Noname manuscript No.
(will be inserted by the editor)

The Multi-Agent Programming Contest from 2005-2010

From gold collecting to herding cows

Tristan Behrens - Mehdi Dastani - Jiirgen Dix -
Michael Koster - Peter Novak

the date of receipt and acceptance should be inserted later

Abstract The Multi-Agent Programming Contest is an annual series of competitions in
programming multi-agent systems in which a team of agents participates in a simulated
cooperative scenario. It started in 2005 and is organised in 2010 for the sixth time. The
Contest is an attempt to stimulate research in the area of multi-agent system development
and programming by (i) identifying key problems in the field and (ii) collecting suitable
benchmarks that can serve as milestones for testing multi-agent programming languages,
platforms and tools.

This article provides a short history of the contest and reports in more detail on the cows
and cowboys scenario introduced in 2009. We briefly discuss the underlying technological
background and conclude with a critical discussion of the experiences and lessons learned.

Keywords AgentContest - multi-agent programming - competition - multi-agent bench-
mark problems - coordination

CR Subject Classification TBD

1 Introduction

The Multi-Agent Programming Contest series (Contest) is an attempt to stimulate research
in the area of multi-agent system development and programming by 1) identifying key prob-
lems, 2) collecting suitable benchmarks, and 3) gathering test cases which require and en-
force coordinated action that can serve as milestones for testing multi-agent programming
languages, platforms and tools. In particular, the Contest is implemented as an international
on-line tournament between multi-agent systems designed to solve a cooperative task in a

P. Novak
Department of Cybernetics, Czech Technical University in Prague, Karlovo ndmésti 13, CZ-12135 Prague 2,
Czech Republic, E-mail: peter.novak @fel.cvut.cz

M. Dastani
Intelligent Systems Group, Utrecht University, P.O.Box 80.089, NL-3508 TB Utrecht, The Netherlands, E-
mail: mehdi@cs.uu.nl

J. Dix - T. Behrens - M. Koster
Department of Informatics, Clausthal University of Technology, Julius-Albert-Str. 4, D-38678 Clausthal-
Zellerfeld, Germany, E-mail: {dix, behrens} @in.tu-clausthal.de, michael koester @tu-clausthal.de



dynamic environment. Here, we provide a detailed report of the 2009 edition of the Contest
(the 4th subsequent Contest edition which we organize already since 2006). The 2010 Con-
test is scheduled for September 2010 and has not taken place at the time when this article
was finalized. Besides the description of the 2009 Contest we also give an overview of the
Contest series, the motivation behind it and the underlying technological background.

1.1 Motivation

Competitions in research communities such as the one of artificial intelligence and au-
tonomous agent and multi-agent systems benefited tremendously from a rise of various
successful efforts towards establishing a competitions applying research results in more,
or less realistic challenging scenarios. Apart from platforms for evaluation and comparison
of state of the art in a particular area, such competitions also serve as a driver and catalyst
developments of the particular research community and their evolution tends to generate
challenging research problems and thus push the boundaries of the established knowledge
in the area.

Apart from the already mentioned general ambitions of a research competition, the main
motivation behind the Contest was to provide a fair platform for comparison of single- and
multi-agent programming frameworks and thus taste, test and challenge the current state of
the art in the area. Historically, our main focus was on deliberative techniques that are based
on formal approaches and computational logics. It is this focus on deliberation that resulted
in some of the most characteristic features of the contest scenarios. The Contest scenarios
reflect multi-agent system environments in which individual agents operate. Each agent op-
erates in such an environment by sensing its state, deliberating about actions to be selected,
and perform the decided actions in the environment. In this contest, the underlying technical
infrastructure implements an environment and manages the interaction between individual
agents and the environment. In particular, the contest infrastructure provides agents some
information about the state of the environment, allows them to deliberate about their next
step in a relatively wide time-window, and takes the agents’ decisions and realizes the effect
of those decisions.

The second important feature of the latest Contest editions which historically emerged is
the emphasis on scenarios which not only encourage cooperative problem solving, but rather
enforce it by their structure and mechanics. The Contest organizers put gradually more and
more emphasis on scenarios where coordination among agents is a necessary condition for
succeeding in the Contest.

Thirdly, unlike many other multi-agent competitions, in the design of the underlying
technical infrastructure of the Contest we took a rather liberal stance and made sure not to
impose any unnecessary constraints on the participating implementations. Namely, first and
foremost we are interested in evaluating novel approaches to implementation of multi-agent
coordination, task sharing, and joint activities.

As a consequence, the design and implementation of a suitable multi-agent backend
infrastructure, such as e.g., inter-agent communication middleware, the employed program-
ming language/framework as well as an execution platform, suitable for their solution are
left to creativity and competence of the participants. Except a soft requirement that the im-
plemented solutions should satisfy the definition of a decentralized multi-agent system, the
Contest organizers do not impose any further constraints on the systems taking part in the
Contest.



Finally, while not being a hard criterion for defining success in the Contest, implementa-
tion and facilitation of state-of-the-art techniques and approaches to programming single, as
well as multi-agent systems, related methodologies, design tools and debugging techniques
was always encouraged. However, in order to provide a competitive basis for evaluation of
system complying with this criterion, participation of multi-agent solutions built on top of
perhaps even radically different approaches was never discouraged.

1.2 Plan of this paper

In the next section we report on the past contest editions and discuss related competitions.
Then we give a detailed explanation of the underlying MASSim platform and their use in
the classroom. In Section 4, the main part of this paper, the 2009 edition of the contest is
described. Emphasis is put on the new scenario and how it ensures cooperative behaviour
among the agents. Section 5 addresses the lessons learned in the past few years and gives an
outlook to the future.

2 History and other contests

The Multi-Agent Programming Contest was initiated in 2005 and its evolution can be de-
scribed by three distinct phases. The first phase of the contest, which consisted on one edi-
tion, was based on the food gatherers scenario. This edition was organised in 2005 by M.
Dastani and J. Dix (with the invaluable help of Peter Novak on all technical matters). The
second phase was based on the gold miners scenario and consisted of two editions. These
editions were organised in 2006 and 2007 by M. Dastani, J. Dix and P. Novak. Finally, the
third phase was based on the cow and cowboys scenario and consisted of two editions. The
first edition was organised in 2008 by T. Behrens, M. Dastani, J. Dix, and P. Novak, and
the last edition of the this phase was organised in 2009 by the same group extended with
M. Koster. Videos from all edition of this contests, the software packages as well as further
information can be found on our web page'.

The first edition of the Multi-Agent Programming Contest? [8] was organised in asso-
ciation with CLIMA-VI workshop. The scenario was a grid-like world populated by food-
tokens, a depot and agents. The goal was to collect food and store it in the depot. Partic-
ipants were required to submit a description of analysis, design and implementation of a
multi-agent system according to the constraints given by the organizers. Also the partici-
pants were required to submit an executable implementation of a complete MAS, that is
agents and environments. The submitted implementations were then compared by an evalu-
ation committee (nine people) with respect to the following criteria:

1. the original, innovative, and effective application of computational logic techniques in
solving specific multi-agent issues identified in this application,

2. the performance of the executable implementation, based on the amount of food that is
collected by the multi-agent system in a certain period of time (all were executed on the
same machine), and

3. the quality of the description of analysis, design and implementation of the multi-agent
system, the elegance of its design and implementation, and the ease of installation and
execution of the program.

http://multiagentcontest.org
http://multiagentcontest.org/2005



Fig. 1 The gold-miners scenario of 2006 and 2007.

In 2005 we have had four participating teams with two winning teams. The two winning
teams were Simon Coffey and Dorian Gaertner [25], from Imperial College London, UK,
and Carlos Cares, Xavier Franch and Enric Mayol [24], from Universitat Politecnica de
Catalunya, Spain, and Universidad de la Frontera, Temuco, Chile. The third team consisted
of Robert Logie, Jon G. Hall and Kevin G. Waugh [26], from Osaka Gakuin University,
Japan, and the Open University, UK. The last team that participated in this edition were
Eder Mateus, Nunes Goncalves and Guilherme Bittencourt [27] from Federal University of
Santa Catarina. The food gatherers phase made it obvious that it is necessary to provide
the environment to the participants. A single shared environment would make it easier to
directly compare different agent-implementations and would of course allow the participants
to concentrate on the agents, which are the focus of the competition.

The second edition of Multi-Agent Programming Contest® [9] was in 2006 and organ-
ised in association with CLIMA-VII workshop. This edition was marked by the publication
of an open, internet-based simulation platform in which the environment was integrated.
Thus everyone who could handle TCP/IP has been capable of participating in the contest.
The scenario was quite similar to the food gathering scenario. Again there has been a grid-
like world and a depot for collecting resources. Some obstacles were added to the envi-
ronment and the food-resources have been replaced by gold-pieces. Two teams of agents
competed in one and the same environment for gold. Figure 1 shows a screenshot of the
visualization.

In 2006 we had three participating teams. The winner of the tournament was team brazil
by Rafael Bordini, Jomi Hiibner, and Daniel Tralamazza [22] from University of Durham,
UK, Universidade Regional de Blumenau, Brazil, and Ecole Polytechnique Federale de Lau-
sanne, Switzerland. The second place took team spain by Carlos Cares, Xavier Franch and

3 http://multiagentcontest.org/2006



Enric Mayol [21] from Universitat Politecnica de Catalunya, Spain, and Universidad de La
Frontera, Chile. The third team germany by Stephan Schiffel and Michael Tielscher [20]
from Dresden University of Technology, Germany.

The third edition of Multi-Agent Programming Contest* [10] was in 2007 and organized
in association with ProMAS’07 workshop. This edition of the contest was the second install-
ment of the gold miners scenario. The environment has been adapted only in one detail, i.e.,
agents could be pushed away by other agents. There were six participating teams. The fol-
lowing is the list of participating teams where the order of the teams in the list reflects their
final ranking in the competition.

1. JiaclVteam by A. Hessler, B. Hirsch, and J. Keiser from DAI-Labor, Technische Uni-
versitit Berlin, Germany [7].

2. microJiacteam by E. Tuguldur, and M. Patzlaff from DAI-Labor, Technische Universitit
Berlin, Germany [4].

3. Jasonteam by J.F. Hiibner from Universidade Regional de Blumenau, Brazil, and R.H.
Bordini from Durham University, United Kingdom [5].

4. FLUXteam by S. Schiffel, M. Thielscher, and D. Thu Trang from Dresden University of
Technology, Germany [3].

5. APLteam by L. Astefanoaei, C.P. Mol, M.P. Sindlar, and N.A.M. Tinnemeier from Utrecht
University, Netherlands [6].

6. JACKteam by Sebastian Sardina, and Dave Scerri from RMIT University, Australia.

In 2006 the idea behind the specific design of the environment was to confront the par-
ticipants with fundamental problems like obstacle avoiding and environment exploration.
But during two runs of the gold miners scenario it became clear, that the scenario has been
relatively easy to be handled by agents. Agents were really good at using path-planning and
role-assignment to solve the given tasks, but the agents were missing cooperation. In fact
the scenario made it easy to develop agent-teams that do not interact, but still solve the prob-
lem and achieve a high-score. Putting serious thought and experimentation into that problem
yielded the next scenario: Cows and cowboys.

The fourth edition of Multi-Agent Programming Contest® [13] was in 2008 and organ-
ised in association with ProMAS’08 workshop. This contest edition was based on the cows
and cowboys scenario. In this new scenario, the environment became highly dynamic such
that individual agents were forced to cooperate and coordinate their actions. The agents
were operating in a grid-like environment where a couple of obstacles were placed to make
parts of the map inaccessible. Moreover, the environment consisted of cows that moved in
the environment. The behavior of cows were simulated by a flocking-algorithm which was
based on a mathematical model of attraction and repulsion. The goal has been to find cows,
get close to them and scare them into so called corrals. Every cow that ended up in a corral
yielded a point for the score. In comparison to the recent scenario(s), the set of agent-actions
has been restricted to moving and the perception of the agents has been increased in viewing-
range. Figure 2 shows a screenshot of the cows and cowboys scenario. In this edition of the
contest we had seven participating teams. The following is the list of these teams where the
order of the teams in the list reflects their final ranking in the competition.

1. JIAC-TNG by A. Hessler, J. Keiser, T. Kiister, M. Patzlaff, A. Thiele, and Erdene-Ochir
Tuguldur from Technische Universitit Berlin, Germany [15].

4 nttp://multiagentcontest.org/2007
> http://multiagentcontest.org/2008



Fig. 2 The cows and cowboys scenario of 2008 and 2009.

2. Jadex by G. Balthasar, J. Sudeikat and W. Renz from Hamburg University of Applied
Sciences, Germany [16].

3. SHABaN by A.T. Rahmani, A. Saberi, M. Mohammadi, A. Nikanjam, E. Adeli Mosabbeb
and M. Abdoos, from Iran University Of Science and Technology, Iran [17].

4. Krzaczory by J. Szklarski from Institute of Fundamental Technological Research, Poland [12].

5. Jason by J. Hiibner and Gauthier Picard from ENS Mines of Saint Etienne, France, and
R. Bordini from University of Durham, UK [18].

6. Bogtrotters by M. Dragone, D. Lillis, C. Muldoon, R. Tynan, R.W. Collier and G.M.P.
O’Hare from University College Dublin, Ireland [14].

7. KANGAL from Bogazici University, Istanbul, Turkey.

The fifth edition of Multi-Agent Programming Contest® was in 2009 and organised in
association with CLIMA-X workshop. In this edition, the previous version of the cows and
cowboys scenario was extended. This time, cows did not get removed from the map anymore
when they enter a corral. Also fences were introduced that could be opened via switches.
Finally the flocking-algorithm of the cows was adapted to improve the cow-behaviour.

2.1 Survey of related competitions

Our attempt to foster research in development of multi-agent systems for solving cooperative
tasks in highly dynamic environments is by far not a solitary endeavour. In fact, RoboCup
soccer challenge’ is probably the most prominent series of competitions in the wider Al
community, which stems from a motivation similar to ours. However, unlike the Multi-Agent

® http://multiagentcontest.org/2009
7 http://www.robocup.org/



Programming Contest, competitions such as RoboCup soccer are aimed at benchmarking
the state of the art in robotics, multi-robotics, and their integrations. As a consequence,
the RoboCup soccer leagues, whether real or simulated, do not particularly focus on the
state-of-the-art approaches based on formal methods of deliberation and complex planning.
Such techniques are not yet mature enough to compete with more ad-hoc robot control
approaches in scenarios encouraging extremely fast, though imprecise decision making in
(almost) continuous spaces, such as the game of soccer.

Unlike RoboCup soccer leagues, the RoboCup Rescue league® aims at benchmarking a
similar segment of Al approaches applicable in multi-agent systems. In its scenario, the con-
cepts of team cooperation and coordination are extremely important. However, factors such
as the complexity of the simulated environment (complex maps of real-world cities), hard
constraints imposed in the scenario, such as e.g., the limited bandwidth of inter-agent com-
munication and the necessity to execute the resulting multi-agent teams on the organizers’
technical infrastructure significantly increase the threshold of technological difficulty partic-
ipants have to overcome. In Multi-Agent Programming Contest such issues are completely
at a the liberty of the Contest participants and engineering innovation. Creativity in these
issues is welcomed as a first-class issue to be evaluated in the analysis of the tournament
results.

Another example of a multi-agent competition similar in nature to the Multi-Agent Pro-
gramming Contest is the ORTS Real-Time Strategy Game Al Competition (ORTS Competi-
tion). While the motivation of this series of competitions is similar to ours, the focus of the
ORTS competition is on adversarial reasoning in real-time strategy games. Hence, again the
speed of the participating systems matters and the evaluation scenarios presume different
type of reasoning capabilities in the implemented agent teams. Although a simulation of
ORTS evolves in a step-wise fashion similar to the Multi-Agent Programming Contest, the
pace is significantly higher. ORTS updates the simulation 8 times per second, whereas we
update once every 4 seconds. The Multi-Agent Programming Contest-environments have
been discrete in space up to now. And finally, ORTS is not as open as Multi-Agent Program-
ming Contest, when it comes to connecting agents or similar artificial entities.

Finally, a well established tournament of multi-agent systems is the Trading Agents
Competition®. This contest is designed to spur research on common problems, promote def-
initions of benchmarks and standard problem descriptions, and showcase current technolo-
gies. The agents compete against each other in challenging market games. Each edition of
this contest consists of various market games such as Auction games, Market Design games,
and Supply Chain Management games. The main focus of this tournament is on models of
economic behaviour aiming at maximizing (expected) revenue or profits. The focus of this
contest is similar to Multi-Agent Programming Contest as models of economic behavior are
specific deliberation models. However, the focus of Multi-Agent Programming Contest is
on general deliberation models rather than economic behavioral models.

3 The MASSim platform

The MASSim (Multi-Agent Systems Simulation) platform is a testing environment that has
been designed in order to evaluate coordination and cooperation approaches of multi-agent
systems. To this end we employ round-based game simulations with the intention to evaluate
agent-based approaches by letting agent teams compete against each other.

8 http://www.robocuprescue.org/
 http://www.sics.se/tac



The platform itself is implemented in Java running on every operating system that pro-
vides a Java runtime environment. Participants’ teams are connected via TCP/IP and ex-
change plain XML messages with the server. This allows developers to connect their multi-
agent system (possible written in a different programming language) to the server by imple-
menting a simple XML protocol.

A live broadcast of the simulation as well as the results of the tournament are accessible
by the participants through a web server that supports Apache Tomcat. However, since the
configuration of Apache Tomcat is a rather complex task we also offer a small Java program
that provides a live broadcast. This enables developers to see the progress of the simula-
tion easily. Also, after a simulation run a SVG-movie depicting the simulation progress is
generated.

The actual simulation is programmed as a plug-in. The server offers an interface allow-
ing to replace the simulation by exchanging a few classes. Therefore, a simulation developer
only has to care for the game properties and not for the communication with the agents nor
the visualization of the game. This permits us to evolve the simulation and to use various
simulations by just loading different configuration files.

MASSim Platform

a N

Simulation Scenario
Cycle Simulation
Plug-in
i ot Connection
Java RMI Visualization
K Manager
Web server Team 1 Team 2

Fig. 3 MASSim platform overview

Figure 3 summarizes the technical infrastructure of MASSim. In detail, the platform
consists of the following components:

— Core: is the central component that coordinates the interaction of the other components
and implements the tournament schedule.

— Simulation plug-in: describes a discrete game and logically contains the environment
of the agents. This component is based on a plug-in architecture that allows the imple-
mentation and use of new scenarios in an elegant way.



— Agent-server communication: manages the communication between the server and
the agents. The communication relies on the exchange of XML messages. The agents
receive perceptions and can act in the environment by exchanging XML messages with
the server.

— Agent teams: connect to the server via TCP/IP, and communicate using XML-messages.

— Visualization: this component renders each state of the evolution of the environment to
a SVG file. The SVG files can then be viewed in a manner that resembles videos. We
also offer a script to convert these files to a flash movie.

— Web interface: provides online-monitoring functionality. People can use the web inter-
face to monitor the progress of a tournament, including the current tournament results
and the ongoing matches and simulations.

— Debug monitor: is provided for debugging purposes.

The modularity of the platform facilitates to use this system in the classroom. Besides
the availability of a multi-agent system the students only have to start the server and the
monitor in order to develop new agents. This, in combination with the competition among
the students, can help to popularize agent orient programming and the approach of multi
agent systems in general.

4 Multi-Agent Programming Contest 2009: Cows and herders

An unknown species of cattle was recently discovered in the unexplored flatlands of Lemuria.
The cows have some nice features: their carbondioxyde- and methane-output is extremely
low compared to the usual cattle and their beef and milk are of supreme quality and taste.
These facts definitely caught the attention of the beef- and milk-industries. The government
decided to allow the cows to be captured and bred by everyone who is interested and has the
capabilities. Several well-known companies decided to send in their personnel to the fields to
catch as many of them as possible. This led to an unprecedented rush for cows. To maximise
their success the companies replaced their traditional cowboys by artificial herders.

In this year’s agent contest the participants had to compete in an environment for cows.
Each team controlled a group of herders in order to direct the cows into their own corral.
The team with the highest number of cows in the corral at the end won the match. In the
following subsections we present a general description of the Multi-Agent Programming
Contest 2009. Additional information as well as the software (including all environments
from the contest) are published at http://multiagentcontest.org/2009. The concrete
structure of the XML messages are described in the appendix.

4.1 General Description

Each team competes against all other teams in a series of matches. A single match between
two competing teams consists of several simulations. A simulation between two teams is
a competition between them with respect to a certain configuration of the environment.
Winning a simulation yields 3 points for the team, a draw is worth 1 point and a loss 0
points. The winner of the whole tournament is evaluated on the basis of the overall number
of collected points in all the matches during the tournament.

In the contest, the agents from each participating team are executed locally (on the par-
ticipant’s hardware) while the simulated environment, in which all agents from competing



10

teams perform actions, is run on the remote contest simulation server run by the contest or-
ganizers. The interaction/communication between agents from one team is managed locally,
but the interaction between individual agents and their environment (run on the simulation
server) are via Internet. Participating agents connect to the simulation server that provide
the information about the environment.

Each agent from each team connects to and communicates with the simulation server
using one TCP connection. After the initial phase, during which agents from all compet-
ing teams connect to the simulation server, identify and authenticate themselves and get a
general match information, the competition starts. The simulation server controls the com-
petition by selecting the competing teams and managing the matches and simulations. In
each simulation, the simulation server, in a cyclic fashion, provides sensory information
about the environment to the participating agents and expects their reactions within a given
time limit. After a finite number of steps the simulation server stops the cycle and the par-
ticipating agents receive a notification about the end of a simulation. Then the server starts
a new simulation possibly involving the same teams.

4.2 Cooperative cows herding

The environment is a rectangular grid consisting of cells. The size of the grid is specified at

the start of each simulation and is variable. However, it cannot be more than 150 x 150 cells.

The [0,0] coordinate of the grid is in the top-left corner (north-west). The simulated envi-

ronment contains two corrals—one for each team—which serve as a location where cows

should be directed to. Furthermore there can be fences that can be opened using switches.
Each cell of the grid can be occupied by exactly one of the following objects:

— Agents are steered by the participants and can move from one cell to an adjacent cell.

— An obstacle blocks a cell.

— Cows are steered using a flocking algorithm. They can move from one cell to an adjacent
cell. Cows tend to form herds on free areas, keeping the distance to obstacles. If and
agent approaches, cows get frightened and flee.

— Fences can be opened using a button. To open a fence and keep it open an agent has to
stand on a cell adjacent to the respective button. Thus, a switch is activated if the agent
is next to the switch and:

1. the current cell (where the agent is in) does not contain an open or closed fence, and
2. the position of the agent is not diagonal to the switch.

Note that an agent cannot open a fence and then definitely go through it. Instead it needs
help from an ally. Moreover, when fences closes, agents and cows that stand on a fence cell
get pushed into a free cell. There are two corrals, which are rectangular areas, one for each
team. Cows have to be pushed into these corrals. Each teams learns the position and the
dimensions of its corral at the beginning of each simulation.

4.3 Agent Perceptions and Actions

Each agent perceives the contents of the cells in a fixed vicinity around it. It can distinguish
between empty cells, obstacles, cows (distinguished by unique identifiers), fences, buttons,
and other agents. The participants will learn the position and dimensions of their team’s
corral at the beginning of each simulation. Each agent can move to one of the adjacent cells



Fig. 4 The environment is a grid-like world. Agents (red and blue) are steered by the participants. Obstacles
(green) block cells. Cows (brown ovals) are steered by a cow-algorithm. Fences (x-shapes) can be opened by
letting an agent stand on a reachable cell adjacent to the button (slash-shaped). Cows have to be pushed into
the corrals (red and blue rectangles).

if the cell is not blocked by an obstacle, cow, fence, button or another agent. Each agent
perceives a square of cells of size 17 x 17 with the agent in the center. Each team has 10
agents.

Each agent reacts to the received sensory information by indicating which action (in-
cluding the skip action) it wants to perform in the environment. If no reaction is received
from the agent within the given time limit, the simulation server assumes that the agent per-
forms the skip action. Agents have only a local view of their environment, their perceptions
can be incomplete, and their actions may fail.

The simulation server can omit information about particular environment cells, however,
the server never provides incorrect information. Also, agent’s action can fail. In such a case
the simulation server evaluates the agent’s action in the simulation step as the skip action.

4.4 Cow Movement Algorithm

Although we do not consider the details of the cow movement algorithm to be very impor-
tant, we will sketch it here. The complete algorithm is available in the source-code.

For each cow the algorithm considers all the cells that can be reached by it in one step.
Then the weight of these cells is computed. The cow moves to that cell whose weight is
maximal. If there are several maxima, the cow moves randomly to one of them.

The weights for attractive cells — empty space, other cows, and corral cells — are positive.
The weights for repellent cells — agents and obstacles (trees, gates) — are negative. Finally,
cows are slower than agents. They move every third step.



12

Algorithm 1 Cow movement algorithm.

Require: a cow represented by its position vector ¢ € N x N

AN AW =

: let N be the set of the 9 cells adjacent to ¢, including c;

: remove from N all those cells that are not reachable;

: calculate the weights of all cells n € N;

: determine the set M C N, where the weight for each m € M is maximal;
: randomly pick a cell m € M;

. move the cow to m;

Algorithm 2 Calculate the weight of a given cell.

Require: a cell represented by its position vector n € N x N, and a cow-visibility range r € N

1

(SIS KV NI

determine the set C of all cells that are a in the rectangle [n, — r,n, — r+ny +r,n, +r] and that are on the
map;

: setret to 0;
: forallc e Cdo

calculate d the distance between ¢ and n;
get the weight w of ¢ in respect to the cell content;
add w/d to ret;

: end for
. return ret

4.5 Comparison to Multi-Agent Programming Contest 2008 and 2010

The 2009 edition of the Multi-Agent Programming Contest is essentially the same as in
2008 except for four minor differences:

— Cows are not removed from the environment if they enter the corrals. The number of

cows in the corrals after the last step counts.

The cow movement algorithm has been improved in order to yield a more convincing
behavior of the cows.

The new scenario also introduces fences.

The team-size has been increased.

In 2010 we slightly changed the environment:

Cows are moving faster.

The score is calculated differently. Instead of determining the result of a simulation only
at the end, we calculate an average score. This changes some messages sent from the
server to the agents. For details we refer to the protocol description.

The team-size has been increased.

4.6 Communication protocol

4.6.1 General Agent-2-Server Communication Principles

The agents from each participating team are executed locally (on the participant’s hardware)
while the simulated environment, in which all agents from competing teams perform actions,
runs on the remote contest simulation server. Agents communicate with the contest server
using standard TCP/IP stack with socket session interface. Agents communicate with the
server by exchanging XML messages. Messages are well-formed XML documents. The
exact XML structure is described in the appendix.



4.6.2 Communication Protocol Overview

Logically, the tournament consists of a number of matches. A match is a sequel of simu-
lations during which two teams of agents compete in several different settings of the en-
vironment. However, from agent’s point of view, the tournament consists of a number of
simulations in different environment settings and against different opponents. The tourna-
ment is divided into the following three phases.

1. the initial phase,
2. the simulation phase, and
3. the final phase.

During the initial phase, agents connect to the simulation server and identify themselves
by username and password (AUTH-REQUEST message). As a response, agents receive the
result of their authentication request (AUTH-RESPONSE message) which can either succeed,
or fail. After successful authentication, agents should wait until the first simulation of the
tournament starts. Below is a picture of the initial phase (UML-like notation).

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

At the beginning of each simulation, agents of the two participating teams are notified
(SIM-START message) and receive simulation specific information:

simulation ID,

— opponent’s ID,

— grid size,

— corral position and size,

— line of sight, and

— number of steps the simulation will last.

In each simulation step each agent receives a perception about its environment (REQUEST-ACTION
message) and should respond by performing an action (ACTION message). Each REQUEST-ACTION
message contains

— information about the cells in the visibility range of the agent (including the one agent
stands on),

— the agent’s absolute position in the grid,

— the current simulation step number,

— the current number of cows in the team’s corral, and

— the deadline for responding.

The agent has to deliver its response within the given deadline. The ACTION message has
to contain the identifier of the action, the agent wants to perform, and action parameters, if
required. Below is a picture of the simulation phase:



Server Agent

SIM-START

loop: Simulation Step Cycle
REQUEST-ACTION

ACTION

SIM-END

When the simulation is finished, participating agents receive a notification about its end
(SIM-END message) which includes the information about the number of caught cows, and
the information about the result of the simulation (whether the team has won or lost the
simulation).

All agents which currently do not participate in a simulation have to wait until the sim-
ulation server notifies them about either 1) the start of a simulation, they are going to par-
ticipate in, or 2) the end of the tournament. At the end of the tournament, all agents receive
a notification (BYE message). Subsequently the simulation server will terminate the connec-
tions to the agents. Below is a picture of the final phase.

Server Agent

BYE

4.6.3 Reconnection

When an agent loses connection to the simulation server, the tournament proceeds without
disruption, only all the actions of the disconnected agent are considered to be empty (skip).
Agents are themselves responsible for maintaining the connection to the simulation server
and in a case of connection disruption, they are allowed to reconnect.

Agent reconnects by performing the same sequence of steps as at the beginning of the
tournament. After establishing the connection to the simulation server, it sends AUTH-REQUEST
message and receives AUTH-RESPONSE. After successful authentication, server sends SIM-START
message to an agent. If an agent participates in a currently running simulation, the SIM-START
message will be delivered immediately after AUTH-RESPONSE. Otherwise an agent will wait
until a next simulation in which it participates starts. In the next subsequent step when the
agent is picked to perform an action, it receives the standard REQUEST-ACTION message con-
taining the perception of the agent at the current simulation step and simulation proceeds in
a normal mode. Below is a picture for the reconnection phase.



Server Agent

AUTH-REQUEST

AUTH-RESPONSE

SIM-START

4.7 Participants, Approaches and Results

The first team was AF-ABLE formed by Rem Collier, Mauro Dragone, David Lillis, Jennifer
Treanor, Howell Jordan and Greg O’Hare from University College Dublin, Ireland [23].
Their solution architecture consists of AFAPL2 agents running on Agent Factory platform.
The agents’ low-level behaviours (explore, open fence, etc.) were written in Java. A central-
ized task allocation method was used that is based on costs and values. The behaviour code
appeared to be rather complex and buggy and caused inconsistent performance. The team
did not implement successful offensive behaviours, thus many cows conceded. Also there
were no defensive behaviours, thus many successfully-herded cows escaped from the corral
or got ’stolen’ by other teams. The lessons learned were that agent-oriented software must
be engineered carefully. Secondly, an automated test suite for behaviours is essential for the
development process. The team considers to move more logic to the agent layer for the next
contest.

The second team was Jadex@HAW formed by Gregor Balthasar, Jan Sudeikat, and
Wolfgang Renz from MMLab, HAW Hamburg, Germany [1]. It was their second time par-
ticipating in the Multi-Agent Programming Contest. The team used the Jadex BDI-agents
middleware (v0.96). All algorithms for planning were implemented in Java. They used de-
centralized coordination instead of the centralized coordination that they did use in their
first participation. They utilized the Tropos methodology and toolsets as a guideline. This
yielded a more stable multi-agent system that needed nearly no supervision, and it increased
the autonomy of the single agents drastically. Difficulties encountered were the debugging
of decentralized coordination and covering all situations that can appear during a simulation.

The third team was Jason-DTU formed by Niklas Skamriis Boss, Andreas Schmidt
Jensen and Jgrgen Villadsen from the Department of Informatics and Mathematical Mod-
elling, Technical University of Denmark [2]. Their starting point was a new advanced Al
course in spring 2009 with more than 50 students. The course included two lessons and a
project on logic-based agent programming using Jason. Algorithms such as A* were im-
plemented in Java. The Prometheus methodology was used as a guideline for development.
The code from last year for the integration with the contest simulator was provided by the
2008 Jason team (cf. RomanFarmers). The Jason framework appeared to allow for easy
implementation of agents with goals and plans. Three kinds of cowboys were developed:
herders, a scout and a leader. A design with a single leader delegating targets leads to a less
autonomous approach. The choice to heavily limit the number of cows in a single cluster is
probably not optimal. And they did not implement a strategy to prohibit the opposing team
from scoring points



The fourth team was JIAC-V formed by Axel Hessler, Thomas Konnerth, Jan Keiser,
Benjamin Hirsch, Tobias Kuester, Marcel Patzlaff, Alexander Thiele, and Tuguldur Erdene-
Ochir fromTechnical University Berlin, Germany [11]. It was their third participation in the
Multi-Agent Programming Contest. The JIAC meta-model was the frame for design and
implementation. The team has implemented an ontology-based world model (beliefs and
communication vocabulary). Domain dependent (cowboy) capabilities (plans, rules) were
aggregated to roles, composed with standards roles (memory, communication) to form the
agent and then executed by JIAC runtime. In this implementation, they have used decen-
tralized coordination and cooperation. Their own agile MIAC methodology and their JIAC
Toolipse were used to guide the process. According to this team, the Multi-Agent Program-
ming Contest is an interesting scenario for teaching agent-oriented principles. The team
found and fixed many bugs in their framework. This concerned amongst other things the
lifecycle and execution cycle of agents and the interpretation of the world model. They also
tuned several core components (performance and reliability), which lead to an performance
improvement by factor 8. Finally, they implemented many features that make the life of the
agent-oriented programmer easier (easier to learn, easier to use, easier to debug, easier to
deploy).

The fifth team was microJIAC formed by Anand Bayarbilig and Erdene-Ochir Tugul-
dur from DAI-Labor, TU-Berlin, germany [28]. They used the MicroJIAC agent framework,
which has been developed by the DAI-Labor. They implemented model-based reflex agents,
which consist of a world model and rules. All agents are equal and there is no specialised
agent. The agents are fully self-organized and coordination/cooperation is reached by shar-
ing perceptions/intentions. The scenario appeared to be too complex for one programmer
alone. Driving a single cow does not lead to a very high score. Debugging self-organization
is complicated. Finally, the agents were constructed for maps with many fences, which be-
came visible on maps with not many fences.

The sixth team was RomanFarmers formed by Jomi F. Hiibner from Federal University
of Santa Catarina, Brazil, Rafael H. Bordini from Federal University of Rio Grande do
Sul, Brazil, Gustavo Pacianotto Gouveia, Ricardo Hahn Pereira, Jaime S. Sichman from
University of Sao Paulo, Brazil, Gauthier Picard from Ecole des Mines de Saint-Etienne,
France, and Michele Piunti from Universita di Bologna, Italy [19]. The design was based on
three paradigms and abstraction levels: 1) Organisation Oriented Programming (MOISE) to
define concepts such as groups, shared plans and goals to herd, explore, and pass fences,
2) Agent Oriented Programming (Jason) to define how goals are achieved by the agents,
and 3) Object Oriented Programming (Java) to define algorithms, for example, to find paths
and cluster of cows. Participating in this contest have resulted in some improvement in
Jason and MOISE. There was only one technical bug found in Jason. The main difficulties
were debugging (several agents, tools, languages, decentralisation) and tuning of parameters
(clusters max size, number of cows per cowboy).

The seventh team was smaperteam formed by Chenguang Zhou from RMIT, Australia [29].
It was the first time for the team to participate in the Multi-Agent Programming Contest.
The team used the JACK Intelligent Agents framework for implementing the agents. The
participants of this team did indicate that debugging their multi-agent program is a difficult
task. Herder agents were still centralized, they communicate with a coordinator which does
path finding for them by A*. The system was not stable and needed more testing.

The eight and final team was unknown formed by Slawomir Deren and Peter Novak
from TU Clausthal, Germany. The team used the Jazzyk language with three modules. They
used Open Agent Architecture for exchanging of messages. The agents consisted of two
subteams, each subteam consisted of one leader and four herders. The leader searched for the



17

cows and coordinated the herders agents. There were two agents that were responsible for
opening fences. Agents communicated in each simulation step and shared the information.
The leader computed the moving direction of cows using A*. Difficulties and results were
as follows. The agents were able to drive only one group of cows, the general performance
of the agents was inefficient, and the amount of leaders was too small for searching.

4.8 Results

The JIAC team, the winner of the Multi-Agent Programming Contest 2007 and 2008, was
able to climb the top position again. While in 2007 its victory was quite a triumph, in 2008
the Jadex team managed to be close on JIAC’s heels. In this year’s contest it was a fight
at eye level: The Jadex team was only three points behind the JIAC team. Maybe in 2010
somebody else will ascend the throne: We are convinced that it will be an exciting duel.

The following overview shows how many points each team scored and how many cows
were gathered. It is the number of points that decides who wins.

. JIAC V (1627 cows, 60 points)

. Jadex@HAW (1345 cows, 57 points)
Roman Farmers (840 cows, 37 points)
. Jason DTU (433 cows, 30 points)

. smaperteam (194 cows, 23 points)

. Micro JIAC (363 cows, 21 points)

. AFABLE (468 cows, 20 points)

. unknown (12 cows, 1 point)

I I Y N

As one can see the field of participants is divided into four parts: JIAC and Jadex were
dominating the contest while Roman Farmers and Jason DTU performed very well but were
not able to keep track of the first two teams. Highly competitive were the games between
the third group, consisting of smaperteam, Micro JIAC and AFABLE. But even the last team
succeeded to steel one point from the smaperteam.

5 Conclusion: Experiences and outlook

The initial idea for setting up Multi-Agent Programming Contest was to promote research in
the area of multi-agent programming languages, development tools and techniques by eval-
uating the state-of-the-art approaches and identify key problems in this area. Soon we have
realized that the contest should be designed carefully in order to enable objective evaluation
and comparison of the multi-agent programming languages, development tools and plat-
forms used by the participating teams. During the last five editions of this contest, we have
modified and extended various components of the contest to meet these objectives. In par-
ticular, we have extended and modified the scenario, simulation software and the evaluation
criteria of our contest.

After the successful organization of the last five editions of this contest, we still can-
not give an overall account of the impact of this contest to the multi-agent programming
research area. Nonetheless we have noticed that various prominent research groups in the
area of multi-agent programming are enthusiastic about the contest and participate in var-
ious contest editions. After each edition, they provide us their experiences, feedbacks and
suggestions which we use to improve the next edition of the contest.



They have indicated that their designed and developed programming languages, tools,
and platforms are getting extended and fine-tuned based on their experiences from vari-
ous editions of this contest. Beside detecting problems and weaknesses related to their ap-
proaches, they have reported general problems related to the development of multi-agent
programs to the multi-agent programming community. For example, this research commu-
nity is now getting aware of the need for effective debugging tools and testing approaches
for multi-agent programs.

We also recognize that our contest is challenging different research groups and motivate
them to work together and integrate their approaches. This is done, for example, by relat-
ing development methodologies to multi-agent programming languages, and by building
standards for interactions among different agent models, between agent and environment
models, between agent models and development tools, and between agent models and their
organisations. The participating teams have been confronted with the need to respect funda-
mental programming principles such as modularity and separation of concerns. The contest
has also challenged the performance and scalability of the existing platforms. Finally, the
technical infrastructure and software that are built for this contest are used for teaching pur-
poses at different universities, in particular, at the universities of the participating teams.

References

1. Gregor Balthasar, Jan Sudeikat, and Wolfgang Renz. On the decentralized coordination of herding ac-
tivities: A jadex-based solution. Annals of Mathematics and Artificial Intelligence, This Volume, 2010.

2. Niklas Skamriis Boss, Andreas Schmidt Jensen, and Jgrgen Villadsen. Building multi-agent systems
using jason. Annals of Mathematics and Artificial Intelligence, This Volume, 2010.

3. M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors. An Agent Team Based on
FLUX for the ProMAS Contest 2007, volume 4908 of Lecture Notes in Artificial Intelligence, Honululu,
US, 2008. Springer.

4. M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors. Collecting Gold, volume 4908
of Lecture Notes in Artificial Intelligence, Honululu, US, 2008. Springer.

5. M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors. Developing a Team of
Gold Miners Using Jason, volume 4908 of Lecture Notes in Artificial Intelligence, Honululu, US, 2008.
Springer.

6. M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors. Going for Gold with 2APL,
volume 4908 of Lecture Notes in Artificial Intelligence, Honululu, US, 2008. Springer.

7. M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors. JIAC IV in Multi-Agent
Programming Contest 2007, volume 4908 of Lecture Notes in Artificial Intelligence, Honululu, US,
2008. Springer.

8. Mehdi Dastani, Jiirgen Dix, and Peter Novak. The first contest on multi-agent systems based on com-
putational logic. In Francesca Toni and Paolo Torroni, editors, Computational Logic in Multi-Agent
Systems, 6th International Workshop, CLIMA VI, volume 3900 of Lecture Notes in Computer Science,
pages 373-384. Springer, 2005.

9. Mehdi Dastani, Jiirgen Dix, and Peter Novdk. The second contest on multi-agent systems based on
computational logic. In Katsumi Inoue, Ken Satoh, and Francesca Toni, editors, Computational Logic
in Multi-Agent Systems, 7th International Workshop, CLIMA VII, volume 4371 of Lecture Notes on
Computer Science, pages 266—283. Springer, 2006.

10. Mehdi Dastani, Jiirgen Dix, and Peter Novdk. Agent contest competition - 3rd edition. In M. Dastani,
A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors, Proceedings of the fifth internation work-
shop on Programming Multi-Agent Systems (ProMAS’07), number 4908 in Lecture Notes in Artificial
Intelligence, Honululu, US, 2008. Springer.

11. Axel Hessler, Benjamin Hirsch, and Tobias Kiister. Herding cows with jiac-v. Annals of Mathematics
and Artificial Intelligence, This Volume, 2010.

12. Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardifa, editors. ACO8 System Description, volume
5442 of Lecture Notes in Computer Science, Estoril, Portugal, 2009. Springer.

13. Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardifia, editors. Agent Contest Competition: 4th
edition, volume 5442 of Lecture Notes in Computer Science, Estoril, Portugal, 2009. Springer.



19

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

. Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardifia, editors. Dublin Bogtrotters: Agent Herders,

volume 5442 of Lecture Notes in Computer Science, Estoril, Portugal, 2009. Springer.

. Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardifia, editors. Herding Agents - JIAC TNG in

Multi-Agent Programming Contest 2008, volume 5442 of Lecture Notes in Computer Science, Estoril,
Portugal, 2009. Springer.

. Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardifia, editors. On Herding Artificial Cows: Us-

ing Jadex to Coordinate Cowboy Agents, volume 5442 of Lecture Notes in Computer Science, Estoril,
Portugal, 2009. Springer.

. Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardifia, editors. SHABaN Multi-agent Team to Herd

Cows, volume 5442 of Lecture Notes in Computer Science, Estoril, Portugal, 2009. Springer.

. Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardiiia, editors. Using Jason and Moise+ to De-

velop a Team of Cowboys, volume 5442 of Lecture Notes in Computer Science, Estoril, Portugal, 2009.
Springer.

. Jomi F. Hiibner and Rafael H. Bordini. Using agent- and organisation-oriented programming to develop

a team of agents for a competitive game. Annals of Mathematics and Artificial Intelligence, This Volume,
2010.

K. Inoue, K. Satoh, and F. Toni, editors. Multi-Agent FLUX for the Gold Mining Domain, volume 4371
of Lecture Notes in Artificial Intelligence. Springer, 2007.

K. Inoue, K. Satoh, and F. Toni, editors. Using Antimodels to Define Agents Strategy, volume 4371 of
Lecture Notes in Artificial Intelligence. Springer, 2007.

K. Inoue, K. Satoh, and F. Toni, editors. Using Jason to Implement a Team of Gold Miners, volume 4371
of Lecture Notes in Artificial Intelligence. Springer, 2007.

Howell Jordan, Jennifer Treanor, David Lillis, Mauro Dragone, Rem W. Collier, and G.M.P. O’Hare.
Af-able in the multi agent contest 2009. Annals of Mathematics and Artificial Intelligence, This Volume,
2010.

F. Toni and P. Torroni, editors. Extending tropos for a prolog implementation: A case study using the

Jfood collecting agent problem, volume 3400 of Lecture Notes in Artificial Intelligence. Springer, 2006.

F. Toni and P. Torroni, editors. Implementing pheromone-based, negotiating forager agents, volume 3400
of Lecture Notes in Artificial Intelligence. Springer, 2006.

F. Toni and P. Torroni, editors. Reactive food gathering, volume 3400 of Lecture Notes in Artificial
Intelligence. Springer, 2006.

F. Toni and P. Torroni, editors. Strategies for multi-agent coordination in a grid world, volume 3400 of
Lecture Notes in Artificial Intelligence. Springer, 2006.

Erdene-Ochir Tuguldur and Marcel Patzlaff. Moo - microjiac agents operating oxen. Annals of Mathe-
matics and Artificial Intelligence, This Volume, 2010.

Nitin Yadav, Chenguang Zhou, Sebastian Sardina, and Ralph Ronnquist. A bdi agent system for the cow
herding domain. Annals of Mathematics and Artificial Intelligence, This Volume, 2010.



20

A XML message structure

XML messages exchanged between server and agents are zero terminated UTF-8 strings. Each XML message
exchanged between the simulation server and agent consists of three parts:

— Standard XML header: Contains the standard XML document header
<?xml version="1.0" encoding="UTF-8"7>

— Message envelope: The root element of all XML messages is <message>. It has attributes the timestamp
and a message type identifier.

— Message separator: Note that because each message is a UTF-8 zero terminated string, messages are
separated by nullbyte.

The timestamp is a numeric string containing the status of the simulation server’s global timer at the time
of message creation. The unit of the global timer is milliseconds and it is the result of standard system call
"time" on the simulation server (measuring number of milliseconds from January 1st, 1970 UTC). Message
type identifier is one of the following values: auth-request, auth-response, sim-start, sim-end, bye,
request-action, action, ping, pong.

Messages sent from the server to an agent contain all attributes of the root element. However, the times-
tamp attribute can be omitted in messages sent from an agent to the server. In the case it is included, server
silently ignores it.

Example of a server-2-agent message:

<message timestamp="1138900997331" type="request-action">
<!-- optional data -->
</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->
</message>

Optional simulation specific data According to the message type, the root element <message> can con-
tain simulation specific data.

A.1 AUTH-REQUEST (agent-2-server)

When the agent connects to the server, it has to authenticate itself using the username and password provided
by the contest organizers in advance. This way we prevent the unauthorized use of connection belonging to a
contest participant. AUTH-REQUEST is the very first message an agent sends to the contest server.

The message envelope contains one element <authentication> without subelements. It has two at-
tributes username and password.

Example:

<?xml version="1.0" encoding="UTF-8"7>
<message type="auth-request">

<authentication username="xteam5" password="jabjar5"/>
</message>

A.2 AUTH-RESPONSE (server-2-agent)

Upon receiving AUTH-REQUEST message, the server verifies the provided credentials and responds by a mes-
sage AUTH-RESPONSE indicating success, or failure of authentication. It has one attribute timestamp that
represents the time when the message was sent.

The envelope contains one <authentication> element without subelements. It has one attribute result
of type string and its value can be either "ok", or "fail". Example:

<?xml version="1.0" encoding="UTF-8"7>

<message timestamp="1204979083919" type="auth-response">
<authentication result="ok"/>

</message>



21

A.3 SIM-START (server-2-agent)

At the beginning of each simulation the server picks two teams of agents to participate in the simulation.
The simulation starts by notifying the corresponding agents about the details of the starting simulation. This
notification is done by sending the SIM-START message.
The data about the starting simulation are contained in one <simulation> element with the following

attributes:

— 1id - unique identifier of the simulation (string),

— opponent - unique identifier of the enemy team (string),

— steps - number of steps the simulation will perform (numeric),

— gsizex - horizontal size of the grid environment (west-east) (numeric),

— gsizey - vertical size of the environment (north-south) (numeric),

— corralxO - left border of the corral (numeric),

— corralx1 - right border of the corral (numeric),

— corralyO - upper border of the corral (numeric),

— corralyl - lower border of the corral (numeric). center;

Remark: One step involves all agents acting at once. Therefore if a simulation has 7 steps, it means that
each agent will receive REQUEST-ACTION messages exactly n times during the simulation (unless it loses the
connection to the simulation server).

Example:

<?xml version="1.0" encoding="UTF-8"7>
<message timestamp="1204979126544" type="sim-start">
<simulation
corralx0="0"
corralxl="14"
corraly0="55"
corralyl="69"
gsizex="70" gsizey="70"
id="stampede"
line0OfSight="8"
opponent="xteam"
steps="10"/>
</message>

A.4 SIM-END (server-2-agent)

Each simulation lasts a certain number of steps. At the end of each simulation the server notifies agents about
its end and its result.

The message envelope contains one element <sim-result> with two attributes score and result.
score attribute contains number of caught in the corral of the team the given agent belongs to, and result is
a string value equal to one of "win","lose","draw". The element <sim-result> does not contain subele-
ments.

Example:

<?xml version="1.0" encoding="UTF-8"7>

<message timestamp="1204978760356" type="sim-end">
<sim-result result="draw" score="9"/>

</message>

A.5 BYE (server-2-agent)

At the end of the tournament the server notifies each agent that the last simulation has finished and subse-
quently terminates the connections. There is no data within the message envelope of this message.
Example:

<?xml version="1.0" encoding="UTF-8"7>
<message timestamp="1204978760555" type="bye"/>



22

A.6 REQUEST-ACTION (server-2-agent)

In each simulation step the server asks the agents to perform an action and sends them the corresponding
perceptions.

The message envelope of the REQUEST-ACTION message contains the element <perception> with six

attributes:

step - current simulation step (numeric),

posx - column of current agent’s position (numeric),

posy - row of current agent’s position (numeric),

score - number of cows in the corral of the agent’s team at the current simulation step (numeric),
deadline - server global timer value until which the agent has to deliver a reaction in form of an ACTION
message (the same format as timestamp),

id - unique identifier of the REQUEST-ACTION message (string).

The element <perception> contains a number of subelements <cell> with two numeric attributes x

and y that denote the cell’s relative position to the agent.

If an agent stands near the grid border, or corner, only the perceptions for the existing cells are provided.
Each element <cell> contains a number of subelements indicating the content of the given cell. Each

subelement is an empty element tag without further subelements:

<agent> - there is an agent in the cell. The string attribute type indicates whether it is an agent of the
enemy team, or ally. Allowed values for the attribute type are "ally" and "enemy".

<obstacle> - the cell contains an obstacle. This element has no associated attributes.

<cow> - the cell contains a cow. The string attribute ID represents the cow’s unique identifier.
<corral> - the cell is a corral cell. The string attribute type indicates whether it belongs to the team’s
or the opponent’s corral. Allowed values for the attribute type are "ally" and "enemy".

<switch> - the cell contains a switch.

<fence> - the cell contains a segment of a fence. Allowed values for the attribute open are "true" and
"false".

<empty> - the cell is empty.

<unknown> - the content of a cell is not provided by the server because of information distortion.

The specific rules on allowed combinations of objects in a cell are provided in the scenario description.
Example (compare to Fig. 5):

<?xml version="1.0" encoding="UTF-8" standalone="no"?7>
<message timestamp="1243942024822" type="request-action">
<perception deadline="1243942032822" id="1" posx="16" posy="20" score="0"

step="0">

<cell x="-8" y="-8">
<empty/>

</cell>

<cell x="-8" y="-7">
<empty/>

</cell>

<cell x="-8" y="-6">
<empty/>

</cell>

<cell x="-8" y="-5">
<obstacle/>

</cell>

<cell x="-8" y="-4">
<obstacle/>

</cell>

<cell x="-8" y="-3">
<obstacle/>

</cell>

<cell x="-8" y="-2">
<obstacle/>

</cell>

<cell x="-8" y="-1">

<obstacle/>



23

</cell>

<cell x="-8" y="0">
<obstacle/>

</cell>

<cell x="-8" y="1">
<obstacle/>

</cell>

<cell x="-8" y="2">
<obstacle/>

</cell>

<cell x="-8" y="3">
<obstacle/>

</cell>

<cell x="-7" y="-4">
<corral type="ally"/>
</cell>

<cell x="-7" y="-3">
<corral type="ally"/>
</cell>

<cell x="-7" y="-2">
<corral type="ally"/>
</cell>

<cell x="-7" y="-1">
<corral type="ally"/>
</cell>

<cell x="-7" y="0">
<corral type="ally"/>
</cell>

<cell x="-7" y="1">
<corral type="ally"/>
</cell>

<cell x="-7" y="2">
<corral type="ally"/>
</cell>

<cell x="-1" y="-4">
<fence open="false"/>
</cell>

<cell x="-1" y="-3">
<fence open="false"/>
</cell>

<cell x="-1" y="-2">
<fence open="false"/>
</cell>

<Cell X="— n y=ll_1ll>
<fence open="false"/>
</cell>

<cell x="-1" y="0">
<fence open="false"/>
</cell>

<cell x="-1" y="1">
<fence open="false"/>
</cell>

<cell x="-1" y="2">
<switch/>

</cell>

<cell x="2" y="-3">
<cow ID="0"/>



24

</cell>
<cell x="2" y="-2">
<empty/>
</cell>

<cell x="5" y=u_2u>
<agent type="enemy"/>
</cell>

<cell x="8" y="8">
<empty/>

</cell>
</perception>
</message>

Note that the agent perceives an area that is a square with the size 17 with the agent in the center (see
Fig. 5). Thus each agent is able to see 289 cells. We refrained from depicting all 289 cells in the above example
and showed just some of the relevant cells instead. The three dots indicate the missing <cell> elements.

oNEEEENe

CJ
= |
g
g
g
g
dq

®

Fig. 5 The view range of the agents. The agent in the center perceives all depicted cells.

A.7 ACTION (agent-2-server)

The agent should respond to the REQUEST-ACTION message by an action it chooses to perform.

The envelope of the ACTION message contains one element <action> with the attributes type and id.
The attribute type indicates an action the agent wants to perform. It contains a string value which can be one
of the following strings:

— "skip" — (the agent does nothing),
— "north" — (the agent moves one cell to the top) ,



25

— "northeast" — (the agent moves one cell to the top and one cell to the right ),

— "east" — (the agent moves one cell to the right),

— "southeast" — (the agent moves one cell to the right and one cell to the bottom),
— "south" — (the agent moves one cell to the bottom),

— "southwest" — (the agent moves one cell to the bottom and one to the left),

— "west" — (the agent moves one cell to the left),

— "northwest" — (the agent moves one cell to the left and one to the top).

The attribute id is a string which should contain the REQUEST-ACTION message identifier. The agents
must plainly copy the value of id attribute in REQUEST-ACTION message to the id attribute of ACTION
message, otherwise the action message will be discarded.

Note that the corresponding ACTION message has to be delivered to the time indicated by the value of
attribute deadline of the REQUEST-ACTION message. Agents should therefore send the ACTION message in
advance before the indicated deadline is reached so that the server will receive it in time.

Example:

<?7xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action id="70" type="skip"/>
</message>

A.8 Ill-formed messages

Not well-formed XML messages received by the server from agents are discarded. This means, that if some

obligatory information (element, or attribute) of a given message is missing the server silently ignores it. In

the case that a message will contain additional not-required informations, only the first occurence is processed

by the server. We strongly recommend to comply with the communicatison protocol described above.
Examples:

<?xml version="1.0" encoding="UTF-8"7>

<message type="auth-request">
<authentication username="teamlagentl" password="qwErTY"/>
<authentication username="teamlagent32" password="11111WWw"/>
<some-element arbitrary="234TreE"/>

</message>

<message type="action">
<authentication username="teamlagentl" password="quwErTY"/>
<authentication username="teamlagentl" password="qwErTY"/>
<some-element arbitrary="234TreE"/>

</message>

The message above will be processed as an AUTH-REQUEST message with the credentials teamlagent1/qwErTY.



