

Cognitive agents with non-monotonic reasoning

(dissertation research overview)

Peter Novák

Clausthal University of Technology, Germany

May 11th, 2008 DMP @ AAMAS'08, Estoril, Portugal

Cognitive agents

Knowledge intensive/cognitive agents

- knowledge state of environment, attitudes ~→ mental state
- body sensors/effectors ~> environment
- system dynamics performing actions ~→ behaviours

Niche:

logic-based KR for modelling knowledge ~> NMR/ASP
dynamic & unstructured environments ~> DyLP

State of the art (BDI):

- fixed KR technology ~→ simple Prolog-based
- complex semantics bound to KR
 - → engineering? larger case-studies?

Cognitive agents

Knowledge intensive/cognitive agents

- knowledge state of environment, attitudes ~→ mental state
- body sensors/effectors ~> environment
- system dynamics performing actions ~→ behaviours

Niche:

logic-based KR for modelling knowledge ~>> NMR/ASP
dynamic & unstructured environments ~>> DyLP

State of the art (BDI):

- fixed KR technology ~> simple Prolog-based
- complex semantics bound to KR
 - → engineering? larger case-studies?

Cognitive agents

Knowledge intensive/cognitive agents

- knowledge state of environment, attitudes ~→ mental state
- body sensors/effectors ~> environment
- system dynamics performing actions ~→ behaviours

Niche:

- logic-based KR for modelling knowledge ~→ NMR/ASP
- dynamic & unstructured environments ~→ DyLP

State of the art (BDI):

- fixed KR technology ~→ simple Prolog-based
- complex semantics bound to KR
 - → engineering? larger case-studies?

Thesis: scope & outline

Driving question

Can non-monotonic reasoning be practically used as a KR technology in non-trivial cognitive agent systems?

theoretical basis: agent programming language
heterogeneous KRs vs. behaviours ~ hybrid architectures
evaluation: case studies ~ single agent, non-critical
videogames & virtual spaces

- entertainment robotics
- B methodology guidelines

Thesis: scope & outline

Driving question

Can non-monotonic reasoning be practically used as a KR technology in non-trivial cognitive agent systems?

1 theoretical basis: agent programming language

- heterogeneous KRs vs. behaviours ~> hybrid architectures
- 2 evaluation: case studies → single agent, non-critical
 - videogames & virtual spaces
 - entertainment robotics
- 3 methodology guidelines

Behavioural State Machines/Jazzyk

- core concept: KR module $\mathcal{M} = (\mathcal{L}, \mathcal{Q}, \mathcal{U})$
 - *L* a KR language,
 - Q a set of query operators $\models: S \times L \rightarrow \{\top, \bot\}$,
 - \mathcal{U} set of update operators $\oplus : \mathcal{S} \times \mathcal{L} \to \mathcal{S}$.

Case-studies: Jazzbot

- 1 Jazzbot softbot in a simulated 3D world
- 2 Agent Contest 2009 small MAS/coordination
 - → inter-agent communication
- 3 simulated robots?

Using BSM & Jazzyk

Goal-Oriented Behaviours:

- semi-formal design specification
 - higher level syntactic/semantic constructs
 - code templates: perceptions, goals, interruption handlers, re-usable behaviours, modules, ...
 - logic for BSM
 - \rightsquigarrow annotations (FOL, the language of beliefs)

... towards design guidelines.

Jazzyk BSM = an intermediate/assembly language
enforces explicit control cycle ~> comparison platform
compiling BDI languages to BSM (GOAL)

Using BSM & Jazzyk

Goal-Oriented Behaviours:

- semi-formal design specification
 - higher level syntactic/semantic constructs
 - code templates: perceptions, goals, interruption handlers, re-usable behaviours, modules, ...
 - logic for BSM
 - → annotations (FOL, the language of beliefs)

... towards design guidelines.

- Jazzyk BSM = an intermediate/assembly language
 - enforces explicit control cycle ~> comparison platform
 - compiling BDI languages to BSM (GOAL)

Summary & contributions

Thesis

A more abstract computational model is needed to enable a practical use of heterogeneous KRs (NMR/ASP) in non-trivial cognitive agents. \longrightarrow BSM is a suitable model for this task!

- Behavioural State Machines (AAMAS'06, PromAS'07, AAAI-SSO8/AITA)
- Jazzyk (ProMAS'08, http://jazzyk.sourceforge.net/)
- Jazzbot original application of ASP (ProMAS'08)
- further case studies
- BSM as an intermediate language (submitted)
- design guidelines/methodology (first steps submitted)

Summary & contributions

Thesis

A more abstract computational model is needed to enable a practical use of heterogeneous KRs (NMR/ASP) in non-trivial cognitive agents. \longrightarrow BSM is a suitable model for this task!

Behavioural State Machines (AAMAS'06, ProMAS'07, AAAI-SS08/AITA)
Jazzyk (ProMAS'08, http://jazzyk.sourceforge.net/)
Jazzbot original application of ASP (ProMAS'08)
further case studies
BSM as an intermediate language (submitted)
design guidelines/methodology (first steps - submitted)

Thank you for your attention.

Questions