCAF (F
k
CAF). Firstly, observe that F iCAF \ F

i−1
CAF ⊆ Ai for every i. If that were not

the case, there would be an agent A from a higher layer, input of which is computed by
agents in the lower layers, or it would belong to a lower stratum. The former cannot be
the case since A is the most compact stratification of S, since each agent is at its lowest
stratum possible. Similarly, the latter can’t happen either, since it would be considered
for acceptance already in earlier iterations of FCAF . Now either F kCAF = F k−1CAF , the
fix-point, and the property is trivially satisfied, or F kCAF = F k−1CAF ∪ Ck. In that case,
we need to show that for each A ∈ Ck, inA ⊆ outFk−1

CAF
and all valuations C∗(D)|inA

are crisp. But since Ck ⊆ Ak, due to the definition of stratification we have inA ⊆
outFk−1

CAF
. Finally, each A ∈ Ck is acceptable to F k−1CAF , hence it also must be valid and

in turn all its input variables are crisp.
To conclude, C is a fix-point of FCAF , hence the maximality condition 3 in Prob-

lem 1 is straightforwardly satisfied too. Finally, due to the antecedent of Proposition we
have that the query φ is included in C, hence C is a solution of C.

Proposition 1 can be applied to static databases only. Note, execution of agents con-
sidered for acceptance to a candidate solution does not modify the database fragment
computed in previous iterations, which also remains stable in further computation. In
turn, a naive configuration algorithm utilising Proposition 1 would iteratively proceed
in three steps. In the i-th iteration it would i) execute all the agents from stratum Ai of
the most compact stratification of S, ii) select the non-controversial ones, and finally
iii) add them to the candidate solution. To ensure non-validity of arguments from higher
strata that utilise controversial inputs derived in this iteration, these should be set to ∅.

The naive algorithm, while correctly computing a solution to a given configuration
problem, is rather inefficient in terms of the overall run-time cost. It targets computation
of a grounded extension of the whole framework, instead of only answering the query of

the given configuration problem. Firstly, in the initial iteration the algorithm considers
and executes all information-source agents. Besides that, it potentially executes also
information-processing agents, which do not contribute to answering the query. In both
cases it incurs unnecessary run-time cost. In fact, only arguments relevant to derivation
of the configuration problem query need to be considered.

Let S = (A,D) be a stratified system and φ ∈ D be a query. The agents relevant to
φ include Aφ(∅) = {A ∈ A | φ ∈ outA}. Given a set of agents C relevant to φ, all the
agents computing the input for those in C are relevant to φ too, i.e., Aφ(C) = {A ∈
A | outA ⊆ inC}. The set of all agents relevant to φ is the (unique) fix-point of Aφ(∅)
denoted A∗φ. The following proposition formalizes the intuition.

Proposition 2. Let C = (S, φ,D), CAFC and GEC be as in Proposition 1. If φ ∈
outC , then C ∩ A∗φ is the minimal optimal solution to C.

Furthermore, the naive algorithm does not terminate early enough, but rather computes
the grounded extension to its full extent, despite the fact that in the course of its compu-
tation it might turn out that the query is either derived in a justified manner, or that its
computation is hopeless. The former is relatively easy to detect. After all the agents rel-
evant to φ were considered for inclusion to the candidate solution, further computation
will consider only irrelevant arguments. To detect the latter case, we need to closely
inspect the current candidate solution with respect to the interdependencies among the
agents of the system. Given a configuration C, let Aφ

∗
(C) be the fix-point of the op-

erator Aφ(C) = C ∪ {A ∈ Aφ | inA ⊆ outC and inA 6= ∅}. Aφ
∗

is complementary
to Aφ in that given a configuration C, it collects all agents dependent solely on the out-
put of C. Consequently, Aφ

∗
(FCAF (C)) contains C, together with all the arguments

which can be still eventually considered for accepting to the candidate solution in fu-
ture iterations of FCAF . In the case φ ∈ outAφ

∗
(C) ceases to hold during computation,

the algorithm can terminate, since none of the arguments capable to compute the query
solution can be added to C in the future. The following proposition formalizes the rela-
tionship between the operator and the structure of the grounded extension.

Proposition 3. Let C = (S, φ,D), CAFC and GEC be as in Proposition 1. We have,
φ ∈ outGEC

if and only if φ ∈ outAφ
∗
(FCAF (C)) for every C ⊆ GEC.

Finally, the naive algorithm considers arguments for accepting to the candidate solu-
tion in sets, subsets of system layers. Considering arguments for acceptance one by one
would facilitate even earlier detection of hopeless computations and thus further reduc-
tion of run-time costs. It could even consider arguments across strata, however, in that
case, in line with the sceptical inference strategy, the accepted arguments can only use
input variables which are a part of the already stabilised fragment of the database. An
alternative definition of (safe) acceptability of an argument A a conflict-free configura-
tion C is when all its input variables are i) crisply valued, ii) already derived by C, and
iii) there are no argument outside of C which can potentially threat the valuations of
its input variables. More formally, an argument A is safely acceptable to a conflict-free
configuration C iff i) there is no x ∈ inA with D|x = ∅, ii) inA ⊆ outC , and iii) there
is no A′ ∈ A \ C, such that inA ∩ outA′ 6= ∅. Evaluation of this alternative definition
of acceptability does not require execution of the agent A and thus can be used in the
context of an evolving database, as is the case in METIS.

Algorithm 1 Algorithm computing weak-solutions to a reconfiguration problem
Require: R = (λE ,S, φ) with environment evolution λE = E0, . . . , Ek, . . ., a stratified

system S = (A,D, cost) and a query φ ∈ D

1: C ← ∅; D = D∅
2: loop (start with j = 0)
3: D⊕ ← the next environment update Ej |DEin
4: (C,D)← CONFIGURE(C,D ⊕D⊕)
5: if φ ∈ outC then inform operator about φ and D|φ
6: end loop (increment j)

7: function CONFIGURE(C,D) . returns (Configuration,Database)
8: C ← C ∩ F ∗CAF (∅)
9: loop

10: Cacc ← {A ∈ A∗φ \ C | A is safely acceptable to C}
11: if Cacc = ∅ or φ 6∈ outAφ∗(C∪Cacc)

then return (C,D)

12: Amin ← argminA∈Cacc cost(A)
13: D ← Amin(D) if D|inAmin changed since the last execution of Amin

14: if Amin attacks {A′1, . . . , A′k} ⊆ C then
15: C ← C \ {A′1, . . . , A′k} and set all D|x on which Amin attacks some A′i to ∅
16: else C ← C ∪ {Amin}
17: end loop
18: end function

Algorithm 1 provides a pseudocode for continuous reconfiguration of information-
aggregation systems based on the principles embodied in the above analysis. Upon
every environment update, in a step j, the algorithm tries to compute the minimal so-
lution to the current configuration problem. Either it succeeds and informs the operator
about the query solution, or detects that a solution can’t be computed and proceeds.
Function CONFIGURE computes the grounded extension of the current configuration
problem Ci = (S, φ,D⊕Ei|DEin) restricted to the arguments relevant to φ and consid-
ers potentially acceptable arguments individually in a greedy manner according to the
cost of their execution.

Given a configuration, without executing the agents, the algorithm strips C of all ar-
guments which might need reconsideration (line 8) due to the last environment update
(line 4), or because they depend on such arguments. Starting from an empty candidate
solution C, in every iteration, the algorithm firstly identifies among the arguments rele-
vant to φ (Proposition 2) those potentially acceptable to C (line 10). Before considering
their execution, it checks whether a solution can still be computed and should this not
be the case, it terminates the procedure. To detect the condition, it exploits the princi-
ples presented in Proposition 3. Further, the algorithm selects the cheapest potentially
acceptable information-processing agentAmin (line 12) and executes it (line 13). In the
case Amin does not attack the current candidate solution C (line 14), it is accepted to
C (line 16). Otherwise, the arguments attacked by Amin were previously accepted to C
prematurely and thus need to be removed. We also need to set the variables on which
they disagree to ∅ so as to ensure that all agents dependent on controversial valuations

Fig. 3. Ordering of information-aggregation agents as considered by Algorithm 1.

will be deemed non-valid in the future iterations (line 8). To further reduce the costs in-
curred by the algorithm, we assume that each agent keeps track of changes to its input,
so the algorithm executes it only in the case its re-execution is really needed (line 13).

Algorithm 1 is greedy, in that it always selects the cheapest agent to accept. Hence,
although the solutions it computes are optimal it does not always incur the minimal
possible run-time cost in terms of the cost of execution of the individual agents. The
optimal strategy of selecting the next agent to execute is most likely application-domain
dependent.

METIS 5 (configuration) Consider the example configuration problem C = (SMETIS,
isSmuggling , D∅). In order to compute a solution to the problem, assuming that all
the agents produce crisp valuations for their output variables upon their execution, in
subsequent iterations Algorithm 1 would execute the agents as depicted in Figure 3.
Noteworthy, in step 8, the cheapest agent to consider is the TrackAnalyser, but the al-
gorithm is forced to choose the Radar agent as that is the cheapest and, unlike Track-
Analyser, safely acceptable at the same time. For illustration of detection of hopeless-
ness of configuration computation, consider the agent MarineTraffPorts producing an
unknown valuation for portCalls variable in step 7. The algorithm would immediately
detect (line 11) that isSmuggling variable is not computable any more and would stop
the computation.

5 Final remarks and outlook

As of spring 2013, the METIS prototype, fragment of which is described here, was
implemented and delivered. Figure 4 provides a screenshot of the operator’s view in
the prototype. It shows several vessels (circular glyphs) in a selected monitored coastal
area with indication of the most likely values of their selected attributes. The pop-up
inspection window shows the likelihoods of the vessel satisfying the target indicators,

Fig. 4. METIS system screenshot. The background map imagery, courtesy of c© 2013 Google,
c© 2013 Aerodata International Surveys, Data SIO, NOAA, U.S. Navy, NGA and GEBCO.

such as suspicion of a smuggling intent. In the system, the relative size of the vessel
glyph corresponds to the cost of the system configuration instantiated for the vessel.

Above, we introduced a formal framework for modelling information-aggregation
systems, such as METIS, providing a basis for a rigorous formulation of (re-)configuration
problems. We argue that sceptical semantics of argumentation is a natural fit for mod-
elling such systems and paves the way for further study of their properties, as well as de-
velopment of algorithms for their continuous adaptation on a solid basis of the existing
body of research in argumentation theory and logic programming. In our future work
we intend to explore these relationships, specifically to study cost- and information-
age-constrained reconfiguration of METIS, as well as the relationship of the introduced
approach to computation of well-founded models for logic programs [3]. The dynamic
nature of the system also invites to study links between their evolution and standard
results from theories of evolving knowledge bases (e.g., [9]), logic program updates,
belief revision, etc.

Acknowledgements This work was supported by the Dutch national program COM-
MIT. The research was carried out as a part of the METIS project under the respon-
sibility of the TNO-Embedded Systems Innovation, with Thales Nederland B.V. as the
carrying industrial partner.

References

1. Automatic Identification System. http://en.wikipedia.org/wiki/Automatic_Identification_System,
April 2013.

2. Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

3. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. J. ACM, 38(3):620–650, 1991.

4. Teun Hendriks and Piërre van de Laar. Metis: Dependable cooperative systems for public
safety. Procedia Computer Science, 16(0):542 – 551, 2013.

5. IHS. IHS Fairplay Bespoke Maritime Data Services. http://www.ihs.com/products/maritime-
information/data/, April 2013.

6. TNO Embedded Systems Innovation. METIS project. http://www.esi.nl/research/applied-
research/current-projects/metis/, April 2013.

7. M. Jamshidi. System of systems engineering - New challenges for the 21st century.
Aerospace and Electronic Systems Magazine, IEEE, 23(5):4–19, May 2008.

8. Hans-Joachim Klein. Null values in relational databases and sure information answers. In
Leopoldo E. Bertossi, Gyula O. H. Katona, Klaus-Dieter Schewe, and Bernhard Thalheim,
editors, Semantics in Databases, volume 2582 of Lecture Notes in Computer Science, pages
119–138. Springer, 2001.

9. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers of Artificial Intelligence and
Applications. IOS Press, 2003.

10. Maltenoz Limited. MarineTraffic.com. http://www.marinetraffic.com/, April 2013.
11. MyShip.com. MyShip.com – Mates, Ships, Agencies. http://myship.com/, April 2013.

