
Modular BDI Architecture

Peter Novák, Jürgen Dix

Clausthal University of Technology, Germany

May 11th, 2006
AAMAS’06, Hakodate, Japan

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 1/10

Motivation

Single BDI Agent Programming

Definition
Creating software systems using design architecture inspired by
the Beliefs-Desires-Intentions metaphor (cognitive agents?).

BDI agent system (3 layers):
knowledge - attitudes, mental state, state of environment
body - sensors/effectors environment
system dynamics - reasoning and performing actions

Challenges for programming BDI frameworks:
theoretical properties - insight into system properties, essential
for system verification
practical applicability - support of traditional SW
development techniques, integration with external systems

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 2/10

Motivation

Single BDI Agent Programming

Definition
Creating software systems using design architecture inspired by
the Beliefs-Desires-Intentions metaphor (cognitive agents?).

BDI agent system (3 layers):
knowledge - attitudes, mental state, state of environment
body - sensors/effectors environment
system dynamics - reasoning and performing actions

Challenges for programming BDI frameworks:
theoretical properties - insight into system properties, essential
for system verification
practical applicability - support of traditional SW
development techniques, integration with external systems

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 2/10

Motivation

State-of-the-art

Theoretically driven systems
Declarative agent programming languages built from scratch.

nice theoretical properties, difficult to integrate with 3rd
party systems, declarative knowledge representation
(e.g. AGENTSPEAK(L)/JASON, 3APL)

Engineering approaches
Layer of specialized programming constructs over a robust industrial
programming language (Java).

easy to integrate, code re-use, semantics of the underlying
language, OOP as a knowledge representation language
(e.g. JACK, JADEX)

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 3/10

Motivation

State-of-the-art

Theoretically driven systems
Declarative agent programming languages built from scratch.

nice theoretical properties, difficult to integrate with 3rd
party systems, declarative knowledge representation
(e.g. AGENTSPEAK(L)/JASON, 3APL)

Engineering approaches
Layer of specialized programming constructs over a robust industrial
programming language (Java).

easy to integrate, code re-use, semantics of the underlying
language, OOP as a knowledge representation language
(e.g. JACK, JADEX)

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 3/10

Motivation

State-of-the-art

Theoretically driven systems
Declarative agent programming languages built from scratch.

nice theoretical properties, difficult to integrate with 3rd
party systems, declarative knowledge representation
(e.g. AGENTSPEAK(L)/JASON, 3APL)

Engineering approaches
Layer of specialized programming constructs over a robust industrial
programming language (Java).

easy to integrate, code re-use, semantics of the underlying
language, OOP as a knowledge representation language
(e.g. JACK, JADEX)

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 3/10

Problem & Solution

Problem

State-of-the-art BDI agent programming frameworks take care about
too many aspects of the designed system.

Besides providing an agent system dynamics layer, they enforce
certain knowledge representation technique.

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 4/10

Problem & Solution

Solution

We propose a programming system with clear separation
between knowledge representation and agent system dynamics.

Different programming languages are suitable for different
knowledge representation tasks.

Focus on agent system dynamics.

Desired properties:
clear semantics
modularity - easy code re-use
easy integration with external/legacy systems

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 5/10

Problem & Solution

Solution

We propose a programming system with clear separation
between knowledge representation and agent system dynamics.

Different programming languages are suitable for different
knowledge representation tasks.

Focus on agent system dynamics.

Desired properties:
clear semantics
modularity - easy code re-use
easy integration with external/legacy systems

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 5/10

Modular BDI Architecture

Our way to go...

Knowledge Representation:
encapsulate BDI modules allowing only query/update
interface
KR techniques and programming languages
programmer’s decision
treat agent’s capabilities as just another BDI component

Agent System Dynamics:
interaction between BDI modules interaction rules
application of an interaction rule atomic system transition

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 6/10

Modular BDI Architecture

Our way to go...

Knowledge Representation:
encapsulate BDI modules allowing only query/update
interface
KR techniques and programming languages
programmer’s decision
treat agent’s capabilities as just another BDI component

Agent System Dynamics:
interaction between BDI modules interaction rules
application of an interaction rule atomic system transition

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 6/10

Modular BDI Architecture

Architecture

BDI agent system

beliefs desires intentions

capabilities

Environm
ent

interpreter

interaction rules

query

update

events

actions
QB UD QI UC

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 7/10

Modular BDI Architecture

Semantics

Definition
A BDI agent is a tuple (β0, δ0, ι0, κ0, IR), where (β0, δ0, ι0, κ0) is
the initial configuration and IR is a set of interaction rules.

interaction rules have the form φ→ ψ

IR induces a transition system
interpreter selects and executes interaction rules: evaluate a
query and perform a corresponding update
semantics of a BDI agent is a path within the transition system

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 8/10

Modular BDI Architecture

Example
Beliefs (Prolog)

ready :− cup_present ,
cup_empty ,
not e r ro r .

Intentions (stack - Lisp)

(de f ine push . . .)
(de f ine pop . . .)
(de f ine top? . . .)

Desires (set of Prolog atoms)

make_espresso .

Capabilities (C)

void mi l l _ s t a r t () ;
void mi l l_s top () ;
int stand_empty () ;
int cup_empty () ;

QC(!stand_empty()&& cup_empty()) −→ UB(assert(cup_present))

QB(ready) ∧QD(make_espresso) −→ UI((push (grind boil pour clean)))

QI((top? grind)) −→ UC(mill_start()) ◦ UI((pop))
Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 9/10

Modular BDI Architecture

Example
Beliefs (Prolog)

ready :− cup_present ,
cup_empty ,
not e r ro r .

Intentions (stack - Lisp)

(de f ine push . . .)
(de f ine pop . . .)
(de f ine top? . . .)

Desires (set of Prolog atoms)

make_espresso .

Capabilities (C)

void mi l l _ s t a r t () ;
void mi l l_s top () ;
int stand_empty () ;
int cup_empty () ;

QC(!stand_empty()&& cup_empty()) −→ UB(assert(cup_present))

QB(ready) ∧QD(make_espresso) −→ UI((push (grind boil pour clean)))

QI((top? grind)) −→ UC(mill_start()) ◦ UI((pop))
Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 9/10

Modular BDI Architecture

Example
Beliefs (Prolog)

ready :− cup_present ,
cup_empty ,
not e r ro r .

Intentions (stack - Lisp)

(de f ine push . . .)
(de f ine pop . . .)
(de f ine top? . . .)

Desires (set of Prolog atoms)

make_espresso .

Capabilities (C)

void mi l l _ s t a r t () ;
void mi l l_s top () ;
int stand_empty () ;
int cup_empty () ;

QC(!stand_empty()&& cup_empty()) −→ UB(assert(cup_present))

QB(ready) ∧QD(make_espresso) −→ UI((push (grind boil pour clean)))

QI((top? grind)) −→ UC(mill_start()) ◦ UI((pop))
Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 9/10

Modular BDI Architecture

Example
Beliefs (Prolog)

ready :− cup_present ,
cup_empty ,
not e r ro r .

Intentions (stack - Lisp)

(de f ine push . . .)
(de f ine pop . . .)
(de f ine top? . . .)

Desires (set of Prolog atoms)

make_espresso .

Capabilities (C)

void mi l l _ s t a r t () ;
void mi l l_s top () ;
int stand_empty () ;
int cup_empty () ;

QC(!stand_empty()&& cup_empty()) −→ UB(assert(cup_present))

QB(ready) ∧QD(make_espresso) −→ UI((push (grind boil pour clean)))

QI((top? grind)) −→ UC(mill_start()) ◦ UI((pop))
Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 9/10

Modular BDI Architecture

Questions?

Thank you for your attention.

Come and visit our poster for more details.

Peter Novák, Jürgen Dix · Clausthal University of Technology, Germany May 11th, 2006 AAMAS’06, Hakodate, Japan 10/10

	Motivation
	Problem & Solution
	Modular BDI Architecture

