Agent Contest Competition: 4th Edition

Tristan M. Behrens?, Mehdi Dastani!, Jiirgen Dix? and Peter Novak?

1Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
mehdi@cs.uu.nl
2Clausthal University of Technology
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
{tristan.behrens|dix|peter.novak}@tu-clausthal.de

Abstract. This paper summarises the Agent Contest 2008, organised
in association with ProMAS’08. The aim of the contest is to stimulate
research in the area of multi-agent systems by identifying key problems
and collecting suitable benchmarks that can serve as milestones for eval-
uating new tools, models, and techniques to develop multi-agent systems.
The first two editions of this contest were organised in association with
CLIMA conference series and the third edition was organised in asso-
ciation with ProMAS’07. Based on the experiences from the previous
three editions ([16,17,18]), the contest scenario has been changed to test
the participating multi-agent systems on their abilities to coordinate and
cooperate. We wanted to emphasise team work and team strategy issues
in a dynamic environment where teams compete for the same resources.
Seven groups from Iran, Ireland, England, France, Germany, Poland, and
Turkey did participate in this years contest.

1 Introduction

Multi-agent systems are beginning to play an important role in today’s software
development. In the field of agent-oriented software engineering, various multi-
agent system development methodologies have been proposed. Each methodol-
ogy focuses on specific stages of the multi-agent system development. For exam-
ple, Gaia [21] and Prometheus [20] focus on the specification and design stages
assuming that other stages such as requirement and implementation are similar
to corresponding stages of other software development paradigms. Therefore,
software developers using Gaia and Prometheus propose models to specify and
design multi-agent systems, while ignoring the implementation models.
Moreover, there is a growing number of agent-oriented programming lan-
guages and development platforms that are proposed to facilitate the imple-
mentation of multi-agent systems [11,15]. These programming languages and
platforms introduce programming constructs that can facilitate efficient and
effective implementation and execution of multi-agent systems. The develop-
ment of multi-agent systems requires efficient and effective solutions for differ-
ent problems which can be divided into three classes: Problems related to (1)
the development of individual agents, (2) the development of coordination and

cooperation mechanisms to manage the interactions between individual agents
and team work, and (3) the development of the shared environment in which
agents perform their actions.

Typical problems related to individual agents are how to specify, design and
implement issues such as autonomy, pro-active/reactive behaviour, perception
and update of information, reasoning and deliberation, and planning. Typical
problems related to the interaction of individual agents are how to specify, de-
sign and implement issues such as communication, coordination, cooperation,
negotiation, and team working. Finally, typical problems related to the develop-
ment of their environment are how to specify, design and implement issues such
as resources and services, agents’ access to resources, active and passive sensing
of the environment, and realizing the effects of actions.

This competition started as an attempt to stimulate research in the area of
multi-agent systems by

1. identifying key problems in developing multi-agent systems, and
2. evaluating state-of-the-art tools, models, and techniques in the field of multi-
agent systems.

While there already exist several competitions in various areas of artificial
intelligence (theorem proving, planning, Robo-Cup, Games, etc.) and, lately,
also in specialised areas in agent systems (Trading Agent Competition (TAC)
[1] and AgentCities competitions [2]), the emphasis of this contest is on the use
of existing tools, models, and techniques that are proposed to develop multi-
agent systems ([11,10,12,13,14,19]. In particular, we aim at evaluating existing
approaches for the development of multi-agent systems where individual agents
cooperate with each other to solve a task. In this respect, issues such as team
working, team strategy, interaction with dynamic environment, modeling the en-
vironment, limited perception, uncertain action effects, reasoning and planning,
and learning are essential.

The previous editions of this contest were organised in cooperation with
CLIMA and ProMAS workshop series. The scenario from this year is changed in
order to put the participating multi-agent systems under a test with respect to
coordination, cooperation, and team working issues in a dynamic environment
where teams of agents compete for the same resources.

2 Scenario Description

The competition task consisted of developing a multi-agent system to solve a co-
operative task in a dynamically changing environment. The environment of the
multi-agent system (see also [9]) is a grid-like world where agents can move from
one cell to a neighbouring cell. In this environment, herds of cows can appear
and move around in the environment showing swarm-like behavior. Participat-
ing agent teams are expected to explore the environment, avoid obstacles and
compete with another agent team to get most cows. The agents of each team
can coordinate their actions in order to control the movement of herds and move

as much cows as possible to their own corral. Agents have only a local view on
their environment, their perceptions are incomplete, and their actions can fail.
There were seven teams participating in the competition:

— Jason from the ENS Mines of Saint Etienne, France, and University of
Durham, UK,

SHABaN from the Iran University Of Science and Technology,

— Jadex from the Hamburg University of Applied Sciences,

Bogtrotters from the University College Dublin, Ireland,

Krzaczory from the, Polish Academy of Sciences,

— KANGAL from the Bogazici University, Istanbul, Turkey, and

JIAC-TNG from the Technische Universitdt Berlin, Germany.

Each team competed against all other teams in a series of matches in paral-
lelised tournaments on three servers. Each match between two competing teams
consisted of three simulations. A simulation between two teams was a com-
petition between them with respect to a certain starting configuration of the
environment. Winning a simulation yielded three points for the team, a draw
was worth one point and a loss resulted in zero points. The winner of the whole
tournament was evaluated on the basis of the overall number of collected points
in the matches during the tournament. In the case of an equal number of points,
the winner would have been decided on the basis of the absolute number of
collected cows. Details on the number of simulations per match and the ex-
act structure of the competition has been published prior to the Contest on
the official Agent Contest 2008 website at http://cig.in.tu-clausthal.de/
agentcontest2008/.

2.1 Technical Description of the Scenario

In the contest, the agents from each participating team were executed locally
(on the participant’s hardware) while the simulated environment, in which all
agents from competing teams performed actions, was run on the remote contest
simulation server run by the contest organisers. The interaction/communication
between agents from one team were managed locally, but the interaction between
individual agents and their environment (run on the simulation server) took place
via Internet. Participating agents were connected to one of the simulation servers
that did provide the information about the environment. Each agent from each
team connected to and communicated with the simulation server using TCP
protocol and messages in XML format.

During the initial phase! agents from all competing teams connected to
the simulation servers, identified and authenticated themselves and got general
match information. At the announced start time of the tournament, the simula-
tion servers were on-line and the agents from participating teams were able to
connect to it. After a successful initial handshake during which agents identified

! The contest organisers contacted participants before the actual tournament and
provided them the IDs necessary for identification of their agents for the tournament.

themselves by their IDs and received acknowledgment from the servers, they
waited for the simulation start. The initial connecting phase took a reasonable
amount of time in order to allow agents to be initialised and getting connected
(15 minutes).

The simulation servers controlled the competitions by selecting the compet-
ing teams and managing the matches and simulations. In each simulation, a
simulation server, in a cyclic fashion, provided sensory information about the
environment to the participating agents and expected their reactions within a
given time limit. Each agent reacted to the received sensory information by indi-
cating which action (including the skip action) it wants to perform in the envi-
ronment. If no reaction was received from the agent within the given time limit,
the simulation server assumed that the agent performed the skip action. Agents
had only a local view on their environment, their perceptions were incomplete,
and their actions can fail. After a finite number of steps the simulation server
stopped the cycle and participating agents received a notification about the end
of a simulation. Then the server started a new simulation possibly involving the
same teams.

2.2 Team, Match, and Simulation

An agent team consisted of six software agents with distinct IDs. There were no
restrictions on the implementation of agents, although we encouraged the use
of approaches based on state-of-the-art tools, methodologies and languages for
programming agents and multi-agent systems, as well as the use of computational
logic based approaches. The tournament consisted of a number of matches. A
match was a sequence of simulations during which two teams of agents competed
in several different settings of the environment. For each match, the server 1)
picked two teams to play it and, subsequently, 2) started the first simulation
of the match. Each simulation in a match started by notifying the agents from
the participating teams and sending them the details of the simulation. These
included for example the size of the grid, the corral position, the number of
steps the simulation will perform, etc. A simulation consisted of a number of
simulation steps. Each step consisted of 1) sending a sensory information to
agents (one or more) and 2) waiting for their actions, and 3) processing agents’
replies and calculating the next state of the environment. As mentioned above,
in the case that an agent did not respond within a timeout (specified at the
beginning of the simulation) by a valid action, it was considered to perform the
skip action in the given simulation step.

2.3 Environment objects

The (simulated) environment was a rectangular grid consisting of cells. The
simulated environment contained two corrals—one for each team—which serve
as a location where cows should be directed to. Each cell could contain either
nothing, an agent, a cow or an obstacle. If a cow entered a corral it was removed.

Agents could enter the corrals without effect. All three maps were hand crafted
for the particular scenario.

2.4 Actions and perceptions

At the start of each simulation the agents received the details of the environment:

— simulation ID,

opponent’s 1D,

— grid size,

corral position and size, and

number of steps the simulation will last.

Agents were located in the grid and the simulation server provided each agent
with the following information in each step:

— information about the cells in the visibility range of the agent (including the
one agent stands on),

— the agent’s absolute position in the grid,

the current simulation step number,

— the number of caught cows and

the deadline for responding.

If two agents were standing in each other’s field of view, they were able to
recognise whether they are enemies, or they belong to the same team. Also,
individual cows were identifiable.

All perceptions except for the agent’s and the corral’s position were subject to
be “forgotten” by the server, whereas the server never gave wrong information.

Agents were allowed to perform one action in a simulation step. The following
actions were allowed:

— skip — the agent does nothing,

— north — the agent moves to the north,

— northeast — the agent moves to the northeast,

— east — the agent moves to the east,

— southeast — the agent moves to the southeast,

— south — the agent moves to the south,

— southwest — the agent moves to the southwest,
— west — the agent moves to the west,

— northwest — the agent moves to the northwest.

All actions, except the skip action, could fail. The result of a failed action
is the same as the result of the skip action. An action can fail either because
the conditions for its successful execution are not fulfilled or because of the
information distortion.

2.5 Cow Movement Algorithm

Cows are simple creatures. They tend to move away from cells that they do not
like and to move towards cells they do like. Cows want to move away from agents
and trees. On the other hand, they are attracted by empty spaces and they want
to stay close to other cows, however not too close. Cows have the tendency to
form herds, which tend to be tighter in times when the animals are scared by
cowboys.

The cows have two fixed visibility ranges. Cows are attracted to other cows
that are in the visibility-square and not too close and they are repelled by cows
that are too close.

Cows are slower than agents. Each cow only moves every three steps. Our
simulation ensures that all cows do not move in the same step using a simple
algorithm.

The direction in which a cow will move in the next step is determined by
calculating a weighted linear-combination of the distance-vectors to visible cells,
with weights respective to the content of the cells. Cows do not move if the
resulting vector is zero. See [9] for technical details about cow movements.

2.6 Final Phase of the simulation

In the final phase, the simulation server sent a message to each agent allowing
them to disconnect from the server. By this, the tournament was over.

3 Submission

The participation in this contest consisted of two parts. Participants first sub-
mitted the description of analysis, design and implementation of a multi-agent
system for the above application. We encouraged the use of existing state-of-
the-art multi-agent system methodologies to describe the systems. For the de-
scription of the implementations, the participants were asked to explain how the
design is implemented. This could be done by explaining, for example, which
programming language, platform, tools, and techniques are used to implement
the multi-agent system. All teams, except the one from Turkey, provided sub-
missions that are included in this volume.

The second part of the contest was the actual participation in the tour-
nament by means of an (executable) implementation of a multi-agent system.
The agents from each participating systems (agent teams) were executed locally
(on the participant’s hardware) while the simulated environment, in which all
agents from competing teams perform actions, was run on a remote contest sim-
ulation server. Interaction/communication between agents from one team has
been managed locally, but the interaction between individual agents and their
environment (run on the simulation server) was via Internet.

3.1 Received Submissions

For the 2008 edition of the Contest we initially received 9 submissions from 7
countries from all around the globe with a majority from Europe: JIAC-TNG [5]
(Germany), Jadex [6] (Germany), SHABaN [7] (Iran), Krzacory [3] (Poland), Ja-
son [8] (France/United Kingdom), Bogtrotters [4] (Ireland), KANGAL (Turkey),
FLUX (Germany) and CSIRO (Australia). Shortly before the Contest launch,
the teams CSIRO and FLUX withdrew due to technical and organizational is-
sues in the development team, thus leaving finally 7 teams to compete in the
Contest. Detailed descriptions of the submissions (except for KANGAL team)
are included in this volume.

In comparison to the last editions, in this year’s Contest we could observe a
rise of using more formal approaches to system analysis and design. Four teams
(JTAC-TNG, Jadex, Jason and Bogtrotters) used a state-of-the-art methodology
to devise the multi-agent system architecture of their team. One team (SHABaN)
used a MAS prototyping language to evaluate their early designs. Finally the
teams KANGAL and Krzacory used either ad-hoc design, or their approach was
partly based on a utility function optimization technique.

Almost all the teams came up with a design using two generic role types
for their agents: herders and explorers. However, the resulting designs differ in
coordination techniques as well as approaches to MAS organisation and role-
assignment. According to the agent coordination the approaches can be divided
into two groups: those using a rather decentralised approach (JTAC-TNG, Jason
and Bogtrotters) and teams with a single centralised coordination entity/agent
(Jadex, SHABaN and Krzacory).

The centralised approaches used the main coordinator /master agent for steer-
ing the agents in the teams, however it can be observed that anyway all these
approaches left a significant part of the autonomous acting and decision making
on single agents (e.g. obstacle avoidance, exploration strategy, etc.). Unlike in
the previous Contest editions, this year we did not see a truly centralised ap-
proach - a one in which agents lack autonomy and are completely directed by
the team managing agent.

The approaches employed by the teams without a centralised control and
MAS organisation varied from using auctions for assignment a role in a team
to particular agents (Bogtrotters) to sharing intentions among agents in a team
(JTAC-TNG).

We observe also an interesting trend in approaches to agent navigation in
the environment. It seems that more and more teams employ the A* algorithm
to search for shortest paths in the map of the environment. Thus the navigation
in even complex environments is not that much of an issue as we could observe
in previous Contest editions.

Another interesting arising trend seems to be employment of MAS recovery
monitoring mechanisms to keep the agent team up and running. As this used
to be an issue in the previous years of the Contest, the teams JIAC-TNG and
Bogtrotters implemented a team recovery technique to restart /recreate a crashed

agent as well as to inform the restarted agent about the current status of the
team knowledge (note that both teams use a decentralised approach).

4 Technical infrastructure

In the fourth edition of this Agent Contest, we re-used the technical infrastruc-
ture we developed for the previous editions. Briefly, the server’s architecture
consists of

1. simulation plug-in: A replaceable module providing the logics of the envi-
ronment simulation,

2. agent session manager: Responsible for holding the sessions between the
server and individual agents and en/de-coding of XML messages of the pro-
tocol,

3. wisualization library: It produced the SVG records from each time frame of
the simulation environment state,

4. contest webinterface: Providing a public view and interface to the MASSim
server, and

5. MASSim core module: Managing the tournament scheme and providing the
connection between the simulation plug-in, agent session manager and web-
interface.

A more detailed description of the system can be found in the report on the
second edition of the Agent Contest [17]. The system is published on the official
Contest website: http://cig.in.tu-clausthal.de/AgentContest/.

4.1 Contest preparation

As in previous editions, before the tournament itself, the Contest organisation
went through several preparatory stages. We released the scenario description
for the Agent Contest on 18 February 2008 and updated on 18 April 2008. The
communication protocol for the simulation scenario was released later on 13
March 2008. The Agent Contest testing phase was launched on 29 April 2008
and ran until the very Contest tournament launch on 26 May 2008. During this
period, which lasted more than one month, the participants could freely connect
to the testing server and test their agents in a simulated match against our
dummy Bot agent team. We did not allow different teams to compete against
each other as this should happen only during the tournament itself. During the
testing phase, few minor bugs in the scenario implementation were discovered
and quickly fixed.

4.2 Tournament

The Agent Contest 2008 tournament itself was launched on Monday, May 26th
2008 at about 10:00 CEST (UTC/GMT+2). A few days in advance, the partici-
pants received the Internet coordinates of the tournament server together with

credentials for their agents. The Agent Contest was served on the three tourna-
ment servers called Agent-Contestl, Agent-Contest2, and Agent-Contest3 that
could be observed via a web-interface at the address http://agentserver.in.
tu-clausthal.de. We provided also a chat space for participants, what in the
course of the tournament itself turned out to be a vital and efficient communi-
cation tool.

The teams competed against each other on four successive days and based
on three different simulation servers. The time table of these matches are shown
below?:

Day \ server|Agent-Contestl AgentContest2 AgentContest3

26th May Jason vs SHABaN Jadex vs Bogtrotters JIAC-TNG vs krzaczory
Jadex vs KANGAL
Bogtrotters vs KANGAL
27th May Jason vs Jadex JIAC-TNG vs Bogtrotters|krzaczory vs KANGAL
krzaczory vs SHABaN
KANGAL vs SHABaN

28th May Jason vs krzaczory JIAC-TNG vs Jadex
Jason vs Bogtrotters JIAC-TNG vs SHABaN
krzaczory vs Bogtrotters Jadex vs SHABaN

29th May Jason vs JTAC-TNG krzaczory vs Jadex SHABaN vs Bogtrotters

Jason vs KANGAL
JIAC-TNG vs KANGAL

All results, together with the SVG recordings of all the matches can be
downloaded from http://agentserver.in.tu-clausthal.de.

4.3 Simulation instances

The teams competed in matches each consisting of 3 different grid simulations
with identifiers CowSkullMountain, RazorEdge and Street (Figure 1). All scenar-
ios are handcrafted labyrinths to challenge agent teams obstacle avoiding and
communication approaches.

5 Contest results

The winner of the ProMAS Agent Contest 2008 was the JIJAC-TNG team from
the DAI-Labor, Technische Universitédt Berlin, Germany. They gained the high-
est number of points: 46. The second team was Jadex (Germany) with 42 points
followed by the SHABaN team (Iran) with 37 points. The summary of the whole
tournament is summarised in the Table 1.

6 Conclusion

As in the previous Contest editions, our main motivations behind this Agent
Contest are the following:

2 The table is fragmented due to the fact that the tournament was originally scheduled
for 9 participating teams.

Fig. 1. Initial simulation scenarios cowskullmountain, razoredge, and street

Rank| Team | CowScore | Points
1. [JIAC-TNG team 643 64
2. Jadex 542 42
3. SHABaN 373 37
4. krzaczory 379 26
5. Jason 393 21
6. bogtrotters 305 13
7. KANGAL 32 1

Table 1. Final tournament results.

— to foster the research and development of practically oriented approaches to
programming multi-agent systems, and

— to evaluate the state-of-the-art techniques in the field, and

— to identify key problems using these techniques.

After the success of the previous three editions of the Agent Contest we recog-
nised a need to shift the main focus of the Contest scenario from basic agent-
system issues (testing the state-of-the-art approaches to programming agents)
more towards a multi-agent setting, i.e. coordination and cooperation strategies
among agents in a MAS team. For the 2008 edition we devised a new scenario
cows € cowboys, which turned out to be more challenging and entertaining than
the previous gold miners scenario. The main emphasis was to construct a compe-
tition scenario in such a way that the success of the team should strongly depend
on coordination of several agents. This was achieved by our design decision, not
to allow to push a group of cows in a certain direction by a single agent.

Although initially we have been rather sceptical about solubility of the sce-
nario (and we still do not know a perfect solution), it turned out that the com-
peting teams performed rather well. The most difficult scenario turned out to be
the RazorEdge map 1. To push a group of cows through the narrow opening in

the map so that cows do not escape in the wrong direction turned out to require
good cooperation abilities of the agent team. In scenarios similar to this we see
still a potential for improvement of agent team performance.

Similarly to the previous Contest editions, we collected interesting feedback
from the participants. To our pleasure, it turns out that one of the main gains
from participating in the Agent Contest tournaments are contributions to testing
and debugging of the participants MAS-oriented frameworks and programming
systems. Another important aspect seems to be the educational value of the
Contest: We seem to attract more and more teams including students on both
post-graduate, as well as undergraduate levels.

We run this year’s Contest edition in a different organisational structure. We
divided the tournament into four sub-tournaments, each ran on a separate day.
On each day we executed three parallel contests. This resulted into a significant
decrease of the tournament running time and allowed us to use larger maps
and more complex scenarios for individual simulations. In the future we want to
further follow this line.

7 Acknowledgements

We are very thankful to the students of the Department of Informatics of Clausthal
University of Technology. They worked very hard in order to meet all the dead-
lines and deliver high-quality code. In particular, our thanks go this year to

— Jens Dehnert and
— Slawomir Deren

for the numerous hours they have invested to help us get the scenario and the
tournament ready in time.

References

1. http://www.sics.se/tac.

2. http://www.agentcities.org/EUNET/Competition.

3. ACO08 system description. Sixth International Workshop on Programming Multi-
Agent Systems, 2008.

4. Dublin Bogtrotters: Agent Herders. Sixth International Workshop on Programming
Multi-Agent Systems, 2008.

5. Herding agents - JIAC TNG in Multi-Agent Programming Contest 2008. Sixth
International Workshop on Programming Multi-Agent Systems, 2008.

6. On Herding Artificial Cows: Using Jadex to Coordinate Cowboy Agents. Sixth
International Workshop on Programming Multi-Agent Systems, 2008.

7. SHABaN multi-agent team to herd cows. Sixth International Workshop on Pro-
gramming Multi-Agent Systems, 2008.

8. Using Jason and Moise™ to develop a team of cowboys. Sixth International Work-
shop on Programming Multi-Agent Systems, 2008.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

T. M. Behrens, M. Dastani, J. Dix, and P. Novak. Technical aspects of the agent
contest competition: 4th edition. Technical Report IfI-08-05, Clausthal University
of Technology, Dept of Computer Science, to appear 2008.

R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors. Program-
ming Multi-Agent Systems, First International Workshop, ProMAS 2003, Mel-
bourne, Australia, Revised and Invited Papers, volume 3067 of Lecture Notes in
Computer Science. Springer, 2004.

R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications, volume 15 of Multi-
agent Systems, Artificial Societies, and Simulated Organizations. Springer, Berlin,
2005.

R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors. Program-
ming Multi-Agent Systems, Second International Workshop, ProMAS 2005, New
York, USA, Revised and Invited Papers, volume 3346 of Lecture Notes in Computer
Science. Springer, 2005.

R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors. Program-
ming Multi-Agent Systems, Third International Workshop, ProMAS 2005, Utrecht,
The Netherlands, Revised and Invited Papers, volume 3862 of Lecture Notes in
Computer Science. Springer, 2006.

R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors. Pro-
gramming Multi-Agent Systems, Fourth International Workshop, ProMAS 2006,
Hakodate, Japan, Revised and Invited Papers, volume 4411 of Lecture Notes in
Computer Science. Springer, 2007.

R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors. Multi-
Agent Tools: Languages, Platforms and Applications. Springer, Berlin, to appear
20009.

M. Dastani, J. Dix, and P. Novdk. The First Contest on Multi-Agent Systems
based on Computational Logic. In F. Toni and P. Torroni, editors, Proceedings of
CLIMA ’05, London, UK, volume 3900 of Lecture Notes in Artificial Intelligence,
pages 373-384. Springer, Berlin, 2006.

M. Dastani, J. Dix, and P. Novak. The second contest on multi-agent systems
based on computational logic. In K. Inoue, K. Satoh, and F. Toni, editors, CLIMA
VII, volume 4371 of Lecture Notes in Computer Science, pages 266—283. Springer,
2006.

M. Dastani, J. Dix, and P. Novak. Agent Contest Competition: 3th edition. In
M. Dastani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors, Proceed-
ings of ProMAS’06, Honolulu, Hawaii, volume 4908 of Lecture Notes in Artificial
Intelligence, pages 221-240. Springer, Berlin, 2007.

M. Dastani, A. E. F. Segrouchni, A. Ricci, and M. Winikoff, editors. Program-
ming Multi-Agent Systems, Third International Workshop, ProMAS 2007, Hon-
olulu, USA, Revised and Invited Papers, volume 4908 of Lecture Notes in Computer
Science. Springer, 2008.

L. Padgham and M. Winikoff. Prometheus: A methodology for developing in-
telligent agents. In Agent-Oriented Software Engineering III: Third International
Workshop (AOSE’02). Springer, LNAI 2585, 2003.

F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(3):317-370, 2003.

