
Behavioural State Machines: Programming Modular Agents

Peter Novák
Department of Informatics

Clausthal University of Technology
Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany

peter.novak@tu-clausthal.de

Abstract

Different application domains require different knowledge
representation techniques. Agent designers should therefore
be able to easily exploit benefits of various knowledge repre-
sentation technologies in a single agent system.
I describe here an agent programming framework of Be-
havioural State Machines, with Jazzyk, an implemented
programming language interpreter for BSM. The presented
framework draws a strict distinction between a knowledge
representational and a behavioural level of an agent program.
It supports a high degree of modularity w.r.t. employed KR
technologies and at the same time provides a clear and con-
cise semantics.

Motivation
An agent is a situated and embodied software entity, which
autonomously acts in its environment, proactively pursues
its (or its user’s) goals and reacts to changes of, and events
in, its environment (Wooldridge 2000). In open multi-agent
systems agents operate in highly dynamic and often unstruc-
tured environments with incomplete information about, and
at best only a partial control of it. Therefore, similarly to
creation of intelligent robots, design and implementation of
agent systems capable of operating in such environments
poses many challenges to AI research.

According to the Shoham’s seminal paper (Shoham
1993), a complete AOP programming framework should in-
clude three main components: 1) a formal language for de-
scribing a mental state of an agent, 2) an interpreted pro-
gramming language for defining agent programs faithful to
the semantics of mental states, and 3) an “agentifier” con-
verting neutral devices into programmable agents. Obvi-
ously, the central theme, around which the other components
are built, is a language for representing agent’s knowledge
about the world, i.e. its mental state.

No single knowledge representation (KR) technology of-
fers a range of capabilities and features required for differ-
ent application domains and environments agents operate
in. For instance, purely declarative KR technologies offer a
great power for reasoning about relationships between static
aspects of an environment, like e.g. properties of objects.
However, they are not suitable for representation of topolog-
ical, arithmetical, or geographical information. Similarly, a
relational database is appropriate for representation of large

amounts of searchable tuples, but it does not cope well with
representing exceptions and default reasoning. Hence, an
important pragmatic requirement on a general purpose AOP
framework is an ability to integrate heterogeneous KR tech-
nologies within a single agent system. An agent program-
ming framework should not commit to a single KR technol-
ogy. The choice of an appropriate KR approach should be
left to an agent designer and the framework should be modu-
lar enough to accommodate a large range of KR techniques.

The dynamics of an environment leads to difficulties with
control of an agent. Unexpected events and changes can in-
terrupt the execution of complex behaviours, or even lead
to a failure. Therefore an agile agent has to be able to reac-
tively switch its behaviours according to the actual situation.
While achievement of long-term goals requires rather algo-
rithmic behaviours, reaction to interruptions has to be im-
mediate. Moreover, due to only partial accessibility of the
environment, some situations can be indistinguishable to the
agent. Hence it is vital to allow reactive non-deterministic
choice between several potentially appropriate behaviours,
together with arbitration mechanisms for steering the selec-
tion.

An agent programming language is a glue for assembling
agent’s behaviours which facilitate an efficient use of its
knowledge bases and interface(s) to the environment. A pro-
gramming language is a software engineering tool, in the
first place. Even though its primary utilization is to provide
expressive means for behaviour encoding, at the same time
it has to fulfill high requirements on modern programming
languages. Programs have to be easily readable and under-
standable. In order to allow for a rigorous study of theoreti-
cal properties of resulting agent systems, the semantics must
be simple and transparent, without hidden mechanisms, yet
the language has to be flexible enough to allow a strong sup-
port for program decomposition and code re-use.

I take a liberal engineering stance to the design of agent
programming frameworks. In this report I describe a generic
agent oriented architecture of Behavioural State Machines
(Novák 2007), together with a brief discussion of Jazzyk,
an implemented programming language for BSM. Finally,
I also discuss appropriateness of the BSM framework for
agent programming and provide a brief overview of an on-
going and future work on it. The introduced ideas are illus-
trated on a running example of an office space robot using



Answer Set Programming (see e.g. (Baral 2003)) to repre-
sent its beliefs about the environment.

Behavioural State Machines
Behavioural State Machine is a general purpose computa-
tional model based on the Gurevich’s Abstract State Ma-
chines (Börger & Stärk 2003), adapted to the context of
agent oriented programming.

The underlying abstraction is that of a transition sys-
tem, similar to that used in most logic based state-of-the-art
BDI agent programming languages AgentSpeak(L)/Jason, or
3APL (Bordini et al. 2005). States are agent’s mental states,
i.e. collections of partial states of its KR modules (agent’s
partial knowledge bases) together with a state of the environ-
ment. Transitions are induced by mental state transformers
(atomic updates of mental states). An agent system seman-
tics is, in operational terms, a set of all enabled paths within
the transition system, the agent can traverse during its life-
time. To facilitate modularity and program decomposition,
BSM provides also a functional view on an agent program,
specifying a set of enabled transitions an agent can execute
in a given situation.

Behavioural State Machines draw a strict distinction be-
tween the knowledge representational layer of an agent and
its behavioural layer. To exploit strengths of various KR
technologies, the KR layer is kept abstract and open, so that
it is possible to plug-in different heterogeneous KR modules
as agent’s knowledge bases. The main focus of BSM com-
putational model is the highest level of control of an agent:
its behaviours.

BSM framework was first presented in (Novák 2007),
therefore some technical details are omitted here and I fo-
cus on a description of the most fundamental issues.

Syntax
Because of the openness of the introduced architecture,
knowledge representation components of an agent are kept
abstract and only their fundamental characteristics are cap-
tured by formal definitions.

Basically, a KR module has to provide a language of
query and update formulae and two sets of interfaces: entail-
ment operators for querying the knowledge base and update
operators to modify it.

Definition 1 (KR module) A knowledge representation
moduleM = (S,L,Q,U) is characterized by

• a set of states S,
• a knowledge representation language L over some do-

mains D1, . . . ,Dn and variables over these domains.
L ⊆ L denotes a fragment of L including only ground
formulae, i.e. such that do not include variables.

• a set of query operators Q. A query operator |=∈ Q is a
mapping |=: S × L → {>,⊥},

• a set of update operators U . An update operator ⊕ ∈ U
is a mapping ⊕ : S × L → S.

KR languages are compatible, when they include variables
over the same domain D and their sets of query and update

operators are mutually disjoint. KR modules with compati-
ble KR languages are compatible as well.

Each query and update operator has an associated identi-
fier. For simplicity, these are not included in the definition,
however I use them throughout the text. When used as an
identifier in a syntactic expression, I use informal prefix no-
tation (e.g. |= ϕ, or ⊕ϕ), while when used as a semantic
operator, infix notation is used (e.g. σ |= ϕ, or σ ⊕ ϕ).

Example 1 (running example) Consider an office space
robot using two knowledge bases B and G to keep track
of its beliefs and goals implemented using Answer Set Pro-
gramming and Prolog respectively. Additionally, the robot
features an interface C to its body realized in Java.

B = (2AnsProlog∗ ,AnsProlog∗, {|=ASP}, {⊕ASP ,
	ASP}) is a KR module realizing an ASP knowledge base.
The underlying language is AnsProlog∗ (Baral 2003). It
includes variables over atoms and function symbols. A set
of states are all well-formed AnsProlog∗ programs (sets of
clauses). There is a single query and two update operators.
Query operator |=ASP corresponds to the skeptical version
of entailment in ASP, i.e. P |=ASP ϕ iff ϕ is true in all an-
swer sets of the program P . The two primitive update opera-
tors ⊕ASP and 	ASP stand for an update by and retraction
of an AnsProlog∗ formula (a partial program) to/from the
knowledge base.

A KR module connecting the agent with its environment
(its body) C = (ΣJavaVM , Java, {|=eval}, {⊕eval}) is a for-
malization of an interface to a running Java virtual machine.
The set of Java KR module states ΣJavaVM is an abstraction
of all states of memory of a running VM (initialized by load-
ing of a Java program). Both query and update operators
|=eval , ⊕eval take a Java expression and execute it in the
context of the VM. The query operator |=eval returns > iff a
Java expression φ evaluates to True, otherwise it returns ⊥.
Only expressions not modifying the actual module state are
allowed as query formulae.

Finally, G = (2Prolog ,Prolog , {|=Prolog}, {⊕Prolog}) is
a Prolog-based KR module capturing robot’s goals. The set
of all Prolog programs represents the set of states. Both
the entailment operator |=Prolog and the update operators
⊕Prolog correspond to the usual Prolog query evaluation.

Modules B, C and G are compatible. Both AnsProlog∗

and Prolog include variables over terms, i.e. strings of al-
phanumeric characters, which is also a basic type of Java.

Query formulae are the syntactical means to retrieve infor-
mation from KR modules:

Definition 2 (query) LetM1, . . . ,Mn be a set of compati-
ble KR modules. Query formulae are inductively defined:

• if ϕ ∈ Li, and |=∈ Ui corresponding to someMi, then
|= ϕ is a query formula,

• if φ1, φ2 are query formulae, so are φ1 ∧ φ2, φ1 ∨ φ2 and
¬φ1.

The informal semantics is straightforward: if a language ex-
pression ϕ ∈ L is evaluated to true by a corresponding query
operator |= w.r.t. a state of the corresponding KR module,
then |= ϕ is true in that state as well.



Subsequently, I define mental state transformer, the prin-
cipal syntactic construction of BSM framework.

Definition 3 (mental state transformer) LetM1, . . . ,Mn

be a set of compatible KR modules. Mental state transformer
expression (mst) is inductively defined:

1. skip is a mst (primitive),
2. if ⊕ ∈ Ui and ψ ∈ Li corresponding to someMi, then
⊕ψ is a mst (primitive),

3. if φ is a query expression, and τ is a mst, then φ −→ τ is
a mst as well (conditional),

4. if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s too
(choice and sequence).

An update expression is a primitive mst. The other three
(conditional, sequence and non-deterministic choice) are
compound mst’s. Informally, a primitive mst is encoding
a transition between two mental states, i.e. a primitive be-
haviour. A standalone mental state transformer is also called
an agent program over a set of KR modulesM1, . . . ,Mn.

A mental state transformer encodes an agent behaviour. I
take a radical behaviourist viewpoint, i.e. also internal tran-
sitions are considered a behaviour. As the main task of an
agent is to perform a behaviour, naturally an agent program
is fully characterized by a single mst (agent program) and a
set of associated KR modules used in it. Behavioural State
Machine A = (M1, . . . ,Mn,P), i.e. a collection of com-
patible agent KR modules and an associated agent program,
completely characterizes an agent system A.

Semantics
As was sketched above, the underlying semantics of BSM is
that of a transition system over agent’s mental states.

Definition 4 (state) Let A be a BSM over KR modules
M1, . . . ,Mn. A state of A is a tuple σ = 〈σ1, . . . , σn〉 of
KR module states σi ∈ Si, corresponding toM1, . . . ,Mn

respectively. S denotes the space of all states over A.

σ1, . . . , σn are partial states of σ. A state can be modified
by applying primitive updates on it and query formulae can
be evaluated against it. Query formulae cannot change the
actual agent’s mental state, i.e. they are side effects free.

To evaluate a formula in a BSM state by query and update
operators, the formula must be ground. Transformation of
non-ground formulae to ground ones is provided by means
of variable substitution. A variable substitution is a map-
ping θ : L → L replacing every occurrence of a variable
in a KR language formula by a value from its corresponding
domain. A variable substitution θ is ground w.r.t. φ, when
the instantiation φθ is a ground formula.

Informally, a primitive ground formula is said to be true
in a given BSM state w.r.t. a query operator, iff an execution
of that operator on the state and the formula yields >. The
evaluation of compound query formulae inductively follows
usual evaluation of nested logical formulae.

Notions of an update and update set are the bearers of
the semantics of mental state transformers. An update of
a mental state σ is a tuple (⊕, ψ), where ⊕ is an update
operator and ψ is a ground update formula corresponding to

some KR module. The syntactical notation of a sequence of
mst’s ◦ corresponds to a sequence of updates, or update sets,
denoted by the semantic sequence operator •. Provided ρ1

and ρ2 are updates, also a sequence ρ1 • ρ2 is an update. A
sequence of update sets ν1 • ν2 yields all possible sequential
combinations of primitive updates from these sets ν = {ρ1 •
ρ2|(ρ1, ρ2) ∈ ν1 × ν2}.

A simple update corresponds to the semantics of a primi-
tive mst. Sequence of updates corresponds to a sequence of
primitive mst’s. An update set is a set of updates and corre-
sponds to a mst encoding a non-deterministic choice.

Given an update, or an update set, its application on a state
of a BSM is straightforward. Formally:

Definition 5 (applying an update) The result of applying an
update ρ = (⊕, ψ) on a state σ = 〈σ1, . . . , σn〉 of a BSM A
over KR modulesM1, . . . ,Mn is a new state σ′ = σ

⊕
ρ,

such that σ′ = 〈σ1, . . . , σ
′
i, . . . , σn〉, where σ′i = σi ⊕ ψ,

and both ⊕ ∈ Ui and ψ ∈ Li correspond to someMi of A.
Inductively, the result of applying a sequence of updates

ρ1 • ρ2 is a new state σ′′ = σ′
⊕
ρ2, where σ′ = σ

⊕
ρ1.

The semantics of a mst in terms of an update set is deter-
mined by the following calculus:

>
yields(skip,σ,θ,∅)

>
yields(⊕ψ,σ,θ,{(⊕,ψθ)}) (primitive)

yields(τ,σ,θ,ν), σ|=φθ
yields(φ−→τ,σ,θ,ν)

yields(τ,σ,θ,ν), σ 6|=φθ
yields(φ−→τ,σ,θ,∅) (condition)

yields(τ1,σ,θ,ν1), yields(τ2,σ,θ,ν2)
yields(τ1|τ2,σ,θ,ν1∪ν2) (choice)

yields(τ1,σ,θ,ν1 6=∅), ∀ρ∈ν1:yields(τ2,σ
⊕
ρ,θ,νρ)

yields(τ1◦τ2,σ,θ,
⋃
∀ρ∈ν1

{ρ}•νρ) (sequence)

yields(τ1,σ,θ,∅), yields(τ2,σ,θ,ν2)
yields(τ1◦τ2,σ,θ,ν2) (sequence)

A mental state transformer τ of a BSM A yields an up-
date set ν in a state σ under a variable substitution θ, iff
yields(τ, σ, θ, ν) is derivable.

The functional view on a mst is the primary means of com-
positional modularity in BSM. Mental state transformers en-
code functions yielding update sets over states of a BSM.
Primitive mst skip results in an empty update set, while a
proper update expression yields a singleton update set. The
semantics of a conditional mst is provided for two cases ac-
cording to a validity of the query condition. If the left hand
side query condition holds, the resulting update set corre-
sponds to that of the right hand side mst. Otherwise, the
semantics of a conditional mst is equivalent to skip. Con-
ditional mst’s provide a means for mst specialization (w.r.t.
their applicability) and facilitate syntactical nesting of BSM
code blocks.

A non-deterministic choice of two, or more mst’s denotes
a function yielding a unification of their corresponding up-
date sets. Additionally, a sequence of mst’s allows a fine-
grained steering of the update selection.

Finally, the operational semantics of an agent is defined
in terms of all possible computation runs induced by a cor-
responding Behavioural State Machine.



Definition 6 (BSM semantics) A BSM A = (M1, . . . ,
Mn,P) can make a step from state σ to a state σ′ (induces a
transition σ → σ′), if there exists a ground variable substi-
tution θ, s.t. the agent program P yields a non-empty update
set ν in σ under θ and σ′ = σ

⊕
ρ, where ρ ∈ ν is an up-

date.
A possibly infinite sequence of states σ1, . . . , σi, . . . is a

run of BSM A, iff for each i ≥ 1, A induces a transition
σi → σi+1.

The semantics of an agent system characterized by a BSM
A, is a set of all runs of A.

Even though the introduced semantics of Behavioural State
Machines speaks in operational terms of sequences of men-
tal states, an agent can reach during its lifetime, the style
of programming induced by the formalism of mental state
transformers is rather declarative. Primitive query and up-
date formulae are treated as black-box expressions by the
introduced BSM formalism. On this high level of control,
they rather encode what and when should be executed, while
the issue of how is left to the underlying KR module. I.e.,
agent’s deliberation abilities reside in its KR modules, while
its behaviours are encoded as a BSM.

Implementation

In order to practically experiment with BSM agents, I devel-
oped Jazzyk, an implemented programming language of Be-
havioural State Machines with an accompanying interpreter.

Each BSM KR module provides a set of named query
and update operators, identifiers of which are used in prim-
itive query/update expressions. Invocations of KR module
operators take the form “<operation> <module> ‘[{’
<expression> ‘}]’ ”. Compound query expressions are
constructed from primitive ones and brackets.

The core of BSM syntax are conditional nested rules of
the form query −→ mst . These are translated in Jazzyk
as “when <query> then <mst>”. Mst’s can be joined
using a sequence ‘,’ and choice ‘;’ operators corresponding
to BSM operators ◦ and | respectively. The operator prece-
dence can be managed using braces ‘{’, ‘}’, resulting in an
easily readable nested code blocks syntax. Finally, syntac-
tic sugar of “when-then-else” conditional mst is intro-
duced as well.

Figure 1 lists an example of a Jazzyk code for the robot
from Example 1. In the normal mode of operation, the robot
moves randomly around and when interrupted by somebody,
it smiles and utters a greeting. When it detects low battery
alert, it switches off all the energy consuming features and
tries to get to a docking station, where it can recharge.

The semantics of the Jazzyk interpreter is that of BSM
with few simplifications to allow for an efficient computa-
tion: 1) query expressions are evaluated sequentially from
left to right, 2) the KR modules are responsible to provide
a single ground variable substitution for declared free vari-
ables of a true query expression, and 3) before performing an
update, all the variables provided to it must be instantiated.

/∗ Initialization ∗/
declare module beliefs as ASP /∗ initialization omitted ∗/
declare module goals as Prolog /∗ initialization omitted ∗/
declare module body as Java /∗ initialization omitted ∗/

/∗ Perceptions handling ∗/
when sense body (X,Y) [{ GPS.at(X,Y)}]
then adopt beliefs [{ at(X,Y) }] ;

/∗ Default operation ∗/
when sense body [{ (Battery.status() == OK) }] then {

/∗ Move around ∗/
perform body [{ Motors.turn(Rnd.get(), Rnd.get()) }] ;
perform body [{ Motors.stepForward() }]

} else
{

/∗ Safe emergency mode − degrade gracefully ∗/
perform body [{ Face.smile(off) }] ;
perform body [{ InfraEye.switch(off)}] ;
update goals [{ assert(dock) }]

} ;

/∗ Goal driven behaviour ∗/
when query goals [{ dock }] then {

when query beliefs (X,Y) [{ position(dock station, X, Y) }]
then {

perform body (X,Y) [{ Motors.turn(X,Y) }] ;
perform body (X,Y) [{ Motors.stepForward() }]

}
} ;

/∗ Commitment handling ∗/
when query goals [{ dock }] and

query beliefs [{ position(dock station, X, Y), at(X,Y) }]
then update goals [{ retract(dock) }] ;

/∗ Interruption handling ∗/
when sense body (X) [{ Visual.see(X) }] and

query beliefs (X) [{ friend(X), not met(X) }]
then {

perform body [{ Face.smile(on) }] ,
perform body [{ Audio.say(”Hello!”) }] ,
adopt beliefs (X) [{ met(X) }]

}

Figure 1: Example of an office space robot agent.

Agent oriented programming
The plain formalism of Behavioural State Machines, does
not feature any of the usual characteristics of rational agents
(Wooldridge 2000), such as goals, beliefs, intentions, com-
mitments and alike, as first class citizens. In the following, I
discuss the example in Figure 1 and demonstrate how some
features, desirable for rational agents, are implemented in
Jazzyk using the BSM framework.

Heterogeneous KR The agent uses three KR modules
corresponding to those introduced in the Example 1:
beliefs - an ASP module representing agent’s beliefs
(B in Example 1) with a query operator query and two
update operators adopt, drop, corresponding to |=ASP ,



⊕ASP and 	ASP ; body - a Java module for interfacing
with the environment (C), providing query and update oper-
ators sense and perform (|=eval and⊕eval ) ; and goals
- a Prolog module to represent goals (G), with operators
query and update (|=Prolog and ⊕Prolog ).

The robot in Figure 1 uses two different knowledge bases
(KB) to store information representing its mental attitudes:
beliefs and goals. While it employs only a single belief base
to store the information about the world, in general it might
be useful to employ several KBs using heterogeneous KR
technologies. Instead of fixing the structure of an agent sys-
tem, it should be a programmer who chooses a number, roles
and relations between the KBs. The BSM framework allows
an easy integration of heterogeneous KBs in a transparent
and flexible way.

Situatedness and embodiment Interaction with an envi-
ronment is facilitated via the same mechanism as handling
of various knowledge bases. The essence of an interface
to an environment are sensor and effector operators. The
scheme is the same as for query and update interfaces of a
pure KR module. Metaphorically, in line with behavioural
roboticists, we could say that KR module for interfacing
with an environment uses the world as its own representa-
tion (Brooks 1991). Moreover, given the flexibility of BSM
framework, an agent can easily interface with various as-
pects of its environment using different modules. Social and
communicating agents can use specialized modules to inter-
face with social environments they participate in and at the
same time perform actions in other environments they are
embodied in.

In our example, the robot interacts with its environment
via the module body. Figure 1 shows examples of percep-
tion handling and performing actions.

Reactiveness, scripts and priorities The model of Be-
havioural State Machines is primarily suitable for mixing
of non-deterministic choice of reactive and script-like, so
called ballistic (Arkin 1998), behaviours. An example of
such is listed in Figure 1, in the part “Interruption han-
dling”, where the robot first smiles, says “Hello!” and fi-
nally records a notice about the event. Such sequential, or
script-like behaviours can pose a problem if an agent per-
forms more than one exogenous action in a sequence. If the
subsequent action depends on the previous one, which can
possibly fail, the whole script can fail.

A BSM agent program effectively forms a syntactical tree
with inner nodes of AND and OR types, corresponding to
operators ◦ and | respectively. This allows efficient steering
of the mst selection process and even introducing priorities.

Consider an agent program of the form:

when φ1 then <mst1> ,
when φ2 then {

when φ2,1 then <mst2,1> ,
when φ2,2 then <mst2,2>

} ,
. . . ,
when φn then <mstn>

At the top level, sequence of conditional mst’s encodes
an ordered set of behaviours applicable in possibly indis-
tinguishable situations, ordered according to the priorities a
programmer assigned to them. Additional nesting, as seen
in the second mst, allows for even a finer grained control of
the agent’s deliberation cycle.

Goal driven behaviour and commitment strategies The
robot in the Figure 1 uses goals to steer its behaviours. Goals
are used to keep a longer-term context of the agent (dock-
ing), yet still allow it to react, i.e. change the focus to unex-
pected events (meeting a friend), in an agile manner.

Goals come with a certain commitment strategy. Different
types of goals require different types of commitments (e.g.
achievement vs. maintenance goals). The BSM model is
quite flexible w.r.t. commitment strategy implementation. In
the presented example, the commitment w.r.t. the goal ϕ =
dock can be informally written as an LTL formula �(Gϕ ∧
Bϕ =⇒ ♦¬Gϕ).

Different commitment strategies can be implemented in
the BSM model. The study of various types of commitment
strategies and formal specification methods for BSM will be,
however, a subject of our future work.

Discussion and related work
The primary motivation for development of computational
model of Behavioural State Machines is my research to-
wards studying the applicability of non-monotonic reason-
ing techniques in the context of cognitive agent systems and
cognitive robotics. Development of BSM framework was
therefore driven by a resulting need for an architecture sup-
porting 1) integration of heterogeneous knowledge represen-
tation technologies in a single agent system and 2) flexibility
w.r.t. various types of behaviours.

The architecture of BSM is open, modular and pragmatic.
I.e. one not dictating a programmer ways to implement an
agent, especially w.r.t. internal structure of its mental state,
yet allowing him to freely exploit techniques at hand, even if
that would mean a bad practice. It should be a choice of KR
technologies and a set of methodological guidelines, which
lead a programmer to a design of a practical agent system,
rather than a domain independent choice made by creators
of a programming framework.

The BSM framework is a culmination of the line of re-
search launched by Modular BDI Architecture (Novák &
Dix 2006). It borrows the idea and the style of KR modules
integration from this previous work (Novák & Dix 2006),
while its theoretical foundations stem rather from the well
studied general purpose computational model of Abstract
State Machines (ASM) (Börger & Stärk 2003).

In particular, the BSM framework can be seen as a special
class of ASM, with domain universes ground in KR modules,
lacking parallel execution to maintain atomicity of transition
steps and featuring specialized type of sequences of updates.
The close relationship to the formalism of ASM, allows an
easy transfer of various ASM extensions, such as turbo, dis-
tributed, or multi-agent ASM (Börger & Stärk 2003), to BSM



framework. Moreover, ASM formalism comes with a spe-
cialized modal logic for reasoning about ASM programs,
what we hope to exploit in the study of formal specification
as well as verification methods for BSM.

IMPACT (Subrahmanian et al. 2000) system features a
similar degree of freedom, w.r.t. heterogeneous KR tech-
nologies, as the BSM framework. It was designed to support
integration of heterogeneous information sources as well as
agentification of legacy applications. IMPACT agent con-
sists of a set of software packages with a clearly defined in-
terface comprising a set of data types, data access functions
and type composition operations. An agent program is a set
of declarative rules involving invocations of the underlying
components via the predefined data access functions. While
a BSM program encodes a merely non-deterministic choice
of conditional update expressions, and thus facilitates reac-
tive behaviours of the agent, various semantics of IMPACT
are strictly grounded in declarative logic programming. For
a more thorough discussion of the related work see the orig-
inal technical note (Novák 2007).

As far as the original Shoham’s definition of an AOP
framework is concerned, BSM framework intentionally
avoids to deal with the language for describing agent’s men-
tal states. Instead it focuses more on the programming lan-
guage for its behaviours. KR language, as well as the se-
mantics of KR modules is left open. However, through the
requirement of providing query operators, the existence of
a well defined semantics of the underlying knowledge base
is secured. The BSM programming language is merely a
tool for design of a variety of interactions between the KR
modules of an agent. Moreover, by adding an appropriate
query/update interface to a legacy system, e.g. a relational
database, it can be easily wrapped into a service agent enve-
lope, or made a part of a more sophisticated agent system,
i.e. “agentified” in the very sense of Shoham’s agentifica-
tion.

Conclusion
In the presented report I describe the theoretical frame-
work of Behavioural State Machines originally introduced
in (Novák 2007). BSM is an architecture for programming
flexible and robust hybrid agents, exploiting heterogeneous
KR technologies and allowing an easy agentification of low
level interfaces and information sources. Its semantics is
primarily obeying principles of KR modularity, and flexibil-
ity in terms of encoding reactive, as well as sequential be-
haviours. It draws a strict distinction between the represen-
tational vs. behavioural aspects of an agent and primarily
focuses on the later. While agent’s deliberation resides in its
KR modules, a BSM agent program encodes its behaviours.

I also discuss Jazzyk, an implemented programming lan-
guage for BSM framework. The implemented interpreter,
together with an initial set of KR modules was released in
late 2007 under GNU GPL license. The project website is
hosted at http://jazzyk.sourceforge.net/.

In order to substantiate the presented theoretical frame-
work in a real world experiment and drive the future re-
search, we are currently intensively working on a showcase
agent system similar to the one described in (van Lent et al.

1999): a non-trivial BDI-based bot in a simulated 3D envi-
ronment of a Quake-based computer game using ASP solver
Smodels (Syrjänen & Niemelä 2001) in its belief base, while
the bot’s behaviours are implemented in Jazzyk. Smodels
plug-in serves loosely as the agent’s deliberation component
and the control loop is facilitated by the Jazzyk interpreter.

In the future, I will focus on studying higher level formal
agent specification methods based on modal logic, which al-
low automatic translation into the plain language of BSM. I
briefly touched on this issue in the discussion of goal ori-
ented behaviours and agent commitment strategies. This
research will be pragmatically driven by the already men-
tioned showcase demo application.

References
Arkin, R. C. 1998. Behavior-based Robotics. Cambridge,
MA, USA: MIT Press.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Bordini, R. H.; Dastani, M.; Dix, J.; and Seghrouchni, A.
E. F. 2005. Multi-Agent Programming Languages, Plat-
forms and Applications, volume 15 of Multiagent Systems,
Artificial Societies, and Simulated Organizations. Kluwer
Academic Publishers.
Börger, E., and Stärk, R. F. 2003. Abstract State Ma-
chines. A Method for High-Level System Design and Anal-
ysis. Springer.
Brooks, R. A. 1991. Intelligence without representation.
Artif. Intell. 47(1-3):139–159.
Novák, P., and Dix, J. 2006. Modular BDI architecture. In
Nakashima, H.; Wellman, M. P.; Weiss, G.; and Stone, P.,
eds., AAMAS, 1009–1015. ACM.
Novák, P. 2007. An open agent architecture: Fundamentals
(revised version). Technical Report IfI-07-10, Department
of Informatics, Clausthal University of Technology.
Shoham, Y. 1993. Agent-oriented programming. Artif.
Intell. 60(1):51–92.
Subrahmanian, V. S.; Bonatti, P. A.; Dix, J.; Eiter, T.;
Kraus, S.; Ozcan, F.; and Ross, R. 2000. Heterogenous
Active Agents. MIT Press.
Syrjänen, T., and Niemelä, I. 2001. The Smodels System.
In Eiter, T.; Faber, W.; and Truszczynski, M., eds., LP-
NMR, volume 2173 of Lecture Notes in Computer Science,
434–438. Springer.
van Lent, M.; Laird, J. E.; Buckman, J.; Hartford, J.;
Houchard, S.; Steinkraus, K.; and Tedrake, R. 1999. Intel-
ligent agents in computer games. In AAAI/IAAI, 929–930.
Wooldridge, M. 2000. Reasoning about rational agents.
London: MIT Press.


