
Embedding Defeasible Argumentation in Answer Set Programming

Peter Novák
Department of Informatics

Clausthal University of Technology
Clausthal-Zellerfeld, Germany
peter.novak@tu-clausthal.de

Martin Baláž
Department of Applied Informatics

Comenius University
Bratislava, Slovakia

balaz@ii.fmph.uniba.sk

Jürgen Dix
Department of Informatics

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

dix@tu-clausthal.de

Abstract

We investigate the relationship between the framework of De-
feasible Logic Programming (DeLP) and Answer Set Pro-
gramming (ASP). Firstly, we give a characterization of in-
admissible sets of an argumentation framework in terms of
relations between its preferred extensions, resp. admissible
sets. Secondly, we use this result to embed Defeasible Logic
Programming in Answer Set Programming. We provide two
translations of DeLP programs into extended logic programs.
Thirdly, we provide generic algorithms for extracting the set
of warranted literals of the original defeasible logic program
from answer sets of the translated program.

Introduction
Defeasible Logic Programming (DeLP) (García & Simari
2004) is a logic programming framework for logical argu-
mentative reasoning (Besnard & Hunter 2000) based on de-
feasible argumentation (Prakken & Vreeswijk 2002). In
DeLP, an argumentation formalism is used for deciding
whether a query is true w.r.t. a defeasible logic program
(delp). Queries are supported by arguments which can be
defeated by other arguments. A query is true only when the
argument supporting it is a warrant, i.e. the DeLP dialectical
analysis warrant procedure found it to be undefeated.

According to (Thimm & Kern-Isberner 2008), there’s
only little reported on the relationship of DeLP to other de-
feasible and non-monotonic reasoning frameworks. In this
paper we investigate the relationship of DeLP to Answer Set
Programming (ASP) (for a comprehensive discussion con-
sult (Baral 2003)), a non-monotonic reasoning framework
based on stable model semantics (Gelfond & Lifschitz 1988)
for logic programs.

The first result on relating DeLP and ASP in (Thimm &
Kern-Isberner 2008), establishes two translations from de-
feasible logic programs with an empty preference relation
to extended logic programs. It exploits the notion of mini-
mal disagreement sets, minimal contradictory sets of literals
of a logic program w.r.t. the strict rules of a delp. The es-
tablished link between the two programs, however, is quite
weak as Thimm and Kern-Isberner could only prove that (1)
each warranted literal is contained in at least one answer set

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the resulting extended logic program (for a straightfor-
ward translation), and (2) the set of warranted literals is a
subset of the intersection of the answer sets.

With the same motivation as Thimm and Kern-Isberner,
in this paper we investigate the relationship of DeLP with
an empty preference relation to ASP and show how DeLP
can be embedded in the ASP framework. We introduce two
translations of defeasible logic programs into extended logic
programs. By analysing their properties, we characterize
also the whole class of such translations. We show, that from
answers sets of the resulting logic programs we can extract
the set of warranted literals.

In the remainder of this paper, we first introduce Dung’s
(Dung 1995) theory of argumentation frameworks and con-
clude the section by introducing some original theoretical re-
sults regarding properties of inadmissible sets of arguments.
Then we characterize Defeasible Logic Programming as an
instantiation of an abstract argumentation framework and
introduce the framework of Answer Set Programming. The
main contribution of this paper, however, is the following
embedding of DeLP in ASP based on the theoretical results
for abstract argumentation frameworks. We conclude the pa-
per by a brief discussion of our results and a comparison to
related work.

Argumentation frameworks
In accord with Dung’s abstract argumentation framework
(Dung 1995), for now we keep the notion of argument to
be an abstract entity whose role is solely determined by its
relations to other arguments.

In the following, we reiterate a slightly less abstract ver-
sion of the set of Dung’s definitions. The introductory defi-
nitions are adapted from (Dung 1995).

Definition 1 (argument structure) An argument A is a set
of interrelated pieces of knowledge supporting a claim h
from evidence. We also say that A is a support for the con-
clusion h. A tuple 〈A, h〉 is called an argument structure.

When the context will be clear, in the following we will use
the notions of an argument structure and an argument in-
terchangeably. I.e. if S is a set of argument structures and
〈A, h〉 ∈ S, we will also simply say that A is an argument
from S (A ∈ S) and w.l.o.g. we will use the relations de-
fined over argument structures for arguments as well.

Definition 2 (argumentation framework) An argumenta-
tion framework is a tuple AF = 〈U,R,v〉, where U is a
set of argument structures, R ⊆ U× U is an attack relation
between argument structures and v denotes a subargument
relation, i.e. a partial order over U . Additionally each argu-
ment structure 〈A, h〉 ∈ U satisfies the following conditions:
self-consistency: A is self-consistent w.r.t. R iff there are

no A′,A′′ v A s.t. A′RA′′, nor A′′RA′; and
minimality: A is minimal iff A supports h and there is no
A′ ∈ U s.t. A′ v A and A′ supports h.

If A′ v A, we say that A′ is a subargument of A and A is a
superargument of A′. An argument A′, such that A′RA is
called a defeater ofA. If there is no defeater of an argument
A in U, i.e. ∀B ∈ U : (A,B) 6∈ R, the argument A is said
to be undisputed.
For brevity, we use also notation A ∈ U with A being an
argument s.t. there exists an argument structure 〈A, h〉 ∈ U.
Similarly for sets of arguments we will use S ⊆ U.

In the following we will take a closer look at properties of
sets of arguments.
Definition 3 (properties of argument sets) Let 〈U,R,v〉
be an argumentation framework and S ⊆ U be a set of ar-
gument structures.

We say that S attacks an argument A if A is attacked by
some argument from S, i.e. ∃B ∈ S : BRA.
S is conflict-free iff there are no argumentsA and B from

S, s.t. A attacks B.
We say that an argument A ∈ U is acceptable w.r.t. S iff

for each B ∈ U holds: If BRA, then B is attacked by S.
Finally, a conflict-free set of arguments S is admissible iff

each argument from S is acceptable w.r.t. S.
Definition 4 (preferred extension) A preferred extension
of an argumentation framework AF is a maximal (w.r.t. in-
clusion) admissible set of argument structures.

A conflict-free set of arguments S is called a stable exten-
sion of AF iff S attacks each argument A which does not
belong to S.
Below, we introduce a useful property of admissible sets
w.r.t. preferred extensions of argumentation frameworks.
Proposition 1 Let AF be an argumentation framework.

For each admissible set S of AF , there exists a preferred
extension E of AF such that S ⊆ E.

Proof. For a proof see Theorem 1 in (Dung 1995). �

The Proposition 1 holds also for singleton argument sets
which are trivially admissible:
Corollary 1 For each argument structure 〈A, h〉 ∈ U there
is a preferred extension E of AF , s.t. 〈A, h〉 ∈ E.
The following Definition 5, Theorem 1 and Corollaries 2 and
3 are the main theoretical results concluding this section.
Definition 5 (inadmissible set) Let AF = 〈U,R,v〉 be an
argumentation framework and S ⊆ U be a set of arguments.
Let also A ∈ U be an argument from AF .
S is said to be A-unacceptable iff S ∪ A is not conflict

free, i.e. there exists B ∈ S, s.t. either ARB, or BRA. A
maximalA-unacceptable set S is said to beA-inadmissible.

S3S2

A1

A2

A4 A3

A5

A6

S1

Figure 1: Example of relationships between preferred exten-
sions of an argumentation framework.

The following theorem establishes an alternative characteri-
zation of an inadmissible set.

Theorem 1 Let AF = 〈U,R,v〉 be an argumentation
framework with an irreflexive attack relation R. Let also
A be an argument in AF and S∗ be the set of all preferred
extensions of AF . Let SA be a set of arguments defined as
follows

SA = U \ (
⋃

S∈S∗
A∈S

S)

.

The set SA is an A-inadmissible set.

Proof. Corollary 1 implies U =
⋃

S∈S∗ S. We assume SA

is not A-inadmissible, i.e. it contains an argument B ∈ SA,
s.t. either ¬(BRA) and ¬(ARB). From that we have, that
{A,B} is admissible. Proposition 1 says that there must be
a preferred extension E, s.t. A,B ∈ E and E ∈ S∗. By
necessity we have B ∈ E ⊆

⋃
S∈S∗
A∈S

S, hence B 6∈ SA,

which contradicts the definition of B. �

Corollary 2 Let A be an argument in AF , and S be a set
of admissible sets of AF containing all the preferred exten-
sions of AF . Then it also holds SA = U \ (

⋃
S∈S
A∈S

S).

Proof. Follows directly from Theorem 1 and the fact that
for sets A,B,C, s.t. B ⊂ C holds A \ C = A \ (B ∪ C).�

Here is another useful consequence of Theorem 1:

Corollary 3 Let AF be an argumentation framework as in
Theorem 1 and S∗ be the set of its preferred extensions.

For each undisputed argument A of AF : A ∈
⋂

S∈S∗ S.

Proof. We use Theorem 1 and Corollary 1. Let S be a
preferred extension S ∈ S∗, s.t. A 6∈ S and S attacks A.
Then there must be an argument B ∈ S, s.t. ARB, which
contradicts the fact that A is undisputed. �

Figure 1 shows an example of relationships between pre-
ferred extensions of an argumentation framework and appli-
cation of Theorem 1. Dotted arrows depict attacking relation
between arguments. Note, that for each argument, they point
only to sets to which that argument does not belong. Consid-
ering the argumentA5, the grey area depicts the union of all
preferred extensionsA5 belongs to. The only argument out-
side of this area, A3, is the only defeater of A5. Also note,
that A6 is undisputed since it belongs to the intersection of
all the preferred extensions of AF .

The theoretical results introduced in this section will be
used later to embed the framework of Defeasible Logic Pro-
gramming into Answer Set Programming.

Defeasible Logic Programming
Defeasible Logic Programming (García & Simari 2004) is a
logic programming language allowing modelling of defea-
sible knowledge. It can be seen as an instance of Dung’s
abstract argumentation framework introduced above. In
order to instantiate DeLP as an argumentation framework
DeLPAF = 〈U,R,v〉 scheme, we need to provide a def-
inition of a valid argument structure (thus defining U), the
subargument relation v and the DeLP attack relation R.

The following subsections first provide a definition for
DeLP arguments and the subargument relation and subse-
quently we introduce a specification of the attack relation.
The main point of this section is a formal introduction of
DeLP as an instance of the abstract argumentation frame-
work and introducing the notion of a warranted literal.

The formalism introduced below is adapted from (Thimm
& Kern-Isberner 2008).

Arguments
A defeasible logic program (delp) consists of a set of rules
and is divided into two parts: Strict knowledge and defea-
sible knowledge. Strict rules are meant to derive certain
knowledge, while defeasible rules derive uncertain, or de-
feasible knowledge.

For the purposes of this paper we define DeLP over a first-
order language without function symbols except constants.

Definition 6 (literals) A literal L is either an atom A, or a
(classical) negated atom ¬A. Lit denotes a set of all literals.

Definition 7 (facts and rules) A fact is a literal L ∈ Lit.
Let L ∈ Lit be a literal and B ⊆ Lit be a non-empty

set of literals. A strict rule is an ordered pair of the form
L← B and a defeasible rule is an ordered pair L −� B. By
head(r) we denote the literal L of the rule r and body(r) =
B denotes the set of the body literals.

Definition 8 (delp) A defeasible logic program (delp) P =
(Π,∆) consists of a set Π of facts and strict rules and a set
∆ of defeasible rules (both possibly infinite).

Given a delp, we derive literals as follows.

Definition 9 (defeasible derivation) Let P = (Π,∆) be a
delp and let h ∈ L be a literal. A (defeasible) derivation
of h from P , denoted P |∼ h, consists of a finite sequence
h1, . . . , hn = h of literals (hi ∈ Lit), s.t. hi is a fact (hi ∈

Π), or there exists a strict or defeasible rule r ∈ P , s.t.
head(r) = hi and body(r) = b1, . . . , bk, where every bl
(1 ≤ l ≤ k) is an element hj with j < i.

We also say that a program P = (Π,∆) is contradictory
when Π ∪∆ |∼ ⊥, with usual denotation of ⊥ = p ∧ ¬p for
some p ∈ Lit. In the following we assume only consistent
sets of strict rules, i.e. Π 6|∼ ⊥. For a detailed discussion on
ramifications of this restriction see (García & Simari 2004),
Observation 2.3.

Definition 10 (argument, subargument) Let h ∈ Lit be a
literal and let P = (Π,∆) be a delp.
A is an argument for h, iff 1) A ⊆ ∆, 2) there exists a

defeasible derivation of h fromP ′ = (Π,A), 3) the set Π∪A
is non-contradictory, and 4) A is minimal w.r.t. inclusion.
〈A, h〉 denotes an argument structure from P . Further-

more, we say that an argument B, is a subargument of A iff
B ⊆ A. In turn 〈B, h′〉 v 〈A, h〉, when B is an argument
for h′.

Attack relation
To finally instantiate DeLP as an argumentation framework,
it remains to specify the relation of attacking.

Definition 11 (disagreement and counterargument) Let
P = (Π,∆) be a delp. Two literals h and h′ disagree iff the
program Π ∪ {h, h′} is contradictory.
〈A1, h1〉 is a counterargument structure to an argument

structure 〈A2, h2〉 (both fromP) at a literal h ∈ Lit, iff there
exists a subargument structure 〈A, h〉 v 〈A2, h2〉, s.t. h and
h1 disagree. Additionally, when h = h2, then 〈A1, h1〉 is a
direct attack on 〈A2, h2〉, and indirect attack otherwise.

The DeLP attack relation is based on preferences between
arguments.

Definition 12 (preference criterion ≺) LetP = (Π,∆) be
a delp and U be a set of all argument structures from P . A
preference criterion among arguments is an irreflexive and
antisymetric relation ≺⊆ U × U. If 〈A1, h1〉 and 〈A2, h2〉
are argument structures from P , 〈A1, h1〉 will be strictly
preferred over 〈A2, h2〉 iff 〈A2, h2〉 ≺ 〈A1, h1〉.
Definition 13 (defeater) An argument structure 〈A1, h1〉 is
a defeater of an argument structure 〈A2, h2〉 iff there is a
subargument 〈A, h〉 v 〈A2, h2〉, s.t. 〈A1, h1〉 is a coun-
terargument structure of 〈A2, h2〉 at literal h and either
〈A, h〉 ≺ 〈A1, h1〉 (proper defeat), or 〈A, h〉 6≺ 〈A1, h1〉
and 〈A1, h1〉 6≺ 〈A, h〉 (blocking defeat).

The notion of an argument defeater provides the DeLP at-
tack relation between arguments. Finally, we can con-
clude instantiate DeLP as an argumentation framework w.r.t.
Dung’s theoretical foundation.

Definition 14 (DeLP argumentation framework) Let
P = (Π,∆) be a delp and U be the set of argument
structures from P . Defeasible Logic Programming argu-
mentation framework of P is an argumentation framework
DeLPAF = 〈U,R,v,≺〉 extended with the preference
criterion ≺ over U. The subargument relation v⊆ U×U is

the subargument relation as defined in Definition 10. Finally
the relation of attacking R is defined as 〈A1, h1〉R〈A2, h2〉
iff 〈A1, h1〉 is a defeater of 〈A2, h2〉.

Warrants
The semantics of delp program P as a query evaluation sys-
tem is formally defined in terms of warranted literals of P .
The definitions below introduce a procedure for extracting
warranted literals from a delp.
Definition 15 (argumentation line) Let DeLPAF be a
DeLP argumentation framework of a delp P = (Π,∆).

An argumentation line λ in DeLPAF is any finite se-
quence of argument structures [〈A1, h1〉, . . . , 〈An, hn〉, . . .]
s.t. AiRAi+1 for each 1 < i ≤ n.
λ is said to be acceptable iff

1. λ is finite,
2. every argument structure 〈Ai, hi〉 with i > 0 is a de-

feater of its predecessor 〈Ai−1, hi−1〉 and if 〈Ai, hi〉 is
a blocking defeater of 〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 ex-
ists, then 〈Ai+1, hi+1〉 is a proper defeater of 〈Ai, hi〉,

3. both Π ∪A1 ∪A3 ∪ . . . and Π ∪A2 ∪A4 ∪ . . . are non-
contradictory (concordance of supporting and interfering
arguments respectively), and

4. no argument structure 〈Ak, hk〉 is a subargument of
〈Ai, hi〉 with i < k.

The conditions on acceptability of an argumentation line in-
stantiates a notion of a dialectical constraint.

From sets of acceptable argumentation lines with the
same argumentation structure in the first position, we con-
struct dialectical trees, the basis for deciding whether the
literal supported by the root is warranted, or not.
Definition 16 (dialectical tree) Let 〈A0, h0〉 be an ar-
gument structure of a DeLP argumentation framework
DeLPAF of a delp P = (Π,∆). A dialectical tree for
〈A0, h0〉, denoted T〈A0,h0〉, is defined as follows:

1. The root of the tree is 〈A0, h0〉,
2. let 〈An, hn〉 be a node in T〈A0,h0〉 and let λ =

[〈A0, h0〉, . . . , 〈An, hn〉] be the sequence of nodes from
the root to 〈An, hn〉. Let 〈B1, q1〉, . . . , 〈Bk, qk〉 be the
defeaters of 〈An, hn〉. For every defeater 〈Bi, qi〉 with
1 ≤ i ≤ k, s.t. the argumentation line λ′ =
[〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is acceptable, the node
〈An, hn〉 has a child 〈Bi, qi〉. If there is no such 〈Bi, qi〉,
then the node 〈An, hn〉 is a leaf.

The following marking criterion articulates relations be-
tween argument structures in a dialectical tree.
Definition 17 (marking criterion) Let DeLPAF be a
DeLP argumentation framework of a delp P = (Π,∆). Let
also T〈A,h〉 be a dialectical tree for 〈A, h〉 in DeLPAF .
The marked dialectical tree T ∗〈A,h〉 is defined as follows

1. every leaf of T〈A,h〉 will be marked U in T ∗〈A,h〉,

2. let 〈B, q〉 be an inner node of T〈A,h〉. The node 〈B, q〉 will
be marked U in T ∗〈A,h〉 iff every child of 〈B, q〉 is marked
D in T ∗〈A,h〉. The node 〈B, q〉 will be markedD, iff at least
one of its children is marked U in T ∗〈A,h〉.

Finally, depending on the marking of the root node, the
DeLP query is decided.

Definition 18 (warrant) Let P be a delp and DeLPAF be
a DeLP argumentation framework of P . A literal h ∈ Lit is
warranted in P , iff there exists an argument structure 〈A, h〉
in DeLPAF , s.t. the root of the marked dialectical tree
T ∗〈A,h〉 is marked U , i.e. the argument A is undefeated. We
say that h is a warranted literal and A is a warrant for h.

Answer Set Programming
This section provides a brief overview of of Answer Set
Programming framework as proposed by Gelfond and Lifs-
chitz in (Gelfond & Lifschitz 1988). Similarly to (Thimm &
Kern-Isberner 2008), we consider here extended logic pro-
grams, which distinguish between classical ¬ and default
negation ∼.

To provide the syntax of the ASP framework, we use the
same set of literals Lit as defined above. Additionally we
assume ¬¬L = L for L ∈ Lit. In the following we use the
same functions head/1 and body/1 as defined for delp for
denoting the head and the body of a rule (see Definition 7).

Definition 19 (extended logic program) An extended
logic program P is a finite set of rules of the form

h← a1, . . . , an,∼ b1, . . . ∼ bm
where h, a1, . . . an, b1, . . . , bm ∈ Lit. If the body is empty,
then it is called a fact abbreviated h instead of h←.

Given a set X ⊆ Lit of literals, a rule r is applicable in
X iff a1, . . . , an ∈ X and b1, . . . , bm 6∈ X . The rule r is
satisfied by X iff it is applicable and head(r) ∈ X , or r
is not applicable in X . X is a model of an extended logic
program P , iff all rules of P are satisfied by X . The set
X ⊆ Lit is consistent iff for every L ∈ X it is not the case
that ¬L ∈ X . An answer set of P is the least consistent set
of literals that satisfies all the rules of the reduced program
P .

Definition 20 (reduct) Let P be an extended logic program
and X ⊆ Lit a set of literals. The GL-reduct of P w.r.t. X ,
denoted as PX , is the union of all rules h ← a1, . . . , an,
where (h ← a1, . . . , an,∼ b1, . . . ,∼ bm) ∈ P and X ∩
{b1, . . . , bm} = ∅.
For any extended logic programP and a set of literalsX , the
GL reduct PX is a logic program without default negation
and therefore has a minimal model. If PX is inconsistent,
then its unique model is defined to be Lit.

Definition 21 (answer set) Let P be an extended logic pro-
gram. A consistent set of literals S ⊆ Lit is an answer set of
P , iff S is the minimal model of PS .

Embedding DeLP in ASP
This section introduces the main result of this paper: Em-
bedding of defeasible logic programs into ASP extended
logic programs. As a basis we use the theoretical result es-
tablished in Theorem 1 above. First, we instantiate a version
of Theorem 1 for DeLP with an empty preference relation

and subsequently we introduce two translations from DeLP
to ASP which yield admissible, resp. preferred extensions
of the original delp.

Model theoretic characterization of DeLP
In the following we assume DeLP argumentation frame-
works with an empty preference relation.

Definition 22 (plain DeLPAF) Let P = (Π,∆) be a delp
and DeLPAF = 〈U,R,v,≺〉 be its associated DeLP ar-
gumentation framework. We say that DeLPAF is a plain
DeLP argumentation framework iff ≺= ∅.
The introduced restriction to deal only with plain DeLP
argumentation frameworks has important consequences on
properties of the corresponding argument sets.

Proposition 2 Let DeLPAF be a plain DeLP argumenta-
tion framework of a delp P . Each acceptable argumentation
line in DeLPAF has a length of either 0, or 1.

Proof. Let λ be an acceptable argumentation line for
〈A0, a0〉. Since the relation of preference on arguments� is
empty, the argument 〈A0, a0〉 can not be properly defeated.
Therefore, there is either no defeater for 〈A0, a0〉, or there
exists a blocking defeater 〈A1, a1〉 of 〈A0, a0〉 in λ. How-
ever, since λ is acceptable, according to Definition 15, there
cannot be any further blocking defeater of 〈A, a1〉 in λ. If
there is no defeater for 〈A0, a0〉 λ contains only 〈A0, a0〉,
i.e. has length 0. Otherwise, 〈A0, a0〉 is defeated by a single
undefeated blocking defeater 〈A1, a1〉, i.e. λ has length 1.�

Corollary 4 Each dialectical tree of a plain DeLP argu-
mentation framework has a maximal depth 1.

Proposition 3 Let P be a delp and DeLPAF an associ-
ated plain argumentation framework. 〈A, a〉 is an argument
structure for a warranted literal a in P if and only if there
exists no defeater of 〈A, a〉 in DeLPAF .

Proof.
(=⇒) A is a warrant for a in P , if and only if there ex-

ists a dialectical tree T ∗〈A,a〉, such that the root 〈A, a〉 is
marked U as undefeated (see Definition 18). Therefore
all its child nodes in T ∗〈A,a〉 have to be marked D as de-
feated. According to Corollary 4, all the children of the
root node in a dialectical tree have to be leaves. However,
according to Definition 17, the leaf nodes of a dialectical
tree have to be marked U as undefeated. Hence the root
node of a dialectical tree T ∗〈A,a〉 of a warranted literal a
cannot have any child nodes (defeaters of 〈A, a〉).

(⇐=) Since 〈A, a〉 has no defeaters, any dialectical tree
T ∗〈A,a〉 for 〈A, a〉 has just a single node 〈A, a〉. 〈A, a〉 is a
leaf node, hence, according to Definition 17, it is marked
U as undefeated. But because 〈A, a〉 is also the root node
of T ∗〈A,a〉 (marked undefeated), A is a warrant for a.

�

Finally, before introducing an instantiation of the Theo-
rem 1, which provides a basis for embedding the DeLP ar-
gumentation framework into the framework of Answer Set

Programming, observe a property of conflicting arguments
in DeLPAF and some of its corollaries.

Proposition 4 LetP be a delp, DeLPAF its associated plain
argumentation framework and 〈A, a〉, 〈B, b〉 be argument
structures in it. If 〈A, a〉 does not attack 〈B, b〉, but at the
same time A∪B ∪Π |∼ ⊥, then there exists a subargument
structure 〈A′, a′〉 v 〈A, a〉, s.t. 〈A′, a′〉 is a defeater of
〈B, b〉.

Proof. Provided that A ∪ B ∪ Π |∼ ⊥, there must be two
conflicting literals a′ and b′, s.t. A′ ⊂ A is an argument for
a′ and B′ ⊆ B is an argument for b′ and a′ and b′ disagree,
i.e. {a′, b′}∪Π |∼ ⊥. Hence 〈A′, a′〉R〈B′, b′〉 and therefore
also 〈A′, a′〉R〈B, b〉. �

The Proposition 4 establishes a kind of weak symmetry of
attacking of an argument by a preferred extensions. This ob-
servation is used to introduce the two following corollaries.

Corollary 5 In a plain DeLPAF, each maximal conflict-free
set of arguments is a preferred extension.

Proof. Suppose S is a maximal conflict-free set of argu-
ments which is not admissible. Then there must be an ar-
gument A ∈ S, s.t. A is not acceptable w.r.t. S, i.e. there
exists an argument B ∈ U \ S and BRA, but S does not
attack B. However, according to the Proposition 4 we have
that there must be some subargument of A, which also be-
longs to S (S is maximal) which attacksB, what contradicts
the assumption. �

Another interesting corollary of the Proposition 4 is that in
plain DeLP, the notions of preferred and stable extensions
coincide.

Corollary 6 Let AF = 〈U,R,v〉 be a plain DeLP argu-
mentation framework. S is a stable extension of DeLPAF
if and only if S is also its preferred extension.

Proof. The proof follows a simillar argument as the proof
of the Corollary 5. �

Theorem 2 Let P be a delp and DeLPAF be its associated
plain argumentation framework. Let also 〈A, a〉 be an ar-
gument structure in DeLPAF and S∗ be the set of preferred
extensions of DeLPAF .

Then a is a warranted literal in DeLPAF if and only ifA
is undisputed w.r.t. DeLPAF .

Proof. The proof follows from Theorem 1 introduced above.
First we show that the conditions imposed on DeLPAF by
Theorem 1 are satisfied. DeLPAF attack relation R is ir-
reflexive because of the Definition 13 of DeLP defeater. The
proof in both directions follows in steps:

1. a is a warranted literal iff there exists an undefeated ar-
gumentA supporting a. However, according to Corollary
4 and the Proposition 3, the dialectical tree T〈A,a〉 has to
have a depth equal to 0.

2. According to Theorem 1, SA contains only argument
structures which are in conflict with 〈A, a〉, i.e. if 〈B, b〉 ∈
SA, then either 〈B, b〉R〈A, a〉, or 〈A, a〉R〈B, b〉. In the

first case 〈B, b〉 would be a defeater of 〈A, a〉. In the sec-
ond, according to the Proposition 4 there must be a sub-
argument of 〈B′, b′〉 v 〈B, b〉 which attacks 〈A, a〉 and
therefore 〈B′, b〉 ∈ SA.

From that we have that a has no defeaters iff SA = ∅.
3. That means that from the set of all literals (note, that for

each literal which can be derived from P , there is an ar-
gument supporting it), we subtracted all the preferred ex-
tensions of DeLPAF which holds iff a belonged to all of
them, i.e. it is undisputed.

�

A weaker version of Theorem 2, similar to the Corollary 2,
will turn out to be useful later as well.

Theorem 3 Let P be a delp and DeLPAF be its associated
plain argumentation framework. Let also 〈A, a〉 be an argu-
ment structure in DeLPAF and S be the set of all admissi-
ble sets in it, containing also all the preferred extensions of
DeLPAF .

Then a is a warranted literal w.r.t. DeLPAF if and only
if SA = ∅.

Proof. The proof follows from Corollary 3 and the proof of
Theorem 2, step 2, above. �

Translating DeLP in ASP
Theorems 2 and 3 establish a generic scheme for embed-
ding the DeLP framework without preferences into ASP.
Provided a delp P with a corresponding plain argumenta-
tion framework, the scheme follows a three step algorithm:

1. Translate a given delp P in a corresponding extended
logic program,

2. by computing its answers sets, obtain an appropriate set
of literals corresponding to a well-defined notion in the
DeLPAF theory introduced above, and finally

3. extract the set of warranted literals from the obtained an-
swer sets.

Below, we introduce two translations of defeasible logic pro-
grams into extended logic programs answer sets of which
enjoy favourable properties w.r.t. the argumentation frame-
work theory. First, however we introduce a supplementary
notion of an argument set completeness.

Definition 23 (argument set completion) We say that a set
of argument structures S is complete w.r.t. an argumentation
framework AF = 〈U,R,v〉 iff for every 〈A, h〉 ∈ U holds:
If A ⊆

⋃
A′∈S A′ then 〈A, h〉 ∈ S.

Note that every preferred extension of an argumentation
framework is complete.

Definition 24 (vanilla translation) Let P = (Π,∆) be a
delp The resulting extended logic program Trans(P) is con-
structed as follows:

1. For each r ∈ ∆, Trans(P) contains the following rules

block(lr)←∼ ¬block(lr) (1)

¬block(lr)←∼ block(lr) (2)

head(r)← body(r),∼ block(lr) (3)
where lr is a new unique literal corresponding to the rule
r.

2. Π is copied to Trans(P), i.e. Trans(P) contains for each
r ∈ Π the following rule

head(r)← body(r) (4)

The straightforward vanilla translation Trans stems from an
observation, that each non-contradictory set of defeasible
rules ∆′ ⊆ ∆, s.t. Π ∪ ∆′ 6|∼ ⊥, of a delp P = (Π,∆)
models some complete admissible set of arguments (all ar-
guments which can be constructed from ∆′), as well as for
each complete admissible set of arguments we can identify
a set of defeasible rules ∆′ ⊆ ∆ inducing it. Note how-
ever, that it might happen that some rules will always remain
unused as building blocks for arguments in ∆′: Consider
Π = {a. b ← a.} and ∆′ = ∆ = {b −� a.}. Although
〈{b −� a.}, b〉 is not minimal, the rule b −� a. is satisfied by
the quasi argument structure.

The tuple of Rules 1 and 2 of Definition 24 encode a non-
deterministic choice of a set of rules ∆′ from ∆. Provided
lr is not blocked, i.e. ¬block(lr) holds, the Rule 3 enables
firing the corresponding rule r from ∆. Finally, the Rule
4 copies strict rules from Π to the translated logic program,
thus allowing an equivalent derivation as in the original delp.

The answer set semantics then computes a set of liter-
als corresponding to completions of admissible sets of argu-
ments built from such choices of ∆′. The following proposi-
tion articulates the relation between answer sets of the result-
ing logic program and the plain argumentation framework
corresponding to the delp P .

Proposition 5 Let P be a delp and let DeLPAF be its as-
sociated plain argumentation framework.

Then there exists an answer set M of Trans(P) if and
only if there exists a complete admissible set S of DeLPAF ,
s.t. Lit(S) = M ∩ Lit(P).

Proof.

(=⇒) Let M be an answer set of Trans(P) and ∆′ = {r ∈
∆ | M 6|= block(lr)}. According to Definition 21, M is
the least model of the reduct Trans(P)M = Π ∪ ∆′ ∪
{block(L) | M 6|= ¬block(L)} ∪ {¬block(L) | M 6|=
block(L)}. Therefore M ∩ Lit(P) is the least model of
Π ∪∆′.
Let S = {〈A, h〉 | A ⊆ ∆′}. If 〈A, h〉 is an argument
structure, such that A ⊆

⋃
A′∈S A′, then A ⊆ ∆′ and

〈A, h〉 ∈ S. Thus S is complete. Because M ∩ Lit(P) is
a model of Π ∪∆′, S is also conflict-free. Each conflict-
free set of argument structures of a plain argumentation
framework is an admissible set. Hence S is a complete
amissible set of DeLPAF .
Let A ⊆ ∆′ be an argument for h. Then there ex-
ists a derivation L1, . . . , Ln, n ≥ 1 of h from Π ∪ ∆′.
By mathematical induction on n we can prove that every
model of Π∪∆′ satisfies also L1, . . . , Ln = h. Therefore
Lit(S) ⊆M∩Lit(P). Let h be a literal in the least model

of Π ∪ ∆′. Then there exists a derivation L1, . . . , Ln,
n ≥ 1 of h from Π ∪ ∆′. If we take the derivation with
minimal set A of used defeasible rules, we get an argu-
ment A for h. Therefore Lit(S) ⊇M ∩ Lit(P).

(⇐=) Let S be a complete admissible set of argument struc-
tures of DeLPAF and ∆′ = {r ∈ ∆ | Lit(S) |= r}.
Because S is closed, Lit(S) is the least model of Π ∪∆′.
Let M = Lit(S) ∪ {block(lr) | r 6∈ ∆′} ∪ {¬block(lr) |
r ∈ ∆′}. We show that M is the least model of the
reduct Trans(P)M = Π ∪ ∆′ ∪ {block(lr) | r 6∈
∆′} ∪ {¬block(lr) | r ∈ ∆′}, i.e. M is an answer set
of Trans(P).
It is easy to see that M is the least model of Trans(P)M

if and only if Lit(S) is the least model of Π ∪ ∆′. Let
h ∈ Lit(S). Then there exists a derivation of h from
Π∪∆′. Therefore every model of Π∪∆′ must also satisfy
h, i.e. the least model of Π ∪∆′ contains Lit(S). Lit(S)
satisfies ∆′. Because it is complete, it also satisfies Π.
Thus Lit(S) is the least model of Π ∪∆′.

�

The second translation of defeasible logic programs to
extended logic programs aims at significantly reducing the
number of yielded answer sets so, that they uniquely corre-
spond to the set of preferred extensions of the original delp.
It further builds on the vanilla translation and adds additional
filtering for all the non-preferred admissible sets.

Definition 25 (stable translation) Let P = (Π,∆) be a
delp. The resulting extended logic program Trans∗(P) con-
tains all the rules from Trans(P) and

1. for each r1 ∈ Π and r2 ∈ ∆, Trans∗(P) contains the
following rules
check(head(r1), head(r2))← (1)

block(lr2), check(body(r1), head(r2))

fail(head(r2))← (2)
block(lr2), check(head(r1), head(r2)),
check(¬head(r1), head(r2))

2. for each r1 ∈ ∆ and r2 ∈ ∆, Trans∗(P) contains the
following rules
check(head(r1), head(r2))← (3)

block(lr2), check(body(r1), head(r2)),
∼ block(lr1)

fail(head(r2))← (4)
block(lr2), check(head(r1), head(r2)),
check(¬head(r1), head(r2))

3. for each r ∈ ∆, Trans∗(P) contains the following rules
check(head(r), head(r))← block(lr) (5)

← block(lr),∼ fail(head(r)) (6)

where check({L1, . . . , Ln}, L), n ≥ 0, denotes the set of
literals check(L1, L), . . . , check(Ln, L).

The filtering of non-preferred admissible sets in the trans-
lation Trans∗ above tests whether by adding the head of a
blocked rule, a conflict really arises, i.e. we have a maximal
consistent set of literals.

Extended logic programs produced by the stable transla-
tion Trans∗ thus yield answer sets, which after reduction to
the language of the original delp P uniquely correspond to
preferred extensions of P . This relationship is articulated
formally by the following proposition.

Proposition 6 Let P be a delp and let DeLPAF be its as-
sociated plain argumentation framework.

Then there exists an answer set M of Trans∗(P) if and
only if there exists a preferred extension S of DeLPAF , s.t.
Lit(S) = M ∩ Lit(P).

Proof.
(=⇒) LetM be an answer set of Trans∗(P) and ∆′ = {r ∈

∆ | M 6|= block(lr)}. Let S = {〈A, h〉 | A ⊆ ∆′}.
Similarly as in the proof of the proposition 5, S is conflict-
free. Let 〈A, h〉 6∈ S. Then there exists a rule r ∈ A \∆′
such that M 6|= r. M satisfies block(lr) because of the
rule (3) in Definition 24 and M satisfies fail(head(r))
because of the rule (3) in Definition 25. In addition M |=
check(L, head(r)) if and only if there exists a derivation
ofL from Π∪∆′∪{head(r)} (see the rules (1), (2) and (3)
from the definition 25). BecauseM |= fail(head(r)), Π∪
∆′ ∪ {head(r)} is contradictory (see the rules (1) and (2)
from the definition 25). Thus S is a maximal conflict-free
set of argument structures, i.e. according to the Corollary
5 a preferred extention of DeLPAF.

(⇐=) Let S be a preferred extension of P and ∆′ = {r ∈
∆ | Lit(S) |= r}. According to the proof of Proposition
5, M ′ = Lit(S) ∪ {block(lr) | r 6∈ ∆′} ∪ {¬ block(lr) |
r ∈ ∆′} is an answer set of Trans(P). Because S is
a maximal conflict-free set of argument structures, then
for every rule r 6∈ ∆′ holds Π ∪ ∆′ ∪ {head(r)} |∼ ⊥.
Therefore M = M ′ ∪ {fail(head(r)) | r 6∈ ∆′} ∪⋃

r 6∈∆′{check(L, head(r)) | Π ∪∆′ ∪ {head(r)} |∼ L}
is the least model of Trans∗(P)M , i.e. it is an answer set
of Trans∗(P).

�

Example 1 Let P = (Π,∆) be the following delp:

Π: a ∆: b −� a
g ← b c −� a
h ← c
¬h ← c

Listings 1 and 2 show the extended logic programs resulting
from the vanilla and the stable translation.

The vanilla translation Trans(P) has two answer sets
M1 = {a, b, g,¬block(lr1), block(lr2)} and M2 =
{a, block(lr1), block(lr2)}. The interpretation M3 = M1 ∪
{check(c, c), check(h, c), check(¬h, c), fail(c)} is the only
answer set of the stable translation Trans∗(P).

Warranted literals extraction
Using the previously introduced theoretical results, we can
finally conclude the embedding of DeLP to ASP and propose
algorithms for extraction of warranted literals from answer
sets of a translated defeasible logic program. The straight-
forward scheme follows three main steps: (1) DeLP to ASP

Listing 1 Example of a vanilla translation.

% Translation rules (1) and (2)
block(lr1)←∼ ¬block(lr1) block(lr2)←∼ ¬block(lr2)
¬block(lr1)←∼block(lr1) ¬block(lr2)←∼block(lr2)

% Translation rule (3) % Copy of Π. Translation rule (4)
b← a, ∼block(lr1) a. h← c
c← a, ∼block(lr2) g← b. ¬h← c

translation, (2) answer set computation, and, finally, (3) war-
ranted literals extraction.

Depending on which translation from DeLP to ASP is
used, different algorithm for extraction of warranted liter-
als must be employed. In the case of the stable translation
Trans∗ (Definition 25), according to Proposition 6, the an-
swer sets of a program Trans∗(P) correspond to the set of
preferred extensions of the delp P . To extract the set of war-
ranted literals from the answer sets, we can employ Theorem
2, i.e. the set of literals corresponds to the intersection of all
the answer sets. Algorithm 1 displays the pseudocode of the
described warranted literals extraction.

For the vanilla translation Trans, according to Proposi-
tion 5, the set of answer sets of a program Trans(P) cor-
respond to the set of all complete admissible sets of the
delp P . Then for each literals h, we can check whether
it is warranted w.r.t. the resulting answer sets by employ-
ing Theorem 3, i.e. from the set of all literals, we subtract
those answer sets to which a literal h in consideration be-
longs. If the resulting set of literals is empty, then according
to Theorem 3, h is warranted. The Algorithm 2 displays
a pseudocode for extraction of warranted literals exploiting
the vanilla transformation Trans and Theorem 3.

Note, that Algorithm 2 based on Corollary 2, the weaker
version of Theorem 1, is very generic. It would work also
for any translation from DeLP to ASP producing an ex-
tended logic program yielding answer sets corresponding
to a mixture of preferred extensions and other admissible
sets. Indeed, it would also work if we would replace the
vanilla transformation Trans in it by the stable transforma-
tion Trans∗.

As far as the time complexity of the introduced algo-
rithms is concerned, the most time consuming component
of the three stage algorithm is computation of answer sets
of the translated extended logic program. While the war-
ranted literals extraction yields a rather straightforward al-
gorithm of polynomial complexity, the translation is either
linear, in the case of the vanilla translation, or quadratic for
the stable translation. Note however, that because of the lin-
ear space complexity of the resulting extended logic pro-
gram, the vanilla translation is modular: By adding a new
rule r to the original delp P , it suffices to translate only the
new rule to obtain the resulting extended logic program, i.e.
Trans(Π ∪ {r}) = Trans(Π) ∪ Trans({r}). The same
property does not hold for the stable translation, which on
the other hand yields logic programs with significantly fewer
answer sets w.r.t. those produced by the vanilla translations.

Listing 2 Example of a stable translation.

% Translation rule (1)
check(a, b)← block(lr1)
check(a, c)← block(lr2)
check(g, b)← block(lr1), check(b, b)
check(g, c)← block(lr2), check(b, c)
check(h, b)← block(lr1), check(c, b)
check(h, c)← block(lr2), check(c, c)
check(¬h, b)← block(lr1), check(c, b)
check(¬h, c)← block(lr2), check(c, c)

% Translation rule (3)
check(b, c)← block(lr2), check(a, c), ∼block(lr1)
check(c, b)← block(lr1), check(a, b), ∼block(lr2)

% Translation rules (2) and (4)
fail(b)← block(lr1), check(a, b), check(¬a, b)
fail(c)← block(lr2), check(a, c), check(¬a, c)
fail(b)← block(lr1), check(b, b), check(¬b, b)
fail(c)← block(lr2), check(b, c), check(¬b, c)
fail(b)← block(lr1), check(c, b), check(¬c, b)
fail(c)← block(lr2), check(c, c), check(¬c, c)
fail(b)← block(lr1), check(g, b), check(¬g, b)
fail(c)← block(lr2), check(g, c), check(¬g, c)
fail(b)← block(lr1), check(h, b), check(¬h, b)
fail(c)← block(lr2), check(h, c), check(¬h, c)

% Translation rule (5)
check(b, b)← block(lr1)
check(c, c)← block(lr2)

% Translation rule (6)
← block(lr1), ∼fail(b)
← block(lr2), ∼fail(c)

Discussion & Conclusion
In this paper we discussed embeddings of the argumentation
framework of Defeasible Logic Programming into Answer
Set Programming. We first provided several theoretical re-
sults about Dung’s abstract argumentation framework cul-
minating in the introduction of Theorem 1 and its weaker
version, Corollary 2. Then, we instantiated these results in
the concrete argumentation approach of DeLP and finally
we used them to show how warranted literals of a given delp
program can be computed by (1) translating the program to
extended logic program, subsequently (2) processing it by
the answer set semantics and (3) we introduced warranted
literals extraction algorithms for the corresponding DeLP-
2-ASP translations. The main consequence of the proposed
scheme is a practical result:

Our results enable to use state-of-the-art ASP solvers
for answering queries of DeLP.

We introduced two extreme translations from DeLP to ASP:
The straightforward vanilla translation Trans and the sta-
ble Trans yielding a large and a smallest number of answer
sets respectively. But our approach enables a whole class of
translations between the two frameworks. The only require-
ment is, that the answer sets of the resulting extended logic

Algorithm 1 Algorithm for extracting warranted literals of
a delp exploiting translation to ASP Trans∗.

procedure EXTRACTWARRANTS∗(delp P)
compile P to Trans∗(P)
S∗ := compute the answer sets of Trans∗(P)
W :=

⋂
S∈S∗ S

end procedure . W contains all warranted literals of P

Algorithm 2 Algorithm for extracting warranted literals us-
ing Trans.

procedure EXTRACTWARRANTS(delp P)
compile P to Trans(P)
S := compute the answer sets of Trans(P)
W := ∅
for each h ∈ Lit do

if [U \ (
⋃

S∈S
h∈S

S)] = ∅ then

W := W ∪ h
end if

end for
end procedure . W contains all warranted literals of P

program contain the preferred extensions of the original pro-
gram among other admissible sets.

As (Thimm & Kern-Isberner 2008) points out, there is not
much work reported on links between DeLP and ASP. To
our knowledge, (Thimm & Kern-Isberner 2008) is the only
publication on this topic to date.

Our approach provides a stronger result than that of
(Thimm & Kern-Isberner 2008). It provides a basis for a
purely syntactical compilation of defeasible logic programs
into extended logic programs. The approach of (Thimm &
Kern-Isberner 2008) required computation of minimal dis-
agreement sets of the input delp which were subsequently
used as the basis for its translation to a corresponding ex-
tended logic program.

Our result is based on the observation that from a set of
preferred extensions of an argumentation framework with
an appropriate attack relation, we can extract the set of de-
featers, to a given argument A. Subsequently, we use this
observation to show, that in the case of an empty prefer-
ence relation ≺ on arguments, an argument is a warrant if
and only if the set of its defeaters is empty. The introduced
translations of delp to extended logic programs are based on
the idea, that answer sets of the resulting logic program cor-
respond to preferred extensions, resp. admissible sets of the
original delp among which all the preferred extensions are
present. From the set of answer sets, the set of warranted
literals can be extracted.

Moreover, note that the general Theorem 1 can be used
also in the context of DeLP framework with a non-empty
preference relation for constructing a dialectical tree of a
query: Acceptable argumentation lines are constructed by
interleaving arguments in favour and against the query. By
exploiting the set theoretic relations between admissible sets
it should be fairly simple to search for defeaters of an argu-

ment in question.
In this paper we established a strong link between DeLP

and ASP frameworks in the sense that we provided a set
of sufficient and necessary requirements on answer sets of
extended logic programs resulting from a purely syntacti-
cal translation from defeasible logic programs. Our result
can be used to obtain implemented defeasible argumenta-
tion systems which instead of DeLP solvers, exploit the full
power of state-of-the-art ASP solvers.

In our future work, we will try to experimentally evaluate
our approach to computing warranted literals of defeasible
logic programs and compare them with the existing DeLP
solvers. Additionally, we will work towards lifting our re-
sults to DeLP frameworks with non-empty preference rela-
tion. On a parallel track we are planning (using the results of
this paper) to relate the theoretical results regarding updates
(e.g. (Rotstein et al. 2008)) and evolutions of argumentation
systems, to those from the field of logic program updates,
such as (Leite 2003).

References
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Besnard, P., and Hunter, A. 2000. Towards a logic-based
theory of argumentation. In AAAI/IAAI, 411–416. AAAI
Press / The MIT Press.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–
358.
García, A. J., and Simari, G. R. 2004. Defeasible logic pro-
gramming: An argumentative approach. TPLP 4(1-2):95–
138.
Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In ICLP/SLP, 1070–
1080.
Leite, J. A. 2003. Evolving Knowledge Bases, volume 81
of Frontiers of Artificial Intelligence and Applications. IOS
Press.
Prakken, H., and Vreeswijk, G. 2002. Logics for defeasi-
ble argumentation. In Handbook on Philosophical Logic,
volume 4, 2nd edition. Kluwer Academic Publishers, Dor-
drecht. 218–319.
Rotstein, N. D.; Moguillansky, M. O.; Falappa, M. A.; Gar-
cía, A. J.; and Simari, G. R. 2008. Argument Theory
Change: Revision Upon Warrant. In Proceedings of In-
ternational Conference on Computational Models of Argu-
ment, COMMA 2008.
Thimm, M., and Kern-Isberner, G. 2008. On the relation-
ship of defeasible argumentation and answer set program-
ming. In Proceedings of the Second International Confer-
ence on Computational Models of Argument, COMMA’08,
393–404.

