
1

Towards Incremental Development of
Human-Agent-Robot Applications using

Mixed-Reality Testbeds
Michal Jakob, Michal Pěchouček, Michal Čáp, Peter Novák and Ondřej Vaněk

Abstract—Testing and evaluation is an essential par t of de-
veloping applications involving teams of humans, agents and
robots. In such applications, individual algor ithms cannot be
reliably tested in isolation because their per formance depends
on complex interactions with the environment and with other
humans, agents and robots involved. At the same time, testing
with real robots and human individuals is costly and potentially
dangerous. We therefore propose an incremental development
framework employing mixed-reality testbeds, which aims at
reducing development costs and r isks by fully or par tially
substituting par ts of the application and the sur rounding reality
with computational models. The framework parameter izes such
mixed-reality testbeds in terms of their fidelity and size, and
comes with guidelines for managing the two parameters through
a sequence of iterations so as to maximize the effectiveness of
system development. The framework is illustrated on an example
application in the domain of multi-UAV tracking of mobile
targets.

Index Terms—Multiagent Systems, Simulation, Modeling, Au-
tonomous vehicles, Methodology, Testing

I. INTRODUCTION

Technological progress has now reached a point where ap-
plications involving autonomous robotic assets become reality
in numerous domains. With continual developments towards
applications involving mixed human, agent and robot teams
(termed HART applications hereafter), we witness a growing
need for efficient methods and processes for developing such
applications. Due to requirements on efficiency, reliability
and robustness of such systems in real-world conditions,
no development methodology for HART applications can be
effective without strong support for realistic evaluation and
testing.

In contrast to standalone software systems, the operation
of HART applications depends on factors beyond the actual
software logic, in particular on the characteristics of the
hardware (sensors, actuators and communication links), the
dynamics of the environment and the behavior of the humans
involved. A reliable assessment of HART applications cannot
be obtained without a testbed that approximates these factors
with a sufficient level of fidelity. In general, the most reliable
assessment is obtained if the application is tested in the full
target configuration, i.e., with the complete set of hardware

All authors are with the Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering, Czech Technical University in
Prague, Karlovo námestı́ 13, CZ-121 35 Prague 2, Czech Republic, e-
mail: firstname.lastname @fel.cvut.cz

assets and human individuals operating within the target phys-
ical environment. Unfortunately, such full-configuration tests
are very expensive in terms of cost, time and resources, and
may carry substantial risks (consider e.g., testing a collision
avoidance functionality between UAVs). This makes full-
configuration testing uneconomical and impractical in early
stages of application development, when large amount of
evaluation and testing needs to be performed quickly to assess
a multitude of alternative design options.

To reduce assessment costs and risks, developers of HART
applications may employ simplified testbeds which approx-
imate the target application setup. Environment, hardware
and/or human actors can be fully or partially substituted
with computational models, making assessment faster and
less costly, albeit at the expense of introducing potential
assessment errors. The practice of using computational models
is widespread in many areas of engineering, including the
development of robotic systems [1].

In the case of HART applications, however, determining
which parts of the application should be approximated with
computational models is difficult due to a large number of
involved entities and their dependencies. In this paper, we
address this issue and lay foundations for a development
approach that allows balancing assessment cost and accuracy
throughout the system development process. We propose and
formalize the concept of incremental multi-level mixed-reality
development that allows to use mixed-reality testbeds of var-
ious size and levels of virtualization, and utilize them in a
way that maximizes the effectiveness of HART application
development.

A. Example: Multi-UAV Tracking
Consider the tasks of mobile target tracking by teams

of unmanned aerial vehicles (UAVs). The objective is to
provide updates on the location and activity of a number of
ground mobile targets, where the number of entities of interest
may be much higher than the number of UAVs. The team
of UAVs should operate autonomously with only high-level
supervision by a human operator. Developing reliable control
and coordination algorithms for autonomous teams of UAVs
is a challenging problem, especially when taking into account
complex operational environments (e.g., urban area) or the
ability of targets to purposefully evade detection. Moreoever,
in scenarios such as border patrolling, the monitoring assets
may also include unattended ground sensors and on-the-
ground human or robotic patrolling units.

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Please cite as: Michal Jakob, Michal Pěchouček, Michal Čáp, Peter Novák, Ondřej Vaněk, "Mixed-Reality Testbeds
for Incremental Development of HART Applications," IEEE Intelligent Systems, vol. 27, no. 2, pp. 19-25, Jan. 2012,
doi:10.1109/MIS.2012.2

2

Figure 1: AGENTSCOUT: Mobile targets tracking and
area/perimeter patrolling using unmanned aerial vehicles. Ex-
ample application developed with the help of mixed-reality
testbeds.

Developing coordination algorithms for such mixed teams
of mobile robots, static sensors and human patrols requires an
iterative development and testing process. As part of our work
towards implementing the above outlined tracking capability
in the AGENTSCOUT simulator1 [2], we have developed and
applied such a process to an extent. The experience obtained
motivated the approach introduced in this paper.

II. MULTI-LEVEL MIXED-REALITY TESTBEDS

In general, there are different ways in which target deploy-
ment setup can be approximated in order to make application
tests faster and less expensive. Since our interest is in multi-
entity systems involving a number of human actors and robotic
assets, we consider two principal dimensions in which the
approximation can proceed: (1) the level of virtualization with
which the target setup is represented, and (2) the number of
entities in the test scenarios. Other approximation dimensions
could be introduced as long as they allow trading test costs
for test accuracy.

A. Approximation Dimensions

The level of virtualization denotes the extent to which
the target application setup is virtualized in a given testbed
configuration. That is, the extent to which parts of the setup
are substituted with synthetic computational models. At one
extreme, in the full target setup, no entities are virtualized,
i.e., only physical hardware platforms and/or human actors
are employed. Starting from the zero virtualization setup l0,
with the increasing virtualization, individual entities of the
application are gradually replaced with computational models.
The process of gradual virtualization gives rise to a sequence
of levels of virtualization labeled l0, l1, . . . , ln from the system
fully deployed in physical reality, the zero virtualization setup,
to the completely virtualized setup ln with fully synthetic
computational representation of system entities. In between
the two extremes lie mixed-reality testbeds, such as hardware-
in-the-loop simulations or testbeds involving human actors

1http://agents.fel.cvut.cz/projects/agentscout2/

through virtual reality. Note that within a single testbed con-
figuration, different levels of virtualization can be assigned to
different entities. In most cases, a lower level of virtualization
facilitates a more reliable testing but is more time and resource
consuming.

The core idea underlying the development process proposed
below is to start at a relatively high level of system virtual-
ization and then iteratively decrease the virtualization until
reaching the target deployment setup.

The other dimension along which the target application
setup can be approximated is the number of autonomous
entities with which the application is tested. Instead of having
the same full number of robots and/or humans as in the full
application, development and testing can initially be performed
using only a subset of entities. We call the number of entities
used the size of a testbed configuration.

The reduction of testbed size generally leads to cost sav-
ings, especially when physical hardware or human actors are
involved. Reducing the number of entities below a certain
threshold, however, can undermine the ability to test collective
behavior properties of the application.

B. Testbed Configurations and Fidelity

In order to specify the distribution of levels of virtualization
in a compact form, we define testbed configuration σ as
a vector σ = (s0, s1, . . . , sn), where n is the number of
virtualization levels and si is the number of entities modeled
at the level of virtualization li. The size of the testbed config-
uration, i.e., the number of entities used, then corresponds to
η(σ) =

∑n
i=0 si. Target configuration σT represents the target

system in full with zero virtualization. Typically σT will be
of the form σT = (k, 0, . . . , 0) for some k ≥ 0.

The space of all possible testbed configurations can be
visualized in a plane as shown in Figure 2. The horizontal
axis denotes the size of testbed configurations; the vertical
axis denotes an abstract measure representing the aggregate
level of virtualization (LoV), defined as a weighted average
of virtualization levels over all entities in the given testbed
configuration.

(0, 0, ..., 0, 1) (0, 0, ..., 0, 2) (0, 0, ..., 0, n). . .

(0, 0, ..., 1, 0) (0, 0, ..., 1, 1) (0, 0, ..., 1, n-1). . .

. .
 .

. .
 .

. .
 .

(1, 0, ..., 0, 0) (2, 0, ..., 0, 0) (n, 0, ..., 0, 0). . .

1 agent 2 agents n agents

. . .

. . .

Aggregate
LoV

fully
simulated

fully real

(0, 0, ..., 0, 1) (0, 0, ..., 0, 2) (0, 0, ..., 0, n). . .

(0, 0, ..., 1, 0) (0, 0, ..., 1, 1) (0, 0, ..., 1, n-1). . .

. .
 .

. .
 .

. .
 .

(1, 0, ..., 0, 0) (2, 0, ..., 0, 0) (n, 0, ..., 0, 0). . .

1 agent 2 agents n agents

. . .

Size
(# of agents)

. . .

mixed
reality

Figure 2: The space of testbed configurations arranged accord-
ing to testbed size and its aggregate level of virtualization.

Recall that testbeds are used to test the performance of
the developed application. Unless the testbed corresponds
to the target configuration σT , the performance assessed on
the testbed can differ from the performance in the target
configuration. To capture this difference, we introduce the

3

concept of the testbed error and testbed fidelity. The testbed
error ε(σ) ∈ [0,∞) is the distance between state-space exe-
cution traces produced using the given testbed configuration
and using the target configuration, averaged over all possible
application runs. The testbed fidelity φ(σ) ∈ (0, 1] is then
defined as

φ(σ) =

{
1 if ε(σ) = 0

tanh(1
ε(σ)) otherwise

If a testbed configuration σ fully replicates the behavior of
the target setup, then ε(σ) = 0 and φ(σ) = 1. The higher the
fidelity of a testbed, the higher the accuracy of assessments
obtained on it. Note that a different sigmoid function can be
chosen for fidelity calculation as long as it maps testbed error
on (0, 1] interval.

C. Comparing Testbeds

The core of the proposed approach to HART application
development is the iterative evaluation of developed applica-
tions in gradually more and more realistic setups. Expressed in
terms of testbed configurations, the incremental development
process should employ a sequence of testbed configurations
with increasing fidelity. Unfortunately, in practice, determining
such a sequence is not directly feasible as testbed fidelity
cannot be determined without executing tests on the full target
configuration and comparing results.

Instead, we therefore use approximate fidelity ordering
constructed based on the following assumption valid in most
domains: a testbed configuration σ′ is expected to have higher
fidelity than σ, if either (1) testbed size increases while the
level of virtualization does not increase, or (2) the level
of virtualization decreases while the testbed size does not
decrease. More formally, we define the approximate fidelity
ordering relation � on testbed configurations as follows. For
configurations σ = (s0 . . . sn) and σ′ = (s′0, . . . s′n), we
denote σ′ � σ if and only if either

1) for all i we have s′i ≥ si and there exists j, s.t. s′j > sj
and thus η(σ′) > η(σ); or

2) η(σ′) = η(σ), and there exists j, s.t. s′j > sj and for all
i < j we have s′i ≥ si.

We use the approximate testbed fidelity ordering to navigate
the space of testbed configurations during the development
process.

D. Virtualization Levels in HART Applications

In the case of applications involving human-agent-robotic
teams, specific virtualization techniques can be used. We
present some of them below in the decreasing order of
virtualization.

1) Robot/Hardware Entities:
Fully simulated hardware (LFS): a hardware asset is

substituted by a fully synthetic computational model such as
out-of-the-box robotic simulators (e.g., Gazebo [1]) able to
simulate physical and electronic properties of a number of
different robotic platforms.

Hardware-in-the-loop (LHIL): even the most sophisti-
cated robotic simulators do not capture all the phenomena
that may arise in a real hardware asset. Hardware-in-the-loop
setup can be employed to increase the hardware fidelity of the
testbed. In this setup, a hardware asset is tested in a laboratory
setting with sensory input signals provided by a simulator
and actuator signals controlling a simulated physical model.
The approach is often used to verify the function of hardware
platform electronic and communication subcomponents and is
therefore useful in single-robot scenarios.

Augmented reality/hybrid simulation (LHS): as a next
step towards the full hardware testbed, an augmented real-
ity/hybrid simulation setup can be used. In this setup, hardware
assets operate in the target physical environment, but the
simulator augments their sensory input with objects that only
exist in the simulation. The approach is particularly useful
in multi-agent scenarios where interaction between multiple
robots is to be tested but fewer than the target number of
physical robots are available.

Full hardware (L0): target setup with robots assets rep-
resented by target robotic platforms operating and interacting
in the target physical environment.

2) Human Agents:

Computational behavior models (LBM): at the highest
level of virtualization, human actors can be substituted by
computational behavioral models. These models can be con-
structed manually based on an expert input or learned auto-
matically from past observations of human behavior. Different
models of human decision making can be employed, such
as prospect theory, bounded rationality or quantal response
equilibrium.

Data-feeds about human behavior (LDF): in this setup,
data feeds of past real human behavior are replayed by the
testbed during application test runs. This type of virtualization
typically provides only a unidirectional link between the
human actors and the rest of the application (i.e., the humans
cannot react on the output of the application).

Virtual reality (LVR): in setups employing virtual reality,
real humans are involved during testing. Instead of operating
directly in the target environment, however, they are immersed
in its virtual reality approximation. This allows testing aspects
of human behavior which are difficult to capture via com-
putational models and facilitates testing of phenomena such
as bounded rationality, irrational behavior or decision making
affected by immediate mental attitudes, such as stress, fear,
anger, or joy.

Simulated human-machine interaction (LSI): even closer
to the physical reality, in this setup real humans are used
in the target environment but some parts of their interaction
with other entities remains simulated. This allows testing
coordination algorithms even with incomplete hardware ca-
pability (sensory or other). The setup provides a human-
oriented equivalent of hybrid simulations from the perspective
of hardware assets.

Full human involvement (L0): real humans acting in the
target environment are employed.

4

III. MULTI-LEVEL INCREMENTAL DEVELOPMENT

The main motivation for introducing the concept of a
testbed configuration is to provide a framework for describing
iterative strategies for HART application development. A key
idea in determining such strategies is to use a sequence of
testbeds with different test accuracy and cost in order to
have each iteration provide maximum feedback on design
and implementation choices faced in the development of the
application.

A. Cost

In order to be able to express the above idea more accu-
rately, we introduce the notion of iteration cost cost(σ1, σ2),
which is meant to represent the total cost associated with
getting from an application that works correctly on a testbed
configuration σ1 to an application that works correctly on a
testbed configuration σ2. In general, the overall iteration cost
can be decomposed into

1) testbed cost, the cost of providing a testbed with con-
figuration σ2;

2) development cost, the cost of modifying the application
logic to work correctly on testbed σ2; and finally

3) test cost of verifying the modified application works
correctly on testbed σ2.

B. Iteration Strategy

The ultimate challenge in our proposed methodology is
to find an optimal iteration strategy through the space of
testbeds configurations, i.e., a sequence of configurations
σ0, σ1, . . . , σn such that σn = σT and

∑n
i=1 cost(σi−1, σi)

is minimal.
Unfortunately, except for trivial cases, determining the op-

timal strategy a priori is not feasible in real-world cases due
to domain-dependency and uncertainty in the estimates of all
cost components. However, assuming that highly virtualized
testbeds allow faster iterations than testbeds with low virtual-
ization, a reasonable strategy is to start from highly virtual-
ized, albeit likely lower-fidelity testbeds. Subsequently, as the
uncertainty about the application design and the underlying
logic decreases, the development should move towards higher-
fidelity testbeds, even though these are likely to have higher
test cost and therefore allow only a lower number of tests.
In result, the fidelity of the employed testbed increases as
the developed HART application matures. Such an iteration
strategy can be captured by the following algorithm:

1) choose an arbitrary starting configuration σ,
2) develop a testbed with the configuration σ,
3) develop/modify/debug the application until it works cor-

rectly on σ,
4) unless σ = σT , choose another configuration σ′,

s.t. σ′ � σ and proceed to (2) with σ′,
5) end otherwise.

Clearly, in typical scenarios involving several levels of virtu-
alization in multi-robot systems featuring number of agents,
there will be several ways to construct the sequence of testbed
configurations leading from a reasonable synthetic testbed to

1 agent 2 agents
Size

(# of agents)

3 agents

Aggregate
LoV

(0,0,1)

(0,1,0)

(1,0,0)

(0,2,0)

(1,1,0)

(2,0,0)

(0,0,2)

(0,1,1)

(1,0,1)

(0,3,0)

(1,0,2)

(1,1,1)

(0,0,3)

(0,1,2)

(0,2,1)

(3,0,0)

(2,0,1)

(1,2,0)

(2,1,0)

Figure 3: Space of testbed configurations for the multi-UAV
tracking application, together with depiction of two possible
development strategies.

the target deployment setup. For instance, it will be up to
the developer to choose whether it is more reasonable to first
scale the algorithms with respect to the number of simulated
robots, and only then start to port the system to real hardware,
or the other way round. The core of the iterative development
strategy should however remain, i.e., to gradually refine the
system setup to approach the target deployment scenario. Note
that in general, the space of testbed configurations has as
many dimensions as there are levels of virtualizations, making
the number of possible iteration strategies huge. Better under-
standing of the structure and properties of the error, fidelity
ordering and iteration cost function is therefore essential for
obtaining intuition or possibly even more formal rules by
which the iteration strategy should be determined.

IV. EXAMPLE: ITERATIVE DEVELOPMENT OF MULTI-UAV
TRACKING APPLICATION

Consider the task of developing a coordination mechanism
for a team of UAVs cooperatively tracking a number of humans
in an urban environment. Specifically in our case, we want to
use Unicorn UAV platforms by Procerus Technologies. Two
such aircrafts were available to our team at the time of the
example system development.

Let us consider three levels of virtualization of the system.
Besides the fully simulated setup LFS and the fully physical
target setup L0, we also consider the intermediate augmented
reality setup LHS . The intermediate setup is necessary because
of only two hardware UAV platforms available for the devel-
opment, while the coordination mechanism has to be tested
with larger teams of UAVs.

Starting from the fully simulated setup LFS , there are
numerous ways to traverse the space of testbed configurations;
Figure 3 depicts a fragment of the configuration space. The
underlying directed graph connecting the depicted configura-
tions corresponds to the approximate fidelity ordering relation
introduced in the previous section. The two depicted devel-
opment strategies correspond to two extreme cases described
below.

5

According to the first strategy, the developer should first
scale the coordination algorithms to the target number of
simulated UAVs in a fully simulated environment (LFS).
Subsequently, the control code running on-board of individual
UAVs should be ported one by one from the simulation to
physical UAVs embedded in an augmented reality environment
(LHS). In each step, the development should go through the
full port–extend/adapt–test–evaluate cycle, until the desired
level of performance is reached. This way, the development
would eventually reach a state when all aircraft control agents
are deployed and working correctly on target hardware UAV
platforms with augmented sensory input feeds. In the final
round of iterations, individual UAVs should be disconnected
from the augmented reality environment and placed in the
target physical environment (L0).

The alternative strategy would dictate to initially work with
one UAV only. Immediately after having the UAV control logic
correctly working in the simulation (LFS), the logic would be
ported to the UAV embedded in the augmented reality (LHS)
and, after having been adapted to work correctly, ported on a
physical UAV (L0). Only once the system worked correctly on
a single hardware UAV in the physical environment, additional
UAVs would be added, first in simulation (LFS) and then
gradually migrated through augmented reality (LHS) to the
full deployment setup (L0).

The choice between the two strategies would typically
depend on whether more implementation uncertainty lies with
the ability of realize collective team behavior or deploying the
control logic on the target hardware platform.

In parallel, human entities in the system, acting as object
of tracking, can also be involved at different level of vir-
tualization. Initially, all human subjects can be represented
using computational behavior models LBM . In the second step,
some human actors can be approximated on the LVR level
of virtualization in the minimal virtual reality settings (e.g.,
graphical user interface and a joystick). In the third step, real
humans at the LSI level, i.e., moving in the target physical
environment but with simplified interaction with the robotic
assets can be used. In this particular case, in order to avoid
the necessity to have on-board image recognition algorithms
working, we could equip the human individuals with a location
broadcasting device (e.g., based on GPS-enabled Internet-
connected smartphones) which would continuously supply the
location of the tracked individuals to the UAVs directly. This
would allow tuning high-level aircraft coordination algorithms
independently from developing and testing image recognition
algorithms.

V. RELATED WORK

Virtual reality is concerned with methods that allow a
human user to observe and interact with non-existing virtual
worlds [3]. In mixed reality—as we describe above—the agent
observes a world that is partially real and partially virtual.
This idea is captured by the concept of reality–virtuality
continuum [4], a continuous scale ranging from fully real
to fully virtual worlds. In between the two extremes stands
mixed-reality, typically implemented either as an augmented

reality (the perception of the real world is augmented with
virtual objects) or augmented virtuality (the virtual world is
augmented with elements of physical reality). Currently, the
research in mixed-reality is mostly revolving around interface
devices allowing a human user to observe and interact with
mixed-reality worlds. We depart from the humans-only mixed-
reality concept and apply similar techniques for cost effective
evaluation of systems involving robots too. For this, we
consider not only humans, but also both real and simulated
robotic assets to observe and participate in the mixed-reality
world.

Developers of control programs for autonomous robotic
systems nowadays routinely use sophisticated simulators to
test the function of their programs prior to the deployment
on target hardware. To further increase the fidelity of such
testing, one or more physical hardware assets can be included
as a part of the simulation. Such simulations are, depending
on the context, termed hardware-in-the-loop simulations (HIL)
[5], hybrid simulations (HS) [6] or mixed-reality simulations
(MRS) [7].

The idea of evaluating control algorithms for multi-robotic
system in environments that mix both real and simulated
entities is over twenty years old. An initial attempt dealing
with simulation of industrial robots was published in 1989 [8].
More recently, mixed-reality simulations have been employed
during the development of autonomous robotic assets. Chen
et al. [7] introduced a mixed reality simulation library for the
Gazebo [1] 3D mobile robot simulator. Using this library, a
real hardware robot can interact with the Gazebo simulated
world, which can be used both to augment the environment
of the real robot with virtual objects and to provide a visual
feedback on the state of the robot’s perception through 3D
visualization. Hybrid and hardware-in-the-loop simulations
have been also reportedly used in the domain of autonomous
underwater vehicles [6].

Unlike the above listed contributions, besides utilizing con-
cepts such as the mixed-reality simulation, we additionally in-
troduce a methodological approach towards better understand-
ing of iterative development of mixed reality HART applica-
tions. Some of the ideas underlying the proposed framework
have been proposed in our earlier work [9] which focused on
using simulations to accelerate the development of multi-agent
applications. The proposed approach has been also followed
in the development of piracy counter-measure coordination
system developed within the AGENTC project2 [10], as well
as in the process of porting collision-avoidance algorithms to
UAVs in the context of the project AGENTFLY3.

VI. CONCLUSION

We have outlined a vision for accelerated development of
advanced human-agent-robot teamwork applications. As the
number of autonomous entities and the complexity of their
interactions increase in HART applications, the testing strategy
becomes a critical part of application development. To improve
the speed and cost efficiency of the development process,

2http://agents.fel.cvut.cz/projects/agentc/
3http://agents.fel.cvut.cz/projects/agentfly/

6

testing should take advantage of mixed-reality testbeds that
approximate the application’s deployment setup with a variable
degree of fidelity. We have provided a conceptual framework
in which testbed configurations and testing strategies can be
described and optimum strategies balancing testbed fidelity
with assessment cost can be sought.

The presented results are only a first step towards a com-
prehensive methodology for incrementally developing HART
applications. Further research is needed to better understand
how different combinations of testbed sizes and virtualization
levels affect testbed fidelity and individual components of
iteration cost. Although it is likely that strong, prescriptive
iterative development guidelines can only be found for specific
subcategories of HART applications, the proposed common
conceptual framework allows the comparison of different
guidelines and promotes the transfer of methodological knowl-
edge across domains.

ACKNOWLEDGMENTS

The paper has been originated during sabbatical of Michal
Pěchouček at the University of Southern California sup-
ported by the Fulbright Commission. Furthermore, the pre-
sented work was supported by US Army CERDEC grants
no. W911NF-10-1-0112 and W911NF-11-1-0252, Office of
Naval Research grant no. N000140910537 and the Grant
Agency of the Czech Technical University in Prague grant
no. SGS10/189/OHK3/2T/13.

REFERENCES

[1] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proceedings of International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2004.

[2] J. Vokřı́nek, P. Novák, and A. Komenda, “Ground tactical mission
support by multi-agent control of UAV operations,” in Proceedings
of 5th International Conference on Industrial Applications of Holonic
and Multi-Agent Systems (HoloMAS), ser. Lecture Notes in Artificial
Intelligence, vol. 6599. Springer.

[3] G. Burdea and P. Coiffet, “Virtual reality technology,” Presence: Tele-
operators and Virtual Environments, vol. 12, no. 6, pp. 663–664, 2003.

[4] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, “Augmented
reality: A class of displays on the reality-virtuality continuum,” in
Proceedings of the Telemanipulator and Telepresence Technologies,
1994.

[5] D. Lane, G. Falconer, G. Randall, and I. Edwards, “Interoperability
and synchronisation of distributed hardware-in-the-loop simulation for
underwater robot development: issues and experiments,” in Proceedings
of the International Conference on Robotics and Automation (ICRA).
IEEE, 2001.

[6] B. Davis, P. Patron, and D. Lane, “An augmented reality architecture for
the creation of hardware-in-the-loop; hybrid simulation test scenarios
for unmanned underwater vehicles,” in Proceedings of the OCEANS,
October 2007.

[7] I. Y. H. Chen, B. MacDonald, and B. Wünsche, “Mixed reality simula-
tion for mobile robots,” in Proceedings of the international conference
on Robotics and Automation (ICRA). IEEE, 2009.

[8] F. Cao and B. Shepherd, “MIMIC: a robot planning environment inte-
grating real and simulated worlds,” in Proceedings of the International
Symposium on Intelligent Control. IEEE, 1989.

[9] M. Pěchouček, M. Jakob, and P. Novák, “Towards simulation-aided de-
sign of multi-agent systems,” in Post-proceedings of the 8th International
Workshop on Programming Multi-Agent Systems (PROMAS), 2010.

[10] M. Jakob, O. Vaněk, and M. Pěchouček, “Using agents to improve
international maritime transport security,” IEEE Intelligent Systems,
vol. 26, no. 1, pp. 90–96, January 2011.

Michal Jakob is a senior researcher in the Agent Technology Center, Dept.
of Computer Science, FEE, CTU. Michal Jakob received a PhD degree in
Artificial intelligence and biocybernetics from Czech Technical University in
Prague in 2008. Michal currently leads center’s research on modeling and
optimizing multi-modal transport systems, primarily as part of the interna-
tional EC-funded SUPERHUB project. In addition, Michal leads the AgentC
research project, supported by the U.S. Office of Naval Research, developing
novel techniques for analyzing, modeling and ultimately disrupting maritime
piracy. On a more theoretical level, Michal’s research interests include agent-
based simulation, computational game theory and multi-agent systems. Before
joining the Agent Technology Center, he was a research scientist with British
Telecommunications (BT), developing resilient decentralized architectures for
service-oriented computing and network-centric information fusion.

Michal Pěchouček is a full professor in cybernetics at the Czech Technical
University (CTU), the deputy head of the Department of Computer Science
at CTU and the head of the Agent Technology Center at CTU. The research
interests of Michal Pěchouček lie mainly in the fields of multi-agent simulation
and modeling, coordination, social knowledge representation, multi-agent
planning, multi-agent prototypes and test-beds and applications of agent-based
computing into security related applications, UAV robotic coordination and
air-traffic control. Michal Pěchouček has been a PI on more than 30 research
contracts and grants provided by US Air Force, US Army CERDEC, and
Office for Naval Research and a range of industrial partners. He has received
a number of awards for technical excellence including the Czech Mind for
Invention in 2010, Google research award in 2009, and Czech Engineering
Academy Award 2007. Michal is an honorary member of Artificial Intelligence
Application Institute at University of Edinburgh and a member of advisory
board of the Center for Advanced Information Technology, University of Bing-
hamton. He is a co-founder of Cognitive Security and AgentFly Technologies
start-up companies.

Michal Čáp is a researcher at the Agent Technology Center, Czech Technical
University in Prague. Michal Čáp received his MSc from the Utrecht Uni-
versity. His research interest include multi-agent systems, in particular agent-
oriented programming, agent-based simulations, distributed coordination and
design of multi-robotic systems.

Peter Novák is a post-doctoral researcher at Agent Technology Center of the
Department of Computer Science and Engineering at the Czech Technical
University in Prague, Czech Republic. Peter Novák obtained his PhD in
computer science from the Clausthal University of Technology, Germany
(2009). His research interests revolve around interaction of cognitive agents
with dynamic environments, in particular cognitive robotics, multi-agent
planning and multi-agent coordination.

Ondřej Vaněk is a researcher and a PhD student at the Agent Technology
Center, Czech Technical University in Prague. His current research is focused
on multi-agent simulations and application of cooperative and non-cooperative
game theory on securing complex critical infrastructures. He currently works
on an U.S. Office of Naval Research funded project from the maritime domain
AgentC, researching techniques able to minimize negative impacts of modern
maritime piracy on international shipping industry.

Ondřej Vaněk graduated from Faculty of Electrical Engineering Czech
Technical University in Prague in Technical Cybernetics in 2008. Prior to his
current position, he was visiting researcher in Rockwell Automation Center
in Cleveland and he worked as a Java programmer and IT analyst for various
companies.

