
Adding structure to agent
programming languages

(programming agents with mental states)

Peter Novák, Jürgen Dix

Clausthal University of Technology, Germany

May 15th, 2007
ProMAS’07, Honolulu, Hawai’i

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 1/14

Agenda

1 Motivation
Agent programming languages

2 Structuring a rule-based language
Core language
Adding structure

3 Conclusion
Notes and related work
Ongoing & future work
Contributions

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 2/14

Motivation
Agent programming languages

Problem

Ideal agent oriented programming language:

modularity

knowledge representation
source code

code encapsulation

decomposition and combination compound structures

code reuse!

readability

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 3/14

Motivation
Agent programming languages

The way to go...

1 basis for the minimalistic core language

Modular BDI Architecture [Novák and Dix, 2006]
IMPACT [Subrahmanian et. al., 2000]

2 structural extension:

alternative semantical view on the language
notion of mental state transformer

3 further extensions: macros

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 4/14

Structuring a rule-based language
Core language

Modular core language: syntax

Definitions
Let L be a language:

mental state is a theory σ ⊆ L,

query language LQ: ϕ ∈ L, then Q(ϕ) ∈ LQ, >,⊥ ∈ LQ and
∨,∧,¬ are allowed in LQ,

update language LU : ϕ ∈ L, then U(ϕ) ∈ LU ,

let φ ∈ LQ, ψ ∈ LU , then φ −→ ψ is a transition rule.

program a set of transition rules

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 5/14

Structuring a rule-based language
Core language

Core language: standard operational semantics
Definitions
abstract operators:

QueryL : 2L × L → {true, false}, (σ |= ϕ)
UpdateL : 2L × L → 2L, (σ ⊕ ψ = σ′)

Definition
Application of a rule φ −→ ψ in a state σ:

σ |= φ, σ ⊕ ψ = σ′

σ −→ σ′

Definition
Agent system semantics set of all possible computation runs
σ0, σ1 . . . induced by the program P.

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 6/14

Structuring a rule-based language
Core language

Core language: standard operational semantics
Definitions
abstract operators:

QueryL : 2L × L → {true, false}, (σ |= ϕ)
UpdateL : 2L × L → 2L, (σ ⊕ ψ = σ′)

Definition
Application of a rule φ −→ ψ in a state σ:

σ |= φ, σ ⊕ ψ = σ′

σ −→ σ′

Definition
Agent system semantics set of all possible computation runs
σ0, σ1 . . . induced by the program P.

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 6/14

Structuring a rule-based language
Adding structure

Core language: denotational semantics
Definition
Program P can be characterized by a partial function

FP : 2L × LU −→ 2L;FP(σ, ψ) = σ′

σ is such, that ∃ a rule r = (φ −→ ψ) ∈ P and r is applicable
in σ

a corresponding set of states ΣFP ⊆ 22L is an application
domain of FP

Program P:
operational semantics: set of all the specified paths in the space

of all possible mental states
denotational semantics: set of all the specified transitions

between classes of mental states
Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 7/14

Structuring a rule-based language
Adding structure

Core language: denotational semantics
Definition
Program P can be characterized by a partial function

FP : 2L × LU −→ 2L;FP(σ, ψ) = σ′

σ is such, that ∃ a rule r = (φ −→ ψ) ∈ P and r is applicable
in σ

a corresponding set of states ΣFP ⊆ 22L is an application
domain of FP

Program P:
operational semantics: set of all the specified paths in the space

of all possible mental states
denotational semantics: set of all the specified transitions

between classes of mental states
Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 7/14

Structuring a rule-based language
Adding structure

Mental state transformer

Definition
A mental state transformer τ characterized by a function F :

1 primitive mst: τ = {φ −→ ψ} F(σ, ψ) = UpdateL(ψ, σ)
and ΣF = {σ|σ |= φ}

2 specialization: τ = {φ −→ τ ′} F(σ, ψ) = F ′(σ, ψ) and
ΣF = {σ|σ ∈ ΣF ′ ∧ σ |= φ}

3 generalization: τ = τ ′ ∪ τ ′′

F(σ, ψ) =

{
F ′(σ, ψ) if σ ∈ ΣF ′

F ′′(σ, ψ) if σ ∈ ΣF ′′
and ΣF = ΣF ′ ∪ ΣF ′′

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 8/14

Structuring a rule-based language
Adding structure

Example
when [{at(X,Y)}] and not [{desiredPosition(X,Y)}] and

[{towards((X1,Y1),(X,Y))}] and not [{obstacle(X1,Y1)}]
then [{stepTo(X1,Y1)}]

when [{at(X,Y)}] and [{goldAt(X,Y)}] and [{loaded}]
then [{broadcast(goldAt(X,Y))}]

when not [{batteryLow}] then {
<moving to the desired position>
<communication>

}
when [{batteryLow}] then {

<moving to the desired position>
when > then [{adopt(desiredPosition(XR, YR))}]

}

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 9/14

Structuring a rule-based language
Adding structure

Example
when [{at(X,Y)}] and not [{desiredPosition(X,Y)}] and

[{towards((X1,Y1),(X,Y))}] and not [{obstacle(X1,Y1)}]
then [{stepTo(X1,Y1)}]

when [{at(X,Y)}] and [{goldAt(X,Y)}] and [{loaded}]
then [{broadcast(goldAt(X,Y))}]

when not [{batteryLow}] then {
<moving to the desired position>
<communication>

}
when [{batteryLow}] then {

<moving to the desired position>
when > then [{adopt(desiredPosition(XR, YR))}]

}

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 9/14

Structuring a rule-based language
Adding structure

Example
when [{at(X,Y)}] and not [{desiredPosition(X,Y)}] and

[{towards((X1,Y1),(X,Y))}] and not [{obstacle(X1,Y1)}]
then [{stepTo(X1,Y1)}]

when [{at(X,Y)}] and [{goldAt(X,Y)}] and [{loaded}]
then [{broadcast(goldAt(X,Y))}]

when not [{batteryLow}] then {
<moving to the desired position>
<communication>

}
when [{batteryLow}] then {

<moving to the desired position>
when > then [{adopt(desiredPosition(XR, YR))}]

}

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 9/14

Structuring a rule-based language
Adding structure

define movementToPosition {
when [{at(X,Y)}] and not [{desiredPosition(X,Y)}] and

[{towards((X1,Y1),(X,Y))}] and not [{obstacle(X1,Y1)}]
then [{stepTo(X1,Y1)}]

}

define communicateGold {
when [{at(X,Y)}] and not [{goldAt(X,Y)}] and [{loaded}]
then [{broadcast(goldAt(X,Y))}]

}
. . .
when not [{batteryLow}] then {

movementToPosition /∗ 1 ∗/
communicateGold /∗ 2 ∗/

} else {
when not [{desiredPosition(XR, YR)}] then {

[{adopt(desiredPosition(XR, YR))}] /∗ 3 ∗/
} else {

movementToPosition /∗ 4 ∗/
}

}
Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 10/14

Structuring a rule-based language
Adding structure

Example: translation to the core language

/∗ 1 ∗/
¬Q(’batteryLow’) ∧Q(’at(X,Y)’) ∧ ¬Q(’desiredPosition(X,Y)’)∧
Q(’towards((X1,Y1),(X,Y))’) ∧ ¬Q(’obstacle(X1,Y1)’)

−→ U(’stepTo(X1,Y1)’)

/∗ 2 ∗/
¬Q(’batteryLow’) ∧Q(’at(X,Y)’) ∧ ¬Q(’goldAt(X,Y)’) ∧Q(’loaded’)

−→ U(’broadcast(goldAt(X,Y))’)

/∗ 3 ∗/
¬¬Q(’batteryLow’) ∧ ¬Q(’desiredPosition(XR, YR)’)

−→ U(’adopt(desiredPosition(XR, YR))’)

/∗ 4 ∗/
¬¬Q(’batteryLow’) ∧ ¬¬Q(’desiredPosition(XR, YR)’) ∧Q(’at(X,Y)’)∧
¬Q(’desiredPosition(X,Y)’) ∧Q(’towards((X1,Y1),(X,Y))’) ∧ ¬Q(’obstacle(X1,Y1)’)

−→ U(’stepTo(X1,Y1)’)

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 11/14

Conclusion
Notes and related work

Related work

Modularity of rule-based agent programming languages:
3APL

Dastani et. al.: Enacting and deacting roles in agent
programming, 2004
Riemsdijk et. al.: Goal oriented modularity in agent
programming, 2006

AgentSpeak(L)
Hübner et. al.: Programming declarative goals using plan
patterns, 2006

GOAL
Hindriks: Modules as policies, ProMAS 2007

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 12/14

Conclusion
Ongoing & future work

Ongoing & future-work

integration with BDI framework

modular BDI architecture
BDI rather a methodological guideline, than an explicit
programming language?

testing in real-world

Jazzyk language interpreter working prototype(!)
integration with Python, Answer Set Programming solver, later
Prolog and LISP
demo application(!)

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 13/14

Conclusion
Contributions

Summary

Structure of rule-based programming language:
concept of mental state transformer
powerful macros

Purely syntactical approach No change of the core
language semantics!

Thank you for your attention.

Please direct your questions to

peter.novak@in.tu-clausthal.de

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 14/14

Conclusion
Contributions

Summary

Structure of rule-based programming language:
concept of mental state transformer
powerful macros

Purely syntactical approach No change of the core
language semantics!

Thank you for your attention.

Please direct your questions to

peter.novak@in.tu-clausthal.de

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 15th, 2007 ProMAS’07, Honolulu, Hawai’i 14/14

	Motivation
	Agent programming languages

	Structuring a rule-based language
	Core language
	Adding structure

	Conclusion
	Notes and related work
	Ongoing & future work
	Contributions

