Compiling GOAL Agent Programs into
Jazzyk Behavioural State Machines

Koen Hindriks! and Peter Novak?

1 EEMCS, Delft University of Technology, The Netherlands
k.v.hindriks@tudelft.nl
2 Department of Informatics, Clausthal University of Technology, Germany
peter.novak@tu-clausthal.de

Abstract. A variety of agent-oriented programming languages based on con-
cepts such as beliefs and goals has been proposed in the literature. Even though
most of these languages now come with interpreters implemented in e.g. Java and
can be used to write software agents, there is little work reporting how to imple-
ment such languages or to identify a core instruction set that would facilitate such
implementation. In this paper we introduce a compiler for the language GOAL
into the framework of Jazzyk Behavioural State Machines. The result is a transla-
tion of key agent concepts such as beliefs and goals into Jazzyk which lacks these
notions, thus providing some evidence that it may provide a sufficient instruction
set for implementing agent programs. Moreover, arguably, the implementation
strategy used can be applied also to other agent programming languages.

1 Introduction

Relatively little has been reported in the literature on implementing high-level agent
programming languages [1]. An exception is the work of Dennis et al. [6], which aims
at providing a common basis for a variety of such languages. As of yet, however, there
is no equivalent of the Warren Abstract Machine [13] available - which provides such
a basis for Prolog - that would facilitate implementation of these agent languages. In
part this is due to the diversity of the proposed languages, ranging from extensions of
Java with high-level agent concepts to completely new proposals for high-level agent-
oriented programming languages. The effort needed, however, to implement the latter
class of agent languages from scratch, in for example Java, is large, non-trivial and
error-prone. Moreover a disadvantage of such an effort is that it is difficult to ascertain
that such an implementation is a faithful implementation of the semantics. It therefore
would be useful to have an intermediate language that provides a core instruction set
of more high-level programming constructs than e.g. Java provides, and that could be
used to compile agent programs into. As we will show, it turns out that the Jazzyk agent
programming framework [8, 9] provides an interesting option for compiling agent pro-
grams. Jazzyk agents are Behavioural State Machines (Jazzyk BSM) that exactly provide
the behavioural layer on top of a knowledge representational layer that is needed to im-
plement agent languages. The main contribution of the paper is a formal proof that
shows it is relatively easy to compile GOAL agents [5, 7] into Jazzyk BSM, demonstrat-
ing the usefulness of Jazzyk as a target language of an agent program compiler.
Besides showing that Jazzyk can be used as a target language of a compiler for such
agents, our result provides some additional insights. One of the more important corol-
laries of the proof given is that it shows that the GOAL agent language is not committed

to any particular knowledge representation (KR) technology. GOAL agents may use
Prolog [12], but there is nothing specific about GOAL enforcing such a choice. One of
the motivations behind the Jazzyk language has been to allow the use and combination
of heterogeneous KR technologies in a single agent. A consequence of our result is that
the choice of the KR technology used by GOAL agents can be seen as a parameter to
be instantiated when these agents are written. In fact, our result shows in a formally
precise sense that an agent language such as GOAL can be viewed as an action selection
mechanism put on top of an arbitrary knowledge representation technology. Finally,
by showing that GOAL agents can be compiled into Jazzyk, some evidence is provided
that Jazzyk supports the core functionality needed for implementing agent-oriented pro-
gramming.

Since a key ingredient of agent languages are the KR technology(ies) used, for our
purpose, we need to clarify in detail what we mean by a KR technology.

Definition 1 (KR Technology). A KR technology is a triple (L, Q,U), where:
— L is some logical language, with a typical element ¢ € L,
— Qs a set of query operators |=€ Q such that =C 2% x L,
— U is a set of update operators © € U of type : 25 x L — 2.

Our definition of a KR technology is quite abstract and only specifies the types of oper-
ators which are associated with a knowledge representation language. This makes our
result general, since it allows for a wide range of KR technologies that fit the KR schema
introduced, such as Prolog, Answer Set Programming, SQL, etc. The only assumption
made is that a special symbol L is part of the KR language £, which is intuitively in-
terpreted as falsum; when L can be derived from a set of sentences this set is said to be
inconsistent. Our definition is inspired by [4] and explained in more detail in [3]. Apart
from minor differences, it corresponds to the notion of a KR module in [8].

2 GOAL

The agent programming language GOAL, for Goal-Oriented Agent Language, is a lan-
guage that incorporates declarative notions of beliefs and goals, and a mechanism for
action selection based on these notions. That is, GOAL agents derive their choice of ac-
tion from their beliefs and goals. A GOAL agent consists of four sections: (1) a set of be-
liefs, collectively called the belief base, typically denoted by Y/, (2) a set of goals, called
the goal base, typically denoted by I', (3) a program section which consists of a set of
action rules, typically denoted by II, and (4) an action specification section that con-
sists of a specification of the pre- and postconditions of actions of the agent, typically
denoted by A. A GOAL agent A thus can be represented as a tuple A = (X, I', I, A).
See Figure 1 below for a simplified GOAL agent that manipulates blocks on a table; for
other examples and a more extensive discussion of GOAL we refer the reader to [5, 7].

Beliefs and Goals The beliefs and goals of a GOAL agent are drawn from a KR lan-
guage such as Prolog [12]. As mentioned, one of the contributions will be to show that
GOAL agents are not married to Prolog. To this end, we abstract here from particulars
of a specific KR language (similar to the abstraction presented in e.g. [5]). Instead, we
use the abstract definition of a KR technology provided in Definition 1. For the purpose

of introducing GOAL agents below and to simplify the technical presentation, without
loss of generality, we introduce a slightly more specific instance of a KR Technology
Ko = (L, {=},{®,©}) where = is an entailment relation on £, @ is a revision op-
erator and © is a contraction operator. In the remainder of this paper we will use the
label K to refer to arbitrary KR technologies of this form used by GOAL agents. The
notation used for the operators has been chosen to suggest the usual meaning associated
with these symbols: |= is used to verify that a sentence follows from a particular set of
sentences; & is used to (consistently) add to a given set of sentences a new sentence;
and © is used to remove (contracts) a sentence from a given set of sentences. Both &
and © are assumed to yield consistent sets of sentences, i.e. T®¢ = L and TS ¢ = L.

The belief base X' and the goal base I" of a GOAL agent are defined as subsets of
sentences from the KR language £. Together the belief and the goal base make up a
mental state m of a GOAL agent, i.e. m = (X, I'). Belief bases X' and individual goals
~ € I are required to be consistent, i.e. X f= 1 and {7} & L. Additionally, an agent
does not believe it achieved its goals, i.e. for all v € I" we have X [~ ~.

Action Selection and Specification A GOAL agent chooses an action by means of a
rule-based action selection mechanism. A program section in a GOAL agent consists
of action rules of the form if 1 then a. These action rules define a mapping from
states to actions, together specifying a non-deterministic policy or course of action. The
condition of an action rule, typically denoted by 1), is called a mental state condition. It
determines the states in which the action a may be executed. Mental state conditions are
Boolean combinations of basic formulae bel(¢) or goal(¢) with ¢ € L. For example,
—bel(dg) A goal(pg A ¢1) is a mental state condition.

Definition 2 (Mental State Condition Semantics). The semantics of a mental state
condition, given a mental state m = (X I"), is defined by the following four clauses:

mi,bel(s) ff T
m =4 goal(¢) iff thereisay € I's.t.{v} =&
m g i miEg

m':g VY1 Ao iff m):g () andm':g po.

Actions are specified in GOAL using a STRIPS-like specification. The action specifica-
tion section in a GOAL agent consists of specifications of the form:

action { :pre{¢} :post{¢’} }

Such a specification of action action consists of a precondition ¢ and a postcondi-
tion ¢’. An action is enabled whenever the agent believes the precondition to be true.
Upon its execution the agent updates its beliefs (and, indirectly, possibly also its goals)
with the postcondition ¢'. In line with STRIPS-style action specifications we assume
that the postcondition ¢’ of an action consists of two parts ¢/ = ¢4 A ¢, With ¢4 a
list of negative literals (negated facts) also called the delete list and ¢, a conjunction
of positive literals (facts) also called the add list.> It is assumed here that each action
matches with exactly one corresponding action specification.

3 We could also have used e.g. ADL specifications [10], but for reasons of simplicity we use a
STRIPS-like specification, which also nicely matches the KR technology /Co with two update
operators: the operator & to add facts, and the operator © to delete facts.

Semantics of a GOAL Agent To specify what it means to execute a GOAL agent we
use a transition style semantics [11]. For our purposes, it is sufficient to present the
semantics for executing a single action by a GOAL agent. In Section 4 we show how
this semantics can be implemented by means of a Jazzyk BSM.

Definition 3 (Action Semantics). Ler m = (X, I') be a mental state, if 1) then a be
an action rule, and a {:pre{¢} :post{d, A ¢a} } be a corresponding action specifica-
tion of a GOAL agent. The following semantic rule can be used to derive that action a

can be executed.:
mEY, Y Ee
a 1
m—m

where X' = (£ 6 ¢a) ® ¢po andm’ = (X', '\ {y € T2 |z 7}).

Besides user specified actions, GOAL has two built-in actions adopt and drop to mod-
ify an agent’s goal base. The following axioms define the semantics of these actions:

(£, 1) 222D, U {e))

(£,1) ZPO o P\ {y e | {y} = o}

3 Jazzyk Behavioural State Machines

The programming language Jazzyk introduced in [8, 9] elegantly combines concepts
for programming agent behaviour with concepts for knowledge representation. Jazzyk
agents can be seen as concrete instantiations of Gurevich’s Abstract State Machines
(ASM) [2] , named Jazzyk Behavioural State Machines, or alternatively Jazzyk agents.
Jazzyk defines a new and unique agent-oriented programming language due to the
clear distinction it makes between the knowledge representation and behavioural layers
within an agent. It thus provides a programming framework that clearly separates the
programming concerns of how fo represent an agent’s knowledge about, for example,
its environment and how to encode its behaviours.

Mental states of Jazzyk BSM agents, different from those in GOAL, are collections
of one or more so-called knowledge representation modules, typically denoted by M,
each of which represents part of the agent’s knowledge base. Transitions between such
states result from applying so-called mental state transformers (mst), typically denoted
by 7. The various types of mst determine the behaviour that an agent can generate. A
Jazzyk BSM agent B consists of a set of KR modules My, ..., M, and a mental state
transformer 7, i.e. B = (M, ..., My, 7); the mst 7 is also called an agent program.

A KR module of a Jazzyk BSM can be seen as a database of statements drawn from
a specific KR language. KR modules may be used to represent and maintain various
attitudes of an agent such as its knowledge about its environment, or its goals, inten-
tions, obligations, etc. Jazzyk allows agents to have any number of such KR modules
and does not enforce any particular view on these modules. Unlike GOAL, Jazzyk ab-
stracts from a particular purpose a KR module can be made to serve. Formally, a KR
module (D, £, Q,U) is a KR technology (L, Q,U) (cf. Definition 1) extended with a

state (knowledge base) D C L. A KR module is a self-encapsulated computational en-
tity providing two sets of interfaces: query operators for querying the knowledge base
and update operators to modify it. In a Jazzyk BSM (M, ..., M,,,) we additionally
require that the set of query and update operators of any two modules are disjoint, i.e.
;N Qj = (Z)andui ﬂuj' = 0.

Syntax of Queries and Mental State Transformers Queries, typically denoted by ¢,
are operators constructed from the set of available query operators Q that are available
in a KR technology. A primitive query ¢ = (|= ¢) consists of a query operator =€ Q
and a formula ¢ € £ of the same KR technology. Arbitrary queries can be composed
again by means of conjunction A, disjunction V and negation —. Mental state transform-
ers enable transitions from one state to another. A primitive mst @ ¢, typically denoted
by p and constructed from an update operator © € U and a formula ¢ € £, is an update
on the state of the corresponding KR module of a mental state. Conditional mst are of
the form ¢ — 7, where ¢ is a query and 7 is a mst. Such a conditional mst allows
to make the application of mst 7 conditional on the evaluation of query (. Msts can be
combined by means of the choice | and the sequence o syntactic constructs.

Definition 4 (Jazzyk Mental State Transformer). Let M, ..., M,, be KR modules
of the form (D;, L;, Q;,U;). The set of mental state transformers is defined as:

1. skip is a primitive mst,

2. ifo el;and ¢ € L;, then ©¢ is a primitive mst,

3. if pis a query, and T is a mst, then o — T is a conditional mist,

4. if T and 7" are mst’s, then 7|7’ is an mst (choice) and T o 7' is an mst (sequence).

Figure 1 provides an example of a Jazzyk BSM agent. To improve readability, we use
a mix of concrete Jazzyk syntax and the formal syntax introduced above. For a more
extensive example of a Jazzyk BSM program see [9].

Jazzyk BSM Semantics The semantics of Jazzyk BSM is defined using a semantic cal-
culus similar to that used for ASM [2]. This formalism provides a functional rather than
an operational view on Jazzyk mental state transformers. The yields calculus, intro-
duced below, specifies an update associated with executing an mst. It formally defines
the meaning of the state transformation induced by executing an mst in a state.
Formally, a mental state s of a Jazzyk BSM (M, ..., M, T) consists of the corre-
sponding states (D1, ..., D,) of its KR modules. To specify the semantics of a Jazzyk
BSM, first we need to define how queries are evaluated and how a state is modified by
applying updates to it. A primitive query = ¢ in a Jazzyk BSM state s = (D1, ..., D,,)
evaluates the formula ¢ € L; using the query operator =€ Q; in the current state
D, C L; of the corresponding KR module (D;, £;, Q;,U;). That is, s |=; (= ¢) holds
in a mental state s iff D; = ¢, otherwise we have s =, (= ¢). Given the usual
meaning of Boolean operators, it is straightforward to extend the query evaluation to
compound query formulae. Note that a query = ¢ does not change the mental state s.
The semantics of a mental state transformer is a set of (possibly sequences of) up-
dates (update set). The same notation ©¢ is used to denote a simple update as well as
the corresponding primitive mst. It should be clear from the context which of the two

is intended. Sequential application of updates is denoted by e, i.e. p; ® po is an update
resulting from applying p; first and then applying ps.

Definition 5 (Applying an Update). The result of applying an update p = Q¢ to a
state s = (Dy,...,Dy) of a BSM B = (My,...,M,,T), denoted by s@ p, is a
new state s' = (D1,...,Dj, ..., Dy) where D} = D;p = D; @ ¢ and D;, @, and ¢
correspond to one and the same M, of B. Applying the special update @ to a state s
results in the same mental state s = s @ 0.

We write D; @ (p1e...0p1) for (...(D; @ p1) B ... D px) where all p; correspond
to D;. The result of applying an update of the form p; e ps to a state s, i.e. s P(p10p2),
is the new state (s € p1) P p2.

The meaning of a mental state transformer in state s, formally defined by the yields
predicate below, is the update it yields in that state. We introduce a version of the
yields calculus adapted from [9].

Definition 6 (Yields Calculus). A mental state transformer T yields an update p in a
state s, iff yields(t, s, p) is derivable in the following calculus:

T T . A
yields(skip,s,0) yields(Qp,s,0P) (ylelds Ofﬁl primitive mst)

yields(,s,p), sk=5¢ yields(7,s,p), sfEj b . ..

m m (ylelds ofa conditional mSt)

yields(11,8,p1), yields(12,8,p2) yields(T1,8,p1), yields(Ta,s

2P2) s ;
yields(71|7m2,s,p1) yields(71|72,s,p2) (ylelds Ofa choice mst)

yields(71,s,p1), yields(72,8 D p1,p2)
yields(T107T2,8,010p2)

(vields of a sequential mst)

The mst skip yields the update @. Similarly, a primitive update mst yields the cor-
responding update. In case the condition of a conditional mst ¢ — 7 is satisfied in
the current mental state, the calculus yields one of the updates corresponding to the
right hand side mst 7, otherwise the @ update is yielded. A non-deterministic choice
mst yields an update corresponding to either of its members and finally a sequential mst
yields a sequence of updates corresponding to the first mst of the sequence and an up-
date yielded by the second member of the sequence in a state resulting from application
of the first update to the current mental state.

4 Compiling a GOAL Agent into a Jazzyk BSM

In this Section we show that GOAL agents can be implemented as, or compiled into,
Jazzyk BSM. The compiler is abstractly represented here by a function € that trans-
lates (compiles) GOAL agents into Jazzyk Behavioural State Machines. The main re-
sult is a proof that for every GOAL agent A = (X, I, II, A) there is a Jazzyk BSM
¢(A4) = (My,...,M,, 1) that implements that GOAL agent. In fact, we will show
that a Jazzyk BSM €(A) = (M x, M, 7) with precisely two KR modules is sufficient,
where module M 5; corresponds to the belief base X' and module M - corresponds to
the goal base I". We proceed as follows. First, we define the KR modules M 5; and M

of the Jazzyk BSM, using the KR technology employed by GOAL agents as a starting
point. Second, we show how to obtain a Jazzyk BSM agent program 7 that implements
the action rules in the program section /I and action specifications A of the GOAL
agent. Finally, the equivalence of the GOAL agent with its Jazzyk BSM counterpart
¢(.A) is proven by showing that both are able to generate the same mental states.

Translation It is important to repeat that throughout this paper we have assumed that
a GOAL agent uses a KR technology of the form Ko = (£, {=}, {®,©}) (see Section
2). Given this, it is straightforward to map a GOAL belief base onto a Jazzyk BSM KR
module that is able to implement (i) the evaluation of a mental state condition bel(®)
on a belief base as well as (ii) the execution of updates associated with performing an
action. We simply map the GOAL belief base X' onto the Jazzyk BSM module

My = Cbb(zl) = <27£7 {':}a {@7@}> (1)

Whereas the underlying KR technology is implicitly assumed in a GOAL agent, this
assumption is made explicit in the corresponding Jazzyk BSM KR module.

The translation of the goal base of a GOAL agent into a Jazzyk BSM module is less
straightforward. A Jazzyk BSM module that implements the goal base needs to be able
to implement (i) the evaluation of a mental state condition goal(¢) on a goal base as
well as (ii) the execution of updates on a goal base as a result of performing adopt
or drop actions and the removal of goals that have been achieved. Because the goal
operator has a somewhat non-standard semantics (see Definition 2), we need to define
a non-standard KR technology associated with the Jazzyk BSM module implementing
the goal base. Mapping a goal base I” onto the module M provides what we need:

MF = Q:gb(F) = <F, £7 {):goal}v {@adoph edropa 6achieved}> (2)
where:

— I' Egoal ¢ iff there is ay € I" such that {v} = ¢.
— I' Dadopt ¢ = 1" U {¢}.

- I'Sarop ¢ =T'\{v €' [{7} F ¢}.

-I Oachieved ¢ =TI \ {(b}

Egoal is used to implement goal(¢), Badopt implements adopt, Sarop is used to
implement drop, and finally ©,chievea implements the goal update mechanism to re-
move achieved goals. Note that the goal update mechanism of GOAL (cf. Definition 2)
requires a simple set operator to remove a formula from the goal base such as Sachieved
and we cannot use Odrop for this purpose.

Using the translations defined above it is now possible to translate mental state
conditions 1 used in GOAL action rules of the form if 1) then a. As noted above,
¢(bel(¢)) can be mapped onto the Jazzyk BSM query = ¢; similarly, we can define
¢(goal(¢)) = (F=goal ¢). Boolean combinations of mental state conditions are trans-
lated into Boolean combinations of Jazzyk BSM queries.

The translation of an action a, the second part of an action rule of a GOAL agent,
into Jazzyk BSM msts is straightforward when a is either adopt or drop action. Since

both adopt(¢) and drop(¢) are always enabled, we can map these actions simply
onto their corresponding primitive update operators:

¢(adopt(¢)) = Dadopt® (3)
6((311'()F’(¢)) = 9dr‘Op‘l5 “

The compilation of user defined actions, i.e. actions specified in the action specifica-
tion section A, into Jazzyk BSM depends on the action specification A of the compiled
GOAL agent. Such actions are mapped onto conditional msts of the form ¢ — 7.
The preconditions of an action are mapped onto the query part ¢ of the mst; the effects
of that action, expressed by a postcondition in GOAL, are translated into a sequential
mst 7. Assuming that a is a GOAL action with the corresponding action specification

a {:pre{¢} :post{pq A ¢}, we define:

€a) = (F¢— S¢40Dda))

Note that the Jazzyk BSM operators =, @, and © are associated with the KR mod-
ule M 5 that implements the belief base of the GOAL agent, which ensures that the
precondition ¢ is evaluated on the belief base of the agent and in line with Definition 3,
the postcondition ¢4 A ¢, is used to update that belief base.

Combining the translations of mental state conditions and actions yields a transla-
tion of action rules in the program section of a GOAL agent. It is also convenient to
introduce a translation of a complete program section, i.e. a set II of such rules. Note
that the order of translation is unimportant.

¢(if ¢ then a) = €(¢p) — €(a) (6)
¢(0) = skip @)
) =¢&(r)| €T\ {r}),ifrell 8

The definitions above already allow us to define a compilation of a GOAL agent into
a Jazzyk BSM, but it is convenient to first introduce the notion of a possibly adopted
goal. A goal ¢ is said to be a possibly adopted goal whenever it is possible that the
agent may come to adopt ¢ as a goal, i.e. whenever it is already present in the goal
base or there is an action rule of the form if ¢ then adopt(¢) in II. The set of
possibly adopted goals P4 of a GOAL agent A = (X', I, I, A) thus can be defined by
Pa=TITU{¢|if ¢ then adopt(p) € II'}. The notion introduced is useful since in
the Jazzyk BSM translation we need to also implement the blind commitment strategy
of GOAL, i.e. the removal of goals whenever these are completely achieved. A Jazzyk
BSM mst that consists of a sequence of conditional msts is introduced to implement
the goal update mechanism of GOAL. Each of these corresponds to a single possibly
adopted goal. The corresponding query evaluates whether ¢ € P4 is (believed to be)
achieved, whereupon ¢ is removed from the goal base:

Ches(0) = skip ©
Q:bcs(PA) = (': ¢ - @achieved¢) o Q:bcs(,P.A \ {¢}) s 1f¢ S PA (10)

:main: blocksWorld

{
/%% Initializations omitted s/
‘beliefs{. . .}
:goals{. . .}

;program{
if bel(on_table([B|S]), clear(B),
block(C), clear(C)) ,
goal(on_table([C,B|S]))
then move(C,B).
if goal(on(B,A)),
bel(on_table([C|S]),
clear(C), member(B,S))

/xx+ Modules initialization omitted =/
{1 ssosoorsn C(IT) sorskonskonskon
when |= [{on_table([B|S]), clear(B), block(C), clear(C)}]
and [=goa1 [{on_table([C,B|S])}]
then {
when = [{clear(C), clear(B), on(C,Z), not(on(C,B))}]
then @ [{not(on(C,Z)), on(C,B)}]

s
when =401 [{On(B,A)}] and
= [{on_table([C|S]), clear(C), member(B,S)}]
then {
when [= [{clear(C), clear(table),
on(C,Z), not(on(C,table))}]

then @ [{not(on(C,Z)), on(C,table)}]
then move(C,table). }

} ,
{ /] xxxxxx8k Carop (GLA)) #okxkkrkk
:actionspec{ when = [{on(b,a), on(a,table)}]
move(X,Y) { then ©g.a1 [{ON(b,a), on(a, table)}] ,
:pref clear(X), clear(Y), on(X,Z), not(on(X,Y)) } when = [{on_table([a,b])}]
;post{ not(on(X,Z)), on(X,Y) } then ©goa1 [{on_table([a,b])}] ,
} when |= [{on_table([b])}]
} then Sgoar [{on_table([o])}]
} }

Fig. 1. Example of a translation of a simple GOAL agent moving blocks on a table into Jazzyk
BSM pseudocode. when ... then ... encodes a conditional mst, ; and , stand for | and o respectively.

The compilation of a GOAL agent (X', I', IT, A) into a Jazzyk BSM is defined as:
CHX, I A)) = (Ms, Mp,E(IT) 0 €hes(Pa)) an

Correctness of the Translation Function € The main effort in proving that the compi-
lation of a GOAL agent A = (X, I', I, A) into a Jazzyk BSM €(A) = (M, Mp, €(IT)o
Ches(P4)) is correct consists of showing that the action rules IT of the GOAL agent
generate the same mental states as the mental state transformer €(IT) o Cpes(P4). In
order to prove this we first prove some useful properties of €pes(P 4) that implements
the goal update mechanism of GOAL (Lemma 1), the relation of GOAL mental states re-
sulting from action execution to the application of updates to Jazzyk BSM mental states
(Lemma 2), and the evaluation of mental state conditions in GOAL to the evaluation of
their translations in Jazzyk (Lemma 3). Due to space limitations we omit the detailed
proofs for these lemmas.

Lemma 1 shows that a Jazzyk BSM state, which does not need to be a GOAL
state, nevertheless is a GOAL mental state after removing goals that are believed to
be achieved, and that the mst €pcs(P4) implements this goal update mechanism.

Lemma 1. Lerm = (X, I") be a Jazzyk BSM state such that X [~ L and I' C P4,
and p be an update SachievedY1 ® - - - ® SachievedYn- Then yields(Cpes(Pa), m, p) iff

(i) (X, I @ p) is a GOAL mental state, and
(ii) thereisno I'": ' @ p C I'" C I such that (X, I"") is a GOAL mental state.

Lemma 2 proves that the GOAL states resulting from executing an action can also be
obtained by applying updates of a particular structure, which is useful to relate GOAL

actions to Jazzyk BSM updates. The fact that the Jazzyk BSM mst 7 that is the Jazzyk
BSM translation of a GOAL agent also yields updates with the same structure is useful
to relate Jazzyk BSM updates to GOAL actions again.

Lemma2. Let A = (X, I, I, A) be a GOAL agent and €(A) = (Mx, Mp,T) its
Jazzyk BSM compilation. Also let a be a user defined action of GOAL agent A, with
action specification a {:pre{¢} :post{d, N ¢q}}. Then

(i) m =m/ iffdn >0: m' = m@(@¢d.®¢a.@achieved71 e.. -.@achieved77n)~

(i) m 2P i = m @(Cdropd).
(iii) m adopt(d) s if m" = m @ (PadoptP)-

(iv) ineldS(T, m, p), then p is of the form ©¢ 8¢, ® Oachieved V1®- - -®Oachieved Tn
for some n > 0, or of the form Sdrop®P OF Sadopt ®-

Lemma 3 relates the evaluation of GOAL mental state conditions to the evaluation
of their Jazzyk BSM translation in the same state.

Lemma 3. Let 1) be a mental state condition. It holds that

m =g Y iffm =; €()

Finally, Theorem 1 shows that the updates generated by the Jazzyk translation of a
GOAL agent produce the same mental states as the execution of actions by that GOAL
agent, which shows that the Jazzyk BSM implements the GOAL agent.

Theorem 1 (Correctness of GOAL-2-BSM Compilation). Ler A = (X, I, I, A) be
a GOAL agent with mental state m = (X, I") and €(A) = (Mx, Mp, 1) its corre-
sponding Jazzyk BSM translation. Then for all p:

Ja:m >m@p iff yields(t,m,p).

Proof. Informally, to show the left to right direction (=), we have to show that if a
GOAL action a is enabled in a mental state m, there exists an update p such that (a)
the state resulting from performing a is m € p and (b) p is yielded by 7 in this state.
Note that even though an update operator p occurs on the left hand side the expression
on the left hand side denotes a GOAL transition. From Lemma 2 we know that such a
P exists and is of the form (1) P = @¢d o @(ba ® OachievedY1 ® - - - ® Oachieved Vn for
user specified actions a, (i) p = Sarop® if @ = drop(¢) and (iii) p = Badopt® if
a = adopt(¢).

So suppose that m —— m @ p and a is a user defined action (the other cases dealing
with a = drop(¢) and a = adopt(¢) are similar). This means there is an action rule
if 9 then a, and precondition ¢ and postcondition ¢4 A ¢, associated with action a
such that m =, ¢ and X' |= ¢. It remains to show that update p is also yielded by 7.
By construction, we must have that

T= (|(¢(¢) — (': ¢ I @¢d © @(ba)”) o ¢bcs(lp./‘\)

Since we have m =, ¢ and X = ¢, using Lemma 3 it is immediate that we have
yields(€() — (F ¢ — Spa o Ddy), m, Odq ® D,). Finally, from Lemma 1, we

have that yields(e:bcs (PA)a m @(@¢d i @(Z)a)a {@achieved71 e...0 eachieved'}/n) and
by applying sequential composition on the resulting updates we are done.

(<=) In the other direction, we have to prove that the updates performed by €(.A)
correspond to enabled actions of the GOAL agent .A. So suppose that yields(t, m, p),
and p is of the form S¢y ® Bd, ® SachievedV1 ® - - - ® SachievedVn (Using Lemma
2(iv); the other cases with p = Ogdrop® and p = Dadopt@ are again similar). From
the construction of € it follows that we must have yields(€(¢y)) — (F ¢ —
Odq © Pda) © Cpes(Pa), m, p). From the rule for conditional mst in the yields cal-
culus (Definition 6) follows that m |=; €(¢) and m |=; (= ¢). By Lemma 3 we
then have m |=4, ¢ and X' |= ¢. We must also have an action rule if ¢ then a
with action specification a {:pre{¢} :post{@, A ¢4} such that m — m @(S¢q e
DPq ® Oachieved VL ® - - - ® OachievedY,y,) (cf. Lemma 2(i)). It remains to be shown that
@achieved"}/l e...0 @achieved"}/n iS equa1 to @achieved’% e...0 @achieved’%/n; thiS
follows immediately from Lemma 1.

5 Discussion & Conclusion

We showed that any GOAL agent can be compiled into a Jazzyk Behavioural State
Machine. More precisely, it was shown that every possible computation step of a GOAL
agent can be emulated by the Jazzyk BSM that is the result of compiling the GOAL
agent into Jazzyk BSM. The compilation procedure is compositional in the sense that
any modifications or extensions of the belief base, goal base or program and action
specification sections of the GOAL agent only locally affect, respectively, the compiled
belief base module, the compiled goal base module, or the mental state transformer that
is the result of compiling the program and action specification sections.

The compilation function introduced provides a means to translate GOAL agents
into Jazzyk BSM, but not vice versa. Abstracting from a number of details a Jazzyk BSM
could be viewed as a GOAL agent that does not use its goal base and associated goal
update mechanism. As mentioned above, Jazzyk does not commit to any particular view
on the KR modules of a Jazzyk BSM. This flexibility allowed us to implement the goal
base of a GOAL agent by means of explicit emulation of the goal update mechanism.

As already noted in the introduction, there is not much related work aimed at pro-
viding an effective strategy or tools for implementing a variety of rule-based agent
programming languages such as those described in [1]. To the best of our knowledge,
only [6] has presented a framework to this end. The resulting framework, however, is
based on the idea to incorporate each and every semantic feature of a variety of avail-
able high-level agent languages in order to be able to cover every type of agent. It thus
does not provide an implementation strategy as the one promoted and illustrated in this
paper, which is based on the idea to provide a concise set of simple high-level concepts
(a common core) facilitating compilation of a variety of agent programs into this core
instruction set. This strategy is explicitly aimed at reducing a set of high-level agent
programming concepts to a simpler, more basic set of concepts.

The implementation strategy used to identify specific semantic features of the GOAL
language and to emulate these explicitly in Jazzyk also raises the question whether fea-
tures of other agent programming languages can be compiled in a similar way. Although

we do not have room to extensively argue for this, we believe that a similar approach
can also be applied to other rule-based agent programming languages. In particular,
the following implementation strategy could be applied to compile agent programs into
Jazzyk BSM: (i) compile the underlying knowledge base(s) into equivalent Jazzyk BSM
KR module(s), (ii) compile the (action, planning, ...) rules of the agent program into
Jazzyk BSM mental state transformers using the operators of the KR module(s), and
finally (iii) implement any specific semantic features of the language by a Jazzyk BSM
mst and “append” it to the one constructed in the previous step. Moreover, since Jazzyk
BSM also features a much simpler conceptual scheme than higher level agent languages,
we believe that it provides a promising basis for an intermediate language into which
agent programs can be compiled and interpreted.

Our result shows that GOAL does not commit to any particular KR technology such
as Prolog. Another issue that remains is whether it would be possible to allow GOAL
agents to use multiple KR technologies. The compilation into Jazzyk BSM provides
some evidence that this is possible since Jazzyk BSM enables the use of many different
KR technologies. However, the use of multiple KR technologies within a single agent
will add expressive power only when certain key issues related to the “interoperability”
of different KRs have been solved (for a discussion see also [3]).

References

1. R.H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent Programming
Languages, Platforms and Applications. Kluwer, 2005.

2. E. Borger and R.F. Stirk. Abstract State Machines. A Method for High-Level System Design
and Analysis. Springer, 2003.

3. Mehdi Dastani, Koen V. Hindriks, Peter Novédk, and Nick A.M. Tinnemeier. Combining
multiple knowledge representation technologies into agent programming languages. In Proc.
of the Intl. Workshop on Declarative Agent Languages and Technologies, (DALT’08), 2008.

4. R.Davis, H.E. Shrobe, and P. Szolovits. What Is a Knowledge Representation? A, 14(1):17-
33,1993.

5. F.de Boer, K. Hindriks, W. van der Hoek, and J.-J.Ch. Meyer. A Verification Framework for
Agent Programming with Declarative Goals. Journal of Applied Logic, 5(2):277-302, 2007.

6. L.A. Dennis, R.H. Bordini, B. Farwer, M. Fisher, and M. Wooldridge. A common semantic
basis for BDI languages. In Proceedings of the International Workshop on Programming
Multi-Agent Systems (ProMAS’07), LNAI 4908. Springer, 2008.

7. K. Hindriks. Modules as Policy-Based Intentions. In Proceedings of the International Work-
shop on Programming Multi-Agent Systems (ProMAS’07), LNAI 4908. Springer, 2008.

8. P. Novak. Behavioural State Machines: programming modular agents. In AAAI 2008 Spring
Symposium: Architectures for Intelligent Theory-Based Agents (AITA’08), 2008.

9. Peter Novdk. Jazzyk: A programming language for hybrid agents with heterogeneous knowl-
edge representations. In Proc. of the 6th Intl. Workshop on Programming Multi-Agent Sys-
tems, (ProMAS’08), 2008.

10. E. Pednault. ADL: exploring the middle ground between STRIPS and the situation calculus.
In Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning, 1989.

11. Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

12. Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT press, 1986.

13. David H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Al Center,
SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, 1983.

