Control of teams of unmanned aerial/ground vehicles

ATG applied research overview

Agent Technology Center (ATG), Department of Cybernetics
Czech Technical University

December 1st 2010
Overview

The domain of intelligence gathering (IRS) missions offers a range of interesting challenges for multi-agent systems research.

1. AgentFly
2. Tactical AgentFly
3. Tactical AgentScout
4. On-going and future work
5. Conclusion
AgentFly

A set of aircrafts in a joint airspace.

control
- path planning
- no-flight zones
- simple missions
- time

conflict avoidance \rightsquigarrow crashes

current solutions
- \rightsquigarrow dispatchers + teleoperation
- \rightsquigarrow fixed rules
UAV control

A*-based manoeuvre planner
UAV control (cont.)

conflict avoidance/deconfliction

- iterated negotiation:
 1. broadcasting plans/plan fragments
 2. identification of conflicts
 3. utility-based plan adaptation

extensions

- mountaneous terrain
- time constraints
- cooperative vs. non-cooperative deconfliction
- weather
Simulation framework

- A-Globe MAS platform
 - asynchronous distributed message passing
 - agent containers

- simulator
 - environment
 - embodiment of agents
 - models of physical dynamics of entities

- visualization
 - 3D, textures, etc.
Demo
Next-gen air traffic control

Airspace becomes too congested \leadsto free-flight concept
- massive distributed simulations \leadsto US/Europe airspace
- US FAA funded efforts
Tactical AgentFly

ISTAR missions in urban environment

= semi/fully-autonomous control of a team of UAVs

current:
- single UAV \rightsquigarrow operator (teleoperation)

near future:
- team of UAVs \rightsquigarrow single operator (team tasking)

far future:
- team of UAVs \rightsquigarrow autonomous control (overwatch)
Subproblems (semi-automatic)

- algorithms for
 - terrain exploration (reconnaissance)
 - surveillance
 - target tracking

- sensors: gimballed/fixed camera, etc.
- occlusions in urban terrain
Subproblems (autonomous)

- dynamic reconfiguration/re-allocation of tasks
- MxN tracking - multiple targets vs. limited resources
- ground mission support

Heterogeneous teams:
- fixed-wing aircrafts (CTOL)
- helicopters (VTOL)
- planning \leadsto 4D planner
 - time
 - physical dynamics model
Surveillance

- surveillance (measure = information-age)
 - spiral
 - zig-zag
 - greedy
 - dynamic reconfiguration: DVRP-based task allocation with various heuristics
tracking (measure = target in view time)

- target dynamics vs. aircraft dynamics
- planning/deconfliction speed vs. aircraft speed
Exploration

- exploration
 - naive vs. DVRP based task allocation
Mission execution

- specification of missions and rules of engagement
- agent-oriented programming (Jazzyk/BSM)
- BDI agents

![Diagram showing simulation environment, agent program, belief base, and goals.]

- Belief base
 - Java
 - Prolog
- Goals
 - Prolog
Integrated demos
Coordination of teams of heterogeneous agents in urban military missions

- unmanned aerial vehicles (fixed wing aircrafts, helicopters)
- unmanned ground vehicles (cars, robots)
- unattended ground sensors
- teleoperated devices (satellites, planes, vehicles)
- humans
Subproblems

Technological objectives

- physical modelling of UGVs
- integration of UAVs, UGVs, VTOLs, etc. into a single (distributed) simulator

Research objectives

1. planning/replanning/plan-repair
 - levels of granularity
 - flexible horizon

2. continuous distributed planning
 - individual vs. collective vs. reactive planning

3. adversarial reasoning
 - patrolling of mobile targets
 - smart targets modelling
Mixed simulations

Transfer the developed algorithms to mixed simulation.

- algorithms \mapsto real robots
- mixed-simulation = reality + simulation

Benefits:
- cost
- rich testbed
- preservation of requirements: deployment vs. simulation

Towards multi-robotics and explicit/implicit MAS coordination.
Demo

On-going and future work
Conclusion

- simulations and prototype-oriented work
- high-fidelity + mixed simulations:
 - path planning vs. vehicle dynamics
 - technology transfer methodology
- military settings:
 - scripting + planning
 - human-robot interaction
 - planning on strategic vs. tactical levels → integration
Thank you for your attention.