
Designing Goal-Oriented Reactive Behaviours
Peter Novák and Michael Köster1

Abstract. State-of-the-art rule-based agent programming lan-
guages, similar to AgentSpeak(L), provide theoretically solid tools
for implementing cognitive agents. However, not too much attention
was devoted to low-level design issues for development of non-trivial
agents in them.

In this paper we discuss some design considerations we faced
while implementing Jazzbot, a softbot embodied in a simulated 3D
environment, implemented in a rule-based framework of Behavioural
State Machines. Finally, we also make an attempt to lift our experi-
ences to a set of informal design guidelines useful for design and
implementation of agents with heterogeneous knowledge bases in
rule-based agent oriented programming languages.

1 INTRODUCTION

While the landscape of programming languages for cognitive agents
is thriving (for state-of-the-art surveys see e.g. [5], or [6]), a little
has been published on their application beyond small-scale exam-
ple agents. In our research project we are interested in implement-
ing embodied non-trivial agents exploiting power of heterogeneous
knowledge representation (KR) techniques. To this end we recently
proposed the framework of Behavioural State Machines (BSM) [16]
with Jazzyk [17], an associated programming language. The BSM
framework takes a rather liberal software engineering stance to pro-
gramming cognitive agents. It provides a concise and flexible the-
oretical computational model allowing integration of heterogeneous
knowledge bases (KB) into an agent system, while not prescribing a
fixed scheme of interactions between them.

Most of the state-of-the-art logic based programming languages
for cognitive agents, such as [7, 9, 10], tackle the problem of pro-
gramming cognitive agents by introducing first class concepts with
an underlying semantics of a chosen set of relations between men-
tal attitudes of an agent. Unlike these, our approach is radically
different, more based on a liberal software engineering stance. In-
stead of choosing a set of supported relationships among agent’s
knowledge bases storing its mental attitudes, we allow an agent to
have an arbitrary number of KBs and provide a modular and flexi-
ble generic programming language facilitating interactions between
them. It is the task of the programmer to maintain a discipline in
applying various types of interactions between KBs specific to cog-
nitive agents, such as goal adoption/dropping, triggering reactive be-
haviours etc., in agent programs. To support this, we try to propose
a set of higher level syntactical constructs, agent programming de-
sign patterns, which can differ between various application domains.
These should provide at least a partial, semi-formal semantics so that
a programmer can rely on their specification.

1 Department of Informatics, Clausthal University of Technology, Germany,
{peter.novak,michael.koester}@tu-clausthal.de

The liberal nature of the BSM framework allows us to experiment
with integration of various KR technologies in a single agent system.
In [17], we introduce the Jazzbot project: our specific aim is to de-
velop a BDI inspired softbot roaming in a simulated 3D environment
of a first-person shooter computer game. Jazzbot uses non-monotonic
reasoning, in particular Answer Set Programming [3], as the core KR
technology for representing its beliefs about its environment, itself
and peer bots.

In this paper, we discuss our considerations and experiences on the
way towards proposing a consistent set of agent programming design
patterns for development of BDI inspired cognitive agents. Our ap-
proach is application driven, i.e. we try to propose such constructs
on the ground of real implementation experience with non-trivial ap-
plications. As a side effect, during the development of Jazzbot demo
application, we have got an opportunity to rethink design of BDI
inspired agents in rule-based programming languages. On the back-
ground of the Jazzbot project we present here a collection of design
considerations (Section 3) we faced, together with an attempt to lift
our solutions and implementation techniques to a set of more general
methodological design guidelines (Section 4). However, before com-
ing to the main discussion of the paper, we first briefly introduce the
framework of Behavioural State Machines (2). A brief summary in
Section 5 concludes the paper.

2 BEHAVIOURAL STATE MACHINES

In [16] we recently introduced the programming framework of Be-
havioural State Machines (BSM), with an associated implemented
programming language Jazzyk [17]. The BSM framework defines a
new and unique agent-oriented programming language due to the
clear distinction it makes between the knowledge representation and
behavioural layers within an agent. It thus provides a programming
framework that clearly separates the programming concerns of how
to represent an agent’s knowledge about, for example, its environ-
ment and how to encode its behaviours. In the following we briefly
introduce the framework of Behavioural State Machines. A more rig-
orous description can be found in the original publications [16, 17].

Mental states of BSM agents are collections of one or more so-
called knowledge representation modules, typically denoted byM,
each of which represents a part of the agent’s knowledge base. Tran-
sitions between such states result from applying mental state trans-
formers (mst), typically denoted by τ . The various types of mst de-
termine the behaviour that an agent can generate. A BSM agent A
consists of a set of KR modules M1, . . . ,Mn and a mental state
transformer τ , i.e. A = (M1, . . . ,Mn, τ). The mst τ is also called
an agent program.

A KR module of a BSM agent can be seen as a database of state-
ments drawn from a specific KR language. KR modules may be used
to represent and maintain various attitudes of an agent such as its

knowledge about its environment, or its goals, intentions, obliga-
tions, etc. Unlike other agent oriented languages, the BSM frame-
work abstracts from a particular purpose a KR module can be made
to serve. Agents can have any number of such KR modules and an
agent designer can ascribe any appropriate purpose to these mod-
ules (such as a belief, or a goal base). Formally, a KR module
M = 〈S,L,Q,U〉 is characterized by a set of states S the module
can be in, a KR language L and two sets of query and update opera-
tors denotedQ and U respectively. A query operator |=∈ Q is a func-
tion evaluating truth value of a query formula from the KR language
against the current state of the KR module, i.e. |=: S×L → {>,⊥}.
An update operator � ∈ U is a mapping � : S × L → S facilitat-
ing transitions between agent’s mental states induced by applying
update formulae from the KR language: updating the current mental
state σ by an update operator� and a formula φ results in a new state
σ′ = σ�φ. In a BSM agentA =(M1, . . . ,Mn, τ) we additionally
require that the KR languages (and consequently the set of query and
update operators) of any two modules are disjoint, i.e. Li ∩ Lj = ∅.

Syntax A primitive query φ = (|= ϕ) consists of a query operator
|=∈ Q and a formula ϕ ∈ L of the same KR module. Arbitrary
queries can be composed by means of conjunction ∧, disjunction ∨
and negation ¬.

Mental state transformers, syntactical counterparts to KR module
updates, enable transitions from one state to another. A primitive mst
ρ = �φ, constructed from an update operator � ∈ U and a formula
φ ∈ L, is an update on the state of the corresponding KR module
of a mental state. Conditional mst’s are of the form φ −→ τ , where
φ is a query and τ is a mst. Such a conditional mst allows to make
the application of mst τ conditional on the evaluation of query φ.
Mst’s can be combined by means of the choice | and the sequence ◦
syntactic constructs.

Definition 1 (mental state transformer) LetM1, . . . ,Mn be KR
modules of the form 〈Si,Li,Qi,Ui〉. The set of mental state trans-
formers is defined as:

1. skip is a primitive mst,
2. if � ∈ Ui and ψ ∈ Li, then �ψ is a primitive mst,
3. if φ is a query, and τ is a mst, then φ −→ τ is a conditional mst,
4. if τ and τ ′ are mst’s, then τ |τ ′ is an mst (choice) and τ ◦ τ ′ is an

mst (sequence).

Semantics The BSM semantics is defined using a semantic cal-
culus similar to that used for Gurevich’s Abstract State Machines
[8]. This formalism provides a functional, rather than an operational,
view on mental state transformers. The yields calculus, introduced
below, specifies an update associated with executing an mst. It for-
mally defines the meaning of the state transformation induced by ex-
ecuting an mst in a mental state.

Formally, a mental state σ of a BSM agent (M1, . . . , Mn, τ)
consists of the corresponding states 〈σ1, . . . , σn〉 of its KR modules.
To specify the semantics of a BSM agent, first we need to define how
queries are evaluated and how a state is modified by applying updates
to it. A primitive query |=i ϕ in a state σ = 〈σ1, . . . , σn〉 evaluates
the formula φ ∈ Li using the query operator |=i∈ Qi in the current
state σi of the corresponding KR module 〈Si,Li,Qi,Ui〉. That is,
σ |= (|=i ϕ) holds in a mental state σ iff σi |= ϕ, otherwise we
have σ 6|= (|=i ϕ). Given the usual meaning of Boolean operators, it
is straightforward to extend the query evaluation to compound query
formulae. Note that a query |= φ does not change the current mental
state σ.

The semantics of a mental state transformer is an update set: a set
of (possibly sequences of) updates. The same notation �ψ (skip) is
used to denote a simple update as well as the corresponding primitive
mst. It should be clear from the context which of the two is intended.
Sequential application of updates is denoted by •, i.e. ρ1 • ρ2 is an
update resulting from applying ρ1 first and then applying ρ2.

Definition 2 (applying an update) The result of applying an up-
date ρ = �ψ to a state σ = 〈σ1, . . . , σn〉 of a BSM agent
A = (M1, . . . ,Mn, τ), denoted by σ

L
ρ, is a new state σ′ =

〈σ1, . . . , σ
′
i, . . . , σn〉 where σ′i = σiρ = σi � ψ and σi, �,

and ψ correspond to one and the same Mi of A. Applying the
special update skip to a state σ results in the same mental state
σ = σ

L
skip.

The result of applying an update of the form ρ1 • ρ2 to a state σ,
i.e. σ

L
(ρ1 • ρ2), is the new state (σ

L
ρ1)

L
ρ2.

Note, that since we assume disjoint sets of query/update operators for
different KR modules, a formula �ψ unambiguously corresponds to
a single KR module.

The meaning of a mental state transformer in state σ, formally de-
fined by the yields predicate below, is the update it yields in that
mental state. For the purpose of this paper, we introduce a slightly
simplified, more convenient definition of the yields calculus origi-
nally published in [16, 17].

Definition 3 (yields calculus) A mental state transformer τ yields
an update ρ in a state σ, iff yields(τ, σ, ρ) is derivable in the follow-
ing calculus:

>
yields(skip,σ,skip)

>
yields(�ψ,σ,�ψ)

(primitive)

yields(τ,σ,ρ), σ|=φ
yields(φ−→τ,σ,ρ)

yields(τ,σ,ρ), σ 6|=φ
yields(φ−→τ,σ,skip)

(conditional)

yields(τ1,σ,ρ1), yields(τ2,σ,ρ2)
yields(τ1|τ2,σ,ρ1), yields(τ1|τ2,σ,ρ2)

(choice)

yields(τ1,σ,ρ1), yields(τ2,σ
L
ρ1,ρ2)

yields(τ1◦τ2,σ,ρ1•ρ2)
(sequence)

The mst skip yields the update skip. Similarly, a primitive update
mst �ψ yields the corresponding update �ψ. In case the condition
of a conditional mst φ −→ τ is satisfied in the current mental state,
the calculus yields one of the updates corresponding to the right hand
side mst τ , otherwise the skip update is yielded. A non-deterministic
choice mst yields an update corresponding to either of its members
and finally a sequential mst yields a sequence of updates correspond-
ing to the first mst of the sequence and an update yielded by the
second member of the sequence in a state resulting from application
of the first update to the current mental state.

The collection of all the updates yielded w.r.t. the Definition 3
comprises an update set of an agent program τ in the current men-
tal state σ. The semantics of the agent A = (M1, . . . ,Mn, τ)
is then defined as a set of all, possibly infinite, computation runs
σ1, σ2, . . . , σk, . . . the agent can take during its lifetime, s.t. for each
pair σi, σi+1, there exists an update ρ which is yielded by τ in σi
(i.e. yields(τ, σ, ρ)) and σi+1 = σ

L
ρ.

2.1 Jazzyk
Jazzyk is an interpreter of the Jazzyk programming language imple-
menting the computational model of the BSM framework. In the ex-
amples later in this paper, we use a more readable notation mixing

the syntax of Jazzyk with that of the BSM mst’s introduced above.
when φ then τ encodes a conditional mst φ −→ τ . Symbols ; and ,
stand for choice | and sequence ◦ operators respectively. To facilitate
operator precedence, mental state transformers can be grouped into
compound structures, blocks, using curly braces {. . .}.

To better support source code modularity and re-usability, Jazzyk
interpreter integrates GNU M42, a state-of-the-art macro preproces-
sor. Macros are a powerful tool for structuring and modularizing and
encapsulating the source code and writing code templates. GNU M4
macros are defined using a statement define(<identifier>, <body>) and
expanded whenever a macro identifier is instantiated in the source
code. Before feeding the Jazzyk agent program to the language inter-
preter, first all the macros are expanded.

For further details on the Jazzyk programming language and the
macro preprocessor integration with Jazzyk interpreter, consult [17].
Examples throughout this paper will use macros implementing parts
of the Jazzbot agent program as standalone mental state transformers.

3 DESIGN & IMPLEMENTATION
The architecture of agents as Behavioural State Machines splits the
agent program into two distinct layers: the knowledge representa-
tion layer and the behavioural layer. While the concern dealt with
in the KR layer is modeling agent’s beliefs about its environment
and its own mental attitudes, the BSM computational model facili-
tates implementation of agents behaviours. The two are coupled by
invocation of query and update operators of KR modules.

In the following we discuss considerations and issues we faced
when developing a BDI inspired cognitive agent in the BSM frame-
work. We accompany our discussion with examples adapted from the
Jazzbot project implementation.

3.1 Jazzbot
To demonstrate the applicability of the framework of Behavioural
State Machines and the Jazzyk language, we implemented Jazzbot,
a virtual agent embodied in a simulated 3D environment of a first-
person shooter computer game Nexuiz3.

In [17], we introduce the architectural details of the Jazzbot
project. Jazzbot is a goal-driven agent. It features four KR modules
representing belief base, goal base, and an interface to its virtual
body in a Nexuiz environment respectively. While the goal base con-
sists of a single knowledge base realized as an ASP logic program,
the belief base is composed of two modules: Answer Set Program-
ming [3] based one and a Ruby4 module for representing the map of
the bot’s environment. The interface to the environment is facilitated
by a Nexuiz game client module. The Figure 1 depicts the structure
of the Jazzbot application.

Jazzbot’s behaviours are implemented as a Jazzyk program.
Jazzbot can fulfill e.g. search and deliver tasks in the simulated en-
vironment, it avoids obstacles and walls. Figure 1 depicts the archi-
tecture of Jazzbot and features an example Jazzyk code chunk im-
plementing a simple behaviour of picking up an object by a mere
walk through it and then keeping notice about it in its ASP belief
base. Note that all the used KR modules are compatible with each
other, since they share the domain of character strings. Hence all the
variables used in Jazzbot’s programs are meant to be character string
variables.
2 http://www.gnu.org/software/m4/
3 http://www.alientrap.org/nexuiz/
4 http://www.ruby-lang.org/

Figure 1. Scheme of Jazzbot

Below we describe our considerations while designing and imple-
menting the Jazzbot softbot. For closer details on the architectural
design of the Jazzbot’s components consult [17].

3.2 Knowledge representation layer

Our aim is to demonstrate the flexibility of the BSM framework in
a BDI-inspired agent system. As described already above, Jazzbot
features two independent knowledge bases: a belief base and a goal
base. Additionally the embodiment of the bot requires an interface
to its body (and thus to the environment). Jazzbot thus features KR
modules labeled beliefs (B), goals (G) and body (E). While the first
two are implemented as logic programming based knowledge bases
in Answer Set Programming [3], the last one is realized as a connec-
tor to a Nexuiz game server. Formally, the body is represented by a
KR module E = (LNexuiz , {|=E}, {�E}). It uses a special purpose
language LNexuiz for query/update formulae and two query/update
operators |=E , �E accepting formulae from this language and eval-
uating them against the simulated environment represented by the
game server.

Belief base Jazzbot’s belief base B contains a logic program de-
scribing agent’s beliefs about its environment and itself. It is sup-
posed to closely reflect agent’s perceptions of the environment,
i.e. updates of belief base correspond to agent’s perceptions, while
queries can also include higher level consequences of primitive per-
ceptions w.r.t. the logic program in B.

In Jazzbot we exploit the power of non-monotonic reason-
ing for capturing relations and interactions between various be-
liefs an agent can hold. Formally, the Jazzbot’s belief base B =
(AnsProlog∗, {|=B}, {⊕B,	B}) uses AnsProlog∗ [3], the lan-
guage of ASP logic programs and features an entailment query oper-
ator |=B evaluating a query formula ϕ true iff it holds in all answer
sets of the logic program representing the actual belief base. The up-
dates⊕B and	B correspond to trivial assert and retract of a formula
respectively5.

5 In the long run we consider more complex belief revision operators realizing
extension and contraction operators similar to those used in Dynamic Logic
Programming [14].

Listing 1 Jazzbot’s belief base implementation in AnsProlog∗.

% Initially the bot does not hold the box %
% The bot can later hold other objects as well %
¬hold(box(42)).

% Reasoning about the health status %
alive :− health(X), X > 0.
dead :− health(X), X <= 0.
attacked :− health(X), X <= 90.
wounded :− health(X), X <= 50.

% Reasoning about friendliness of other players %
friend(Id) :− see(player(Id)), not attacked, player(Id).
enemy(Id) :− see(player(Id)), not friend(Id), player(Id).

player(1..5).

The Listing 1 shows a logic program representing a part of the
agent’s initial belief base. The Jazzbot’s belief base facilitates rea-
soning about objects the bot believes to posses, its health status and
other players. The bot perceives its health status as a numeric value,
from which it derives its own state in the game. It is also able to
perceive objects and other players in the environment and it reasons
about them as well. For example, it considers a player it actually sees
as a friend, if it does not feel threatened by him. In an extended ex-
ample, the bot could also reason about its roles in the game and keep
long-term beliefs about other players.

To represent the bot’s information about the topology of its en-
vironment, we employ a module implemented in an object oriented
scripting language Ruby. Since a description of it’s functionality is
not essential for the purposes of this paper, we do not provide a closer
description of its internal functionality.

Goal base Goals are usually meant to provide a declarative de-
scription of situations (states) an agent desires to believe to be in
(goals to-be), or activities it desires to perform (goal to-do). Each
goal triggers a certain behaviour of the agent designed to satisfy it.
Under some conditions w.r.t. the state of agent’s beliefs, the agent
adopts a goal and according to its type, it might eventually drop it,
i.e. a goal also comes with an associated commitment strategy.

Because of the separation of concerns between the agent’s belief
and goal bases in the BSM framework, the interactions between be-
lief base conditions and goals have to be expressed explicitly in the
form of internal behaviours (causal updates). Therefore, rather than
providing a concrete fixed logic-based semantics for goals and their
associated commitment strategies, we propose viewing these as mere
context holders, or behaviour drivers. The main purpose of a goal
is then to implicitly represent a condition on beliefs which is to be
achieved (or avoided) and enable execution of a behaviour designed
to eventually satisfy this condition in the future. In this view, goals
of an agent are only loosely coupled with its beliefs.

Formally, the Jazzbot’s goal base G = (AnsProlog∗, {|=G},
{⊕G ,	G}) is technically equivalent to the belief base B, however
because the BSM framework requires disjoint KR modules, we use a
special subscript for its operators. Besides holding a set of currently
adopted goals (primitive facts), the agent can thus also reason about
their interactions and derive non-trivial goals, or subgoals from the
more primitive ones.

The Listing 2 provides a logic program encoding a part of agent’s
initial goal base. Initially the bot has two maintenance goal: to sur-
vive and to be happy as well as a single achievement goal to get the
box identified as box(42). To satisfy the goal to be happy, the bot ac-
tivates behaviours which are triggered by tasks to communicate and
wander around the environment. Survival requires the bot to explore

Listing 2 Jazzbot’s goal base implementation in AnsProlog∗.

% Initially the bot has two maintenance goals and %
% a single achievement goal. %
maintain(happy).
maintain(survive).
achieve(get(box(42))).

% Subgoals of the goal maintain(happy) %
task(communicate) :− maintain(happy).
task(wander) :− maintain(happy).

% Subgoals of the goal maintain(survive) %
task(wander) :− maintain(survive).
task(safety) :− maintain(survive).
task(energy) :− maintain(survive).

% Subgoals of the goal achieve(get(Object)) %
task(search(X)) :− achieve(get(X)), not achieve(get(medikit)), item(X).
task(pick(X)) :− achieve(get(X)), not achieve(get(medikit)), item(X).
task(deliver(X)) :− achieve(get(X)), not achieve(get(medikit)), item(X).

% Specialized subgoals of the goal achieve(get(medikit)) %
task(search(medikit)) :− achieve(get(medikit)).
task(pick(medikit)) :− achieve(get(medikit)).

% Ressurect after being killed %
task(reborn) :− achieve(reborn).

% Definition of items %
item(medikit).
item(X) :− box(X).
box(1..50).

its environment as well as to seek safety and energy sources.
In the course of its lifetime, the bot might adopt goals regarding

getting objects from the environment. Unless some exceptional con-
ditions are met, e.g. for whatever reason the bot desperately looks
for a medikit object, the goal to get an object from the environment
activates also goals to find, pick and deliver the object. The order of
execution of the three subgoals will be specified implicitly by en-
coding of the bot’s individual behaviours. Searching for the medikit
object is defined using specialized rules, as this special object does
not have to be delivered anywhere.

Similarly to the bot’s belief base, the goal base contains a logic
program for reasoning about agent’s goals. In the case a larger pro-
gram is contained in the bot’s goal base, this raises a question which
parts of the particular goal base language (literals used in the logic
program) are to be interpreted as behaviour triggers and which serve
only for reasoning about interactions between goals. To solve this
problem, we divide the goal base language into two parts: declarative
goals handling and handling of tasks. The goal base then facilitates a
breakdown of declarative achievement goals, such as achieve(get(X)),
into tasks, behaviour triggers, such as task(search(X)). This way, we
moved the reasoning about goal interactions completely into the goal
base, instead of handling it inside the agent program, as it is done in
other agent programming languages, such as Jason [7]. In the fol-
lowing we will show, that this technique results in implementation of
behaviours, execution of which is triggered by merely checking the
associate trigger literal in the goal base.

3.3 Behavioural layer
The choice of agent’s KR modules and their ascribed purposes drives
the implementation of agents behaviours. These can be either exoge-
nous - resulting in selecting an action (or a sequence of actions) to be
executed in the agents environment, or endogenous - implementing
interactions between agent’s knowledge bases. Analysis of informa-
tion flows between agent’s KR modules straightforwardly leads to
identification of the individual compound behaviours.

The Jazzbot’s KR layer consists of the following KR modules: be-
liefs, goals and the bot’s body. This gives rise to three information
flows in the agent system: body −→ beliefs, beliefs −→ goals, goals
−→ body. In accord with the usual understanding of BDI model of
rationality [18], these represent respectively the following principles:
1) an agent senses its environment and reflects its perceptions in its
beliefs (perceptions); 2) because it believes to be in a certain situ-
ation, it updates its goals (commitment strategies); and finally 3) to
achieve the adopted goals, it acts in the environment (action selec-
tion).

In the following we discuss these individual behaviors in detail.

Perceptions Jazzbot agent roams around the simulated 3D envi-
ronment and keeps track of its perceptions regarding its surroundings
and a state of its own body. The actual state of beliefs is supposed to
reflect its perceptions about the world and relations between them. In
general, provided a sensory information ϕ from the agent’s environ-
ment (body), following the information flow notation used above, we
can encode a corresponding update ψ of an agent’s belief base as a
conditional mental state transformer

|=E ϕ −→ �Bψ (1)

A set of such conditional mst’s captures the relations between var-
ious perceptions and their belief counterparts. Now, according to the
chosen model of perception, a designer can form a proper BSM mst
τperc from this set by joining the mst’s by either non-deterministic
choice |, or sequence ◦ operators. In a more advanced setting, be-
yond the scope of this paper, the designer can even choose to further
structure them using nested conditional mst’s.

Listing 3 Implementation of Jazzbot’s perceptions handling.

define(‘PERCEIVE’,‘
{

/∗ Check the health sensor ∗/
when |=E [{ body health X }] then
{

/∗ Before updating with the new value, retract the old one ∗/
when |=B [{ health(Y) }] then 	B [{ health(Y). }] ,
⊕B [{ health(X). }]

} ,

/∗ Check whether the bot still sees an object it remembers ∗/
when |=B [{ see(Id, Type) }] and not |=E [{ see(Id, Type) }]
then 	B [{ see(Id, Type) }] ,

/∗ Check the camera sensor ∗/
when |=E [{ eye see Id Type }] then ⊕B [{ see(Id, Type). }] ,

. . .
}
’)

The Listing 3 shows an example encoding an mst implementing
the bot’s perception of its own health in the game as well as recogni-
tion of objects in the vicinity of the bot. Note, that the Jazzbot checks
its sensors in a sequence. Perception can be considered a safe sequen-
tial behaviour, as checking sensors takes only a little time and since
the bot does not act in the environment, this behaviour can always
finish without an interruption.

Goal commitment strategies A specific goal can be adopted be-
cause an agent believes its adoption is appropriate. Similarly, because
of a certain state of beliefs, the agent might decide to drop a goal:
for instance, a goal can be satisfied, or believed to be impossible to
achieve, etc. Informally, a set of such internal behaviours related to

a single goal implements a commitment strategy associated with it.
Moreover, a designer can implement different commitment strategies
w.r.t. various goals. Commitment strategies thus realize the second
component of the information flow between the agent’s knowledge
bases: given a condition on agent’s beliefs ϕ, the agent updates its
goal base by a goal formula ψ. The corresponding mst loosely fol-
lows the scheme

|=B ϕ −→ �Gψ (2)

Here, the entailment operator |=B represents the belief base entail-
ment operator and �G is a corresponding goal base update operator
(in the Jazzbot setting �G ∈ {⊕G ,	G}). Similarly to perceptions,
the agent designer can join and structure the mst’s realizing commit-
ment strategies of individual goals the agent can adopt during its life-
time using BSM composition operators. τcs will denote the resulting
mst.

Listing 4 Implementation of Jazzbot’s goal commitment strategies
handling.

define(‘HANDLE_GOALS’,‘
{

/∗ Adoption and dropping of the goal to get medikit ∗/
when |=B [{ wounded }] then ⊕G [{ get(medikit). }] ;

when |=G [{ get(medikit) }] and not |=B [{ wounded }]
then 	G [{ get(medikit). }] ;

/∗When the bot receives a user command, it obeys ∗/
when |=B [{ command(get(X)) }] then ⊕G [{ achieve(get(X)). }] ;

when |=G [{ achieve(get(X)) }] and |=B [{ holds(X) }]
then 	G [{ achieve(get(X)). }] ;

/∗When the bot finds out it was killed, it resurrects in the game ∗/
when |=B [{ dead }] then ⊕G [{ achieve(reborn). }] ;

when |=B [{ alive }] then 	G [{ achieve(reborn). }] ;

. . .

}
’)

The Listing 4 provides an example of implementation of commit-
ment strategies w.r.t. bot’s achievement goals. When the bot believes
it was wounded in the game, it adopts a goal to get the medikit ob-
ject to refresh its health. Sometime after it starts to believe that it
found it, it drops the goal. Similarly, the bot implements custom han-
dling for each achievement goal it can deal with. It is responsive
to user commands and is able to get an item on request and finally
when it detects that it was terminated in the game, it adopts a goal
to get back into it. Adopted goals, subsequently trigger behaviours
which should achieve them. Note, that the individual mst’s imple-
menting goal commitment strategies are joined together using the
non-deterministic choice operator. This way, the bot is allowed to
adopt, or drop a goal only once per an execution cycle.

Goal oriented behaviours: action selection The core task of an
agent, is to perform behaviours (actions) in the environment. In the
setting introduced above, behaviours have a purpose: satisfaction of
adopted goals. We speak therefore about goal oriented behaviours.
In general, following the information flow notation, they amount to
choosing an appropriate action ψ for achieving a goal ϕ, the agent
currently pursues:

|=G ϕ −→ �Eψ (3)

with |=G representing an entailment operator on the goal base and
�E being the body/environment update operator.

In our experience, we quickly found that the agent’s core be-
haviour, the action selection mechanism, often requires a more com-
plex structuring than the, rather reactive, scheme 3 prescribes. First,
there can potentially be several behaviours supposed to achieve the
same goal in possibly different contexts, and second, in different con-
texts, a single behaviour might be appropriate for achieving several
different goals. We therefore extend the scheme 3 above as follows:

φG ∧ φB −→ τ (4)

φG represents a pursued goal query, φB is a belief context guard,
and τ is a possibly compound behaviour associated with (some of
the) goal(s) represented by φG . To support source code modular-
ity, the Jazzyk interpreter integrates a powerful macro preprocessor.
Thus in different contexts re-usable mst’s can be wrapped into named
macros and simply expanded at places in the code, where they are ap-
plied.

Various behaviours of an agent are combined in various ways in
different contexts and situations. In certain contexts (e.g. emergency
situations), where a tight behaviour control is required, script-like
compound behaviours (also called ballistic [1]) are more appropri-
ate. However, more often we want the agent to interleave behaviours
associated with orthogonal, not interfering, goals. The design choices
are therefore application specific and left to the designer. We denote
the compound mental state transformer implementing agent’s action
selection as τact .

Listing 5 Implementation of Jazzbot’s behaviour selection.

define(‘ACT’,‘
{

/∗ Behaviours for getting an item ∗/
/∗ The bot searches for an item, only when it does not have it ∗/
when |=G [{ task(search(X)) }] and not |=B [{ hold(X) }]
then SEARCH(‘X’) ;

/∗When a searched item is found, it picks it ∗/
when |=G [{ task(pick(X)) }] and |=B [{ see(X) }]
then PICK(‘X’) ;

/∗When the bot finally holds the item, it deliver it ∗/
when |=G [{ task(deliver(X)) }] and |=B [{ hold(X) }]
then DELIVER(‘X’) ;

/∗ Simple behaviour triggers without guard conditions ∗/
when |=G [{ task(reborn) }] then REINCARNATE ;

when |=G [{ task(wander) }] then WALK ;

when |=G [{ task(safety) }] then RUN_AWAY ;

when |=G [{ task(communicate) }] then SOCIALIZE ;

. . .
}
’)

The Listing 5 provides an example code implementing selection of
goal oriented behaviours, realized as parametrized macros, satisfying
Jazzbot’s goals. While the bot simply triggers behaviours for reincar-
nation, walking around, danger aversion and social behaviour, the ex-
ecution of behaviours finally leading to getting an item are guarded
by belief conditions. This way, we introduce an order on these be-
haviours. Recall, that in the goal base, the goal to get an item triggers
the tasks to search for it, pick it up and deliver it simultaneously. Us-
ing a different handling of goals directly in the goal base, we could
implement ordering of the goals already there and then trigger the
individual behaviours without a belief base guard condition.

3.4 Control cycle
Putting together the previously designed mst’s implementing the
agent’s model of perception τperc , its goals commitment strategies
τcs and the agent’s behaviour, i.e. the action selection mechanism
τact , we implement a control cycle of the BSM agent program. Ac-
cording to ordering and combination of the mst’s a designer can 1)
develop the control model of the agent, as well as 2) control de-
terminism of the agent program. In the Jazzbot example we could
consider either a case in which in a single computation step the
bot non-deterministically either perceives, handles its goals, or acts:
τperc |τcs |τact , or sequentially executes all the stages: τperc◦τcs ◦τact .
Different orderings of the mst’s yield different overall behaviours of
the agent as well.

As we already discussed above, according to the internal structure
of the partial mst’s of the BSM agent program, the agent can for ex-
ample either check all its sensors in a single cycle, or consider only
one of them non-deterministically. Similarly for the goal commit-
ment strategies and action selection mechanism. Different structuring
of the partial mst’s inside τperc , τcs and τact allows a programmer to
implement various control models. Below we provide few examples
of partial control models expressed using an LTL-like notation [15]:

♦(|=G ϕG → τϕ) to eventually execute a behaviour τϕ associated
with the goal ϕG it is sufficient to use a corresponding conditional
mst |=G ϕG −→ τϕ somewhere within τact .

�(|=G ϕG → τϕ) to ensure a stricter version of the previous case,
the mst τact has to be structured as a sequence of mst’s trigger-
ing various goal oriented behaviours, where one of them takes the
form of a conditional |=G ϕG −→ τϕ.

�(|=E ϕE →©⊕B ϕB) adoption of a belief ϕB, corresponding to
a perception ϕE , immediately after the agent perceives ϕE , can be
ensured by structuring the perception mst τperc as a sequence of
conditional mst’s. At the same time the mst’s of the control cycle
have to be combined into a sequence τperc ◦ τcs ◦ τact .

Note, that we assume that the abstract interpreter of the BSM frame-
work is fair, i.e. it is not the case, that an mst which is always enabled
along an infinite computation trace will never be executed. This al-
lows us to use modal operators, such as ♦, in our semi-formal speci-
fications above.

Listing 6 Implementation of Jazzbot’s control cycle.

/∗ The actual Jazzbot agent program ∗/
PERCEIVE , HANDLE_GOALS , ACT

Finally, the Listing 6 sums up the running example of this paper.
It provides the implementation of the control cycle implemented in
Jazzbot using the macros defined in the previous subsections. Note,
that the bot executes in every step all the stages of its control cycle
sequentially.

4 PUTTING IT TOGETHER
Finally, we can put together a set of more general design guidelines
for development of embodied agent systems implemented in a rule-
based languages similar to BSM. In this paper we focus on agents
featuring belief and goal bases. The central element around which
our design considerations revolved were agent’s goals.

Goals determine currently active (enabled) behaviours and thus
serve as a trigger for agent’s exogenous behaviours, which are the

visible manifestations of its functionality. Additionally, a goal is as-
sociated with a commitment strategy steering its adoption and satis-
faction, or dropping (both determined by conditions on agent’s be-
liefs). This leads to a notion of goal oriented behaviours.

A set of goal oriented behaviours can be characterized by a tuple
(φ, κ⊕, κ	,Υ), where in the case of Jazzbot agent, φ ∈ LASP is a
goal, κ⊕, κ	 = {ϕ ∈ LASP} are sets of its adopt and drop condi-
tions w.r.t. the belief base B respectively, and Υ = {τ |τ is an mst}
is a set of behaviours triggered by φ. Informally, a commitment strat-
egy behaviour τcs then should contain conditional mst’s of the form
|=B ϕ −→ �Gφ with �G ∈ {⊕G ,	G} and ϕ ∈ κ� being either an
adopt, or a drop condition. Υ then contains conditional mst’s of τact
similar to |=G ϕ −→ τ , where τ ∈ Υ. A very similar view can be
formulated for beliefs featuring belief adoption and drop conditions
(w.r.t. agent’s perceptions) and being loosely associated with adop-
t/drop conditions of agent’s goals. In a consequence, such consider-
ations would lead to a formal characterization of causal information
flows between the agent’s knowledge bases, a topic beyond the scope
of the presented work.

By generalizing the presented approach to development of Jazzbot
we arrive to the following methodological steps/guidelines for de-
signing BSM agents:

1. identify the set of agent’s goals and design their interactions w.r.t.
the employed KR technology,

2. design a set of behaviours τact triggered by these goals (supposed
to achieve them),

3. identify the adoption and satisfaction (drop) conditions for these
goals and design concrete commitment strategies for them in τcs ,

4. identify the relevant part of agent’s beliefs w.r.t. the conditions
associated with the goals,

5. design the agent’s belief base including appropriate belief rela-
tionships w.r.t. the employed KR technology,

6. design the model of perception τperc by identifying the percepts
of the agent and link them to corresponding beliefs,

7. finally construct the global BSM agent program by appropriately
structuring and combining the mental state transformers τperc , τcs
and τact into a control cycle.

The presented guidelines, centered around the notion of a goal,
loosely fit the general view of methodologies for agent-based sys-
tems like e.g. Tropos, or MaSE [4]. In these, one of the main results
of the analytical stage of a single agent system are agent’s goals, or
tasks, associated with agent’s roles. Such methodologies are usually
not coupled to a particular agent architecture, the details of the agent
design are therefore left to a particular platform. The guidelines pro-
posed here thus informally fill this gap, at least w.r.t. the BSM frame-
work. However, we are convinced that some of the considerations
discussed above apply also to other agent oriented rule-based lan-
guage, especially when considering heterogeneous KR technologies
in a single agent.

5 DISCUSSION & CONCLUSION

To our knowledge, not too much was reported on implementation
techniques and source code structuring of larger, non-trivial agent
systems in agent oriented programming languages like Jason, or
3APL [6]. Some sketchy notes on overall system design can be found
in Jason and 2APL team reports from Multi-Agent Programming
Contest 2007 and 2008 [2, 12, 13], however no more general method-
ological considerations are discussed there and authors focus solely

on design of their particular agent system. From the published source
code of these projects6, it can be seen that the authors extensively use
escape calls into Java code and the Java implementation comprised
a significant part of their system implementations: representation of
the agent’s environment, shortest point to point path planning, inter-
agent coordination, etc.. The framework of Behavioural State Ma-
chines makes calls to external code a first class concept of an agent
programming language and facilitates only interactions between the
agent’s knowledge bases.

This unconstrained approach allows for custom implementation of
various strategies for handling agent’s mental attitudes and control
models. While the mainstream approach in agent programming lan-
guages is to choose a set of constraints an agent system must obey,
our approach is different. We propose a generic and flexible agent
programming framework, even capable of emulation of other agent
programming languages (see [11]), and subsequently develop a set
of methodological and design guidelines, so to say rules of good
practice, for development of cognitive agents. We accompany the
discussion by examples of code patterns supporting implementation
according to these design guidelines.

The presented discussion provides a snapshot of our current ex-
perience and knowledge in programming cognitive agents with the
framework of Behavioural State Machines. We discuss ideas and is-
sues resulting from an ongoing work towards proposing a set of de-
sign patterns for cognitive agent programming. The main contribu-
tion of the presented work is an attempt to lift these considerations
into a set of methodological steps, partly also applicable to imple-
mentation of agents in other rule-based agent oriented programming
frameworks (AgentSpeak(L) family of languages). However, the BSM
framework was specifically designed in a liberal way and thus it al-
lows use of heterogeneous knowledge representation technologies
together with implementation of arbitrary interactions among them.
Therefore, because of additional constraints these languages (mostly
BDI oriented) impose on agent programs, some of the presented
interactions between agent’s knowledge bases and implementation
techniques (e.g. reasoning about agent’s goals in AnsProlog∗) might
be difficult to implement in them.

In the future research, we aim to study formal specification meth-
ods (like e.g. source code annotations) for cognitive agents, by trying
to generalize examples of control models like those presented in Sub-
section 3.4. Subsequently we aim at characterizing more complex
code structures and templates, by means of dynamic, or temporal
logic adapted for the BSM framework. Our line of research follows a
bottom-up approach: instead of proposing a way to design a system
by analyzing it, we rather try to experiment with live implementa-
tions and collect experiences, which could later serve as a basis for a
generalization.

REFERENCES
[1] Ronald C. Arkin. Behavior-based Robotics. MIT Press, Cambridge,

MA, USA, 1998.
[2] L. Astefanoaei, C. P. Mol, M. P. Sindlar, and N. A. M. Tinnemeier.

Going for gold with 2APL. In Proceedings of Fifth international Work-
shop on Programming Multi-Agent Systems, ProMAS’07, volume 4908
of LNAI. Springer Verlag, 2008.

[3] C. Baral. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[4] Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, edi-
tors. Methodologies and Software Engineering for Agent Systems: The

6 Communicated over Agent Contest mailing lists: publicly available at
http://cig.in.tu-clausthal.de/agentcontest/.

Agent-Oriented Software Engineering Handbook, volume 11 of Multia-
gent Systems, Artificial Societies, and Simulated Organizations. Kluwer
Academic Publishers, June 2004.

[5] Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fal-
lah Seghrouchni, Jorge J. Gomez-Sanz, João Leite, Gregory O’Hare,
Alexander Pokahr, and Alessandro Ricci. A survey of programming
languages and platforms for multi-agent systems. Informatica, 30:33–
44, 2006.

[6] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah
Seghrouchni. Multi-Agent Programming Languages, Platforms and
Applications, volume 15 of Multiagent Systems, Artificial Societies, and
Simulated Organizations. Kluwer Academic Publishers, 2005.

[7] Rafael H. Bordini, Jomi F. Hübner, and Renata Vieira. Jason and the
Golden Fleece of Agent-Oriented Programming, chapter 1, pages 3–37.
Volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations [6], 2005.

[8] Egon Börger and Robert F. Stärk. Abstract State Machines. A Method
for High-Level System Design and Analysis. Springer, 2003.

[9] Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Meyer. Pro-
gramming Multi-Agent Systems in 3APL, chapter 2, pages 39–68. Vol-
ume 15 of Multiagent Systems, Artificial Societies, and Simulated Or-
ganizations [6], 2005.

[10] Frank S. de Boer, Koen V. Hindriks, Wiebe van der Hoek, and John-
Jules Ch. Meyer. A verification framework for agent programming with
declarative goals. J. Applied Logic, 5(2):277–302, 2007.

[11] Koen Hindriks and Peter Novák. Compiling GOAL Agent Programs
into Jazzyk Behavioural State Machines. Submitted 2008.

[12] Jomi F. Hübner and Rafael H. Bordini. Developing a team of gold
miners using Jason. In Proceedings of Fifth international Workshop on
Programming Multi-Agent Systems, ProMAS’07, volume 4908 of LNAI.
Springer Verlag, 2008.

[13] Jomi F. Hübner, Rafael H. Bordini, and Gauthier Picard. Using jason
to develop a team of cowboys: a preliminary design for Agent Contest
2008. In Proceedings of Sixth International Workshop on Programming
Multi-Agent Systems, ProMAS 2008, 2008.

[14] João Alexandre Leite. Evolving Knowledge Bases, volume 81 of Fron-
tiers of Artificial Intelligence and Applications. IOS Press, 2003.

[15] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., New York, NY,
USA, 1992.

[16] Peter Novák. Behavioural State Machines: programming modular
agents. In AAAI 2008 Spring Symposium: Architectures for Intelligent
Theory-Based Agents, AITA’08, March 26-28 2008.

[17] Peter Novák. Jazzyk: A programming language for hybrid agents with
heterogeneous knowledge representations. Sixth International Work-
shop on Programming Multi-Agent Systems, May 2008.

[18] Anand S. Rao and Michael P. Georgeff. Modeling Rational Agents
within a BDI-Architecture. In KR, pages 473–484, 1991.

