(Re-)configuration of large-scale surveillance systems (argumentation in the Metis project)

Peter Novák (with Cees Witteveen) Algorithmics, EEMCS, Delft University of Technology

Challenge the future

Dagstuhl, 5th June 2013

Motivation: Metis project

Metis

Continuous monitoring of a maritime coastal zone, detection of anomalies and malicious activities of vessels.

© 2013 Google, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, ©2009 GeoBasis-DE/BKG, © 2013 GeoContent, MarineTraffic

Motivation: Metis project

Metis

Continuous monitoring of a maritime coastal zone, detection of anomalies and malicious activities of vessels.

- thousands of vessels
- dozens of info-sources per ship

Problem

Scalability of the system!

Solution idea

Run-time reconfiguration between vessel run-levels.

© 2013 Google, Data SIO, NOAA, U.S. Navy, NGA, GEBCO ©2009 GeoBasis-DE/BKG, © 2013 GeoContent, MarineTraffic

Talk outline

1 Context & preliminaries

- 2 Configuration problem
- 3 Configuration as argumentation
- 4 Outlook: argumentation & belief change

Context & preliminaries

System scheme

Info-aggregation system

information-aggregation system $\mathcal{S} = (\mathcal{A}, \overline{\mathcal{D}}, cost)$

database *D*: a set of variable valuations $\{x \mapsto \{\top, \bot, \emptyset\}\}$ agents *A*: database updating function objects $A : D \mapsto D'$ $cost : \mathcal{A} \to \mathbb{R}^+$: cost of executing an agent

configuration C of S

 $C \subseteq \mathcal{A}$ a set of agents of \mathcal{S}

Notation

 in_A , out_A input/output variables of an agent A

Database & environment

update of a database D by a configuration C

D' = C(D) iff D' is a result of computation of some agents from C

database evolution and stabilisation

evolution $\lambda = D_0, \dots, D_k, \dots$: for all i, $D_{i+1} = C(D_i)$ normal configuration $C \subseteq A$: all C-evolutions of S from some D_0 on, eventually reach *the same* fixpoint

$$\rightsquigarrow C^*(D_0) = D^* = C(D^*)$$

Database & environment

update of a database D by a configuration C

D' = C(D) iff D' is a result of computation of some agents from C

database evolution and stabilisation

evolution $\lambda = D_0, \dots, D_k, \dots$: for all $i, D_{i+1} = C(D_i)$ normal configuration $C \subseteq A$: all C-evolutions of S from some D_0

on, eventually reach the same fixpoint

$$\rightsquigarrow C^*(D_0) = D^* = C(D^*)$$

Environment interface

information-source agents: no input variables/output variables are shared with the environment, $in_A = \emptyset$

information-aggregating agents: $in_A \neq \emptyset$ and $out_A \neq \emptyset$

Context & preliminaries

Metis info-aggregation system

Research question

Which info-sources? Which info-aggregators?

Detect malicious intents early and cost-efficiently!

Research question

Which info-sources? Which info-aggregators?

Detect malicious intents early and cost-efficiently!

Security-related systems:

- answer distinguished queries (*isSmuggling?*)
- presumption of innocence: conclusions must be justified

Configuration problem

configuration problem $\mathfrak{C} = (\mathcal{S}, \phi, D)$

- $\mathcal{S} = (\mathcal{A}, \mathcal{D})$ information-aggregation system
 - $\phi \in \mathcal{D}$ query variable
 - D initial snapshot of \mathcal{D} .

solution configuration $C \subseteq \mathcal{A}$

- computes a query solution: $\phi \in out_C$
- **normal:** all *C*-evolutions eventually stabilise in $C^*(D)$
- conclusions are justified: all input variables of C are also computed by C and crisply valued
- no doubt about query solution: *C* is maximal, i.e., there is no C' with $C \subset C'$ satisfying the rest & concluding different $D|\phi$

Info-aggregation as argumentation (\mathcal{S}, D)

configuration argumentation framework $CAF = \langle A, attack \rangle$ arguments agents of a system S = (A, D)attack *A* attacks *A'* when it disagrees with an output of *A'* asymmetric attack relation \emptyset vs. crisp valuations

Acceptability:

valid arguments input is crisply valued and supported by C

Metis argumentation

Abstract argumentation - a natural fit!

Sceptical argumentation

grounded extension of CAF over S and D

 $\begin{array}{l} G\!E_{C\!A\!F} = F^*_{C\!A\!F}(\emptyset) \mbox{ the least fix-point of} \\ F_{C\!A\!F}(C) = \{A \mid A \in \mathcal{A} \mbox{ is acceptable to } C\} \end{array}$

advantage: preserves presumption of innocence! issue: justification traceable to evidence solution: acyclic/stratified systems → hierarchical (lattice) structure!

Theorem (config. problem $\mathfrak{C} = (\mathcal{S}, \phi, D)$, with stratified \mathcal{S})

Let *C* be the grounded extension of $CAF_{\mathfrak{C}}$ over $C^*(D)$.

if $\phi \in out_C$, then *C* is a solution to \mathfrak{C} .

Naïve algorithm example

Naïve algorithm example

information sources

Naïve algorithm example

inference propagation

Naïve algorithm example

Naïve algorithm example

Naïve algorithm example

the attack relation is a priori unknown!

Naïve algorithm: issues

1 considers all information sources

Naïve algorithm: issues

- 1 considers all information sources
- 2 executes also irrelevant agents

Naïve algorithm: issues

- 1 considers all information sources
- 2 executes also irrelevant agents
- 3 does not stop early enough:
 - **1** when ϕ is safely derived
 - 2 when ϕ is not derivable any more

Peter Novák · Algorithmics, EEMCS, Delft University of Technology

Outlook: argumentation

- explanations of conclusions
- 2 budget-constrained argumentation
- probabilistic argumentation

Outlook: (belief) change

Outlook: argumentation & belief change

evolving database

- recalculation
- 2 evolving knowledge base
 - AF structure change
 - modularity, elaboration tolerance

THANK YOU FOR YOUR ATTENTION.

The presented research was supported by the Dutch national program COMMIT and carried out as a part of the Metis project under the responsibility of the TNO-Embedded Systems Innovation, with Thales Nederland B.V. as the carrying industrial partner.

> original image adapted for the title frame background by zulfinho via flickr.com (CC)