
Code patterns for agent-oriented
programming

Peter Novák1 and Wojciech Jamroga1,2

1Clausthal University of Technology
2University of Luxembourg

Wednesday, May 13, 2009
AAMAS 2009, Budapest,Hungary

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 1/14

Motivation

Motivation
reactivity vs. deliberation hybrid architectures BDI
programming with mental attitudes: beliefs, goals, etc.

agent oriented programming languages

1 choose a set of agent-oriented features
2 implement the set in the language interpreter

fixed set of language constructs
fixed architecture of created agent systems

�
�

�
extensions require changes of the language semantics

⇒ adaptation of the interpreter

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 2/14

Motivation

Motivation
reactivity vs. deliberation hybrid architectures BDI
programming with mental attitudes: beliefs, goals, etc.

agent oriented programming languages

1 choose a set of agent-oriented features
2 implement the set in the language interpreter

fixed set of language constructs
fixed architecture of created agent systems

�
�

�
extensions require changes of the language semantics

⇒ adaptation of the interpreter

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 2/14

Motivation

Motivation
reactivity vs. deliberation hybrid architectures BDI
programming with mental attitudes: beliefs, goals, etc.

agent oriented programming languages

1 choose a set of agent-oriented features
2 implement the set in the language interpreter

fixed set of language constructs
fixed architecture of created agent systems

�
�

�
extensions require changes of the language semantics

⇒ adaptation of the interpreter

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 2/14

Motivation
Outline

Problem & the way to go...

How to design
extensible programming languages

for cognitive agents.

?
How to develop domain independent high level language constructs

for programming with mental attitudes?

generic
language for

reactive systems
+ dynamic

temporal logic
 domain

independent
code patterns

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 3/14

Motivation
Outline

Problem & the way to go...

How to design
extensible programming languages

for cognitive agents.

?
How to develop domain independent high level language constructs

for programming with mental attitudes?

generic
language for

reactive systems
+ dynamic

temporal logic
 domain

independent
code patterns

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 3/14

Behavioural State Machines/Jazzyk
Overview

Behavioural State Machines

A programming framework with clear separation between
knowledge representation and agent’s behaviours.

heterogeneous knowledge bases

structured source code, macros

the core KR moduleM
BSM agent system A = (M1, . . . ,Mn,P)

/∗ PICK an item behaviour ∗/
when |=G [{ task(pick(X)) }] and |=B [{ see(X) }] then {

when |=B [{ dir(X, Angle) }] then�E [{ turn Angle }] | /∗ either turn to the item, or ∗/
when |=B [{ dir(X,’ahead’), dist(X,Dist) }] then { /∗ pick up the item ∗/

�E [{ move forward Dist }] ◦
⊕B [{ holds(X) }]

}
}

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 4/14

Behavioural State Machines/Jazzyk
Overview

BSM semantics
BSM labelled transition system

operational computation runs

skip

skip
skip

skip

skip

a

a

a

a

bb

b

S1

S3

S2 S4

S5

run of P λ = s1
a→ s3

b→ s4︸ ︷︷ ︸
P1

skip→ s4
a→ s2︸ ︷︷ ︸

P2

→ · · ·

reasoning about computation runs:
 a logic interpreted over the same structure!

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 5/14

Behavioural State Machines/Jazzyk
Overview

BSM semantics
BSM labelled transition system

operational computation runs

skip

skip
skip

skip

skip

a

a

a

a

bb

b

S1

S3

S2 S4

S5

run of P λ = s1
a→ s3

b→ s4︸ ︷︷ ︸
P1

skip→ s4
a→ s2︸ ︷︷ ︸

P2

→ · · ·

reasoning about computation runs:
 a logic interpreted over the same structure!

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 5/14

DCTL*: Logic for BSM
Overview

DCTL*=Dynamic Logic + CTL*
θ ::= p | ¬θ | θ ∧ θ | [τ]ϕ
ϕ ::= θ | ¬ϕ | ϕ ∧ ϕ | iϕ | ϕU ϕ | ϕ C ϕ
[τ]ϕ during execution of τ , ϕ holds

From BSM to DCTL*: annotations A

Annotated BSM AA = (M1, . . . ,Mn,P , A)

A : Q(A) ∪ τ(A)→ DCTL∗

from subprograms to complex programs aggregation

semantic characterization the key to code re-usability

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 6/14

DCTL*: Logic for BSM
Overview

DCTL*=Dynamic Logic + CTL*
θ ::= p | ¬θ | θ ∧ θ | [τ]ϕ
ϕ ::= θ | ¬ϕ | ϕ ∧ ϕ | iϕ | ϕU ϕ | ϕ C ϕ
[τ]ϕ during execution of τ , ϕ holds

From BSM to DCTL*: annotations A

Annotated BSM AA = (M1, . . . ,Mn,P , A)

A : Q(A) ∪ τ(A)→ DCTL∗

from subprograms to complex programs aggregation

semantic characterization the key to code re-usability

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 6/14

Code patterns
BSM design patterns

Agent system architecture

A = (B,G, E ,P)

robot in a 3D environment: search & deliver
Structure:

B: belief base (|=B,⊕B,	B)

G: goal base (|=G ,⊕G ,	G)

E : interface to the environment body (|=E ,�E)
Basic capabilities:

FIND: [FIND]A(FIND)⇒ [FIND∗]3holds(item42)
RUN_AWAY: [RUN_AWAY]A(RUN_AWAY)⇒ [RUN_AWAY∗]3safe

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 7/14

Code patterns
BSM design patterns

BSM design patterns: TRIGGER

define TRIGGER(ϕG, τ)
when |=G ϕG then τ

end

A(|=G ϕG)→ [TRIGGER(ϕG, τ)∗]3A(τ)

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 8/14

Code patterns
BSM design patterns

BSM design patterns: ADOPT/DROP

define ADOPT(ϕG, ψ⊕)
when |=B ψ⊕ and not |=G ϕG then ⊕GϕG

end

define DROP(ϕG, ψ)
when |=B ψ	 and |=G ϕG then 	GϕG

end

A(|=B ψ⊕)→ [ADOPT(ϕG, ψ⊕)∗]3A(|=G ϕG)
A(|=B ψ)→ [DROP(ϕG, ψ)∗]3¬A(|=G ϕG)

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 9/14

Code patterns
BSM design patterns

BSM design patterns: ACHIEVE

define ACHIEVE(ϕG, ϕB, ψ⊕, ψ	, τ)
TRIGGER(ϕG, τ) |
ADOPT(ϕG, ψ⊕) |
DROP(ϕG, ϕB) |
DROP(ϕG, ψ)

end

[ACHIEVE(ϕG, ϕB, ψ⊕, ψ	, τ)∗]A(|=G ϕG)U A(|=B ϕB∨ |=B ψ)

running example cont.

ACHIEVE(
achieve(has(item42)),
holds(item42),
needs(item42),
¬needs(item42) ∨ ¬exists(item42),
FIND)

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 10/14

Code patterns
BSM design patterns

BSM design patterns: MAINTAIN

define MAINTAIN(ϕG, ϕB, τ)
when not |=B ϕB then TRIGGER(ϕG, τ) |
ADOPT(ϕG, >)

end

A(|=G ϕG)→ [MAINTAIN(ϕG, ϕBτ)∗]2(¬A(|=B ϕB)→ 3A(|=B ϕB))

running example cont.

MAINTAIN(maintain(keep_safe), safe, RUN_AWAY)

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 11/14

Code patterns
BSM design patterns

Putting it altogether

Robot program

PERCEIVE ◦
{

MAINTAIN(
maintain(keep_safe),
threatened ,
RUN_AWAY) |

ACHIEVE(
achieve(has(item42)),
holds(item42),
needs(item42),
¬needs(item42) ∨ ¬exists(item42),
FIND)

}

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 12/14

Conclusion

Summary

different applications require different programming constructs

extensible agent oriented programming languages

purely syntactic approach to development of arbitrary high level
programming constructs

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 13/14

Conclusion

Thank you for your attention.
http://jazzyk.sourceforge.net/

see you at the poster session...

P. Novák, W. Jamroga · Clausthal University of Technology, Germany May 13th, 2009, Budapest, Hungary 14/14

