Cognitive agents with non-monotonic reasoning

(dissertation research overview)

Peter Novák

Clausthal University of Technology, Germany

May 11th, 2008
DMP @ AAMAS’08, Estoril, Portugal
Cognitive agents

Knowledge intensive/cognitive agents

- **knowledge** - state of environment, attitudes \leadsto mental state
- **body** - sensors/effectors \leadsto environment
- **system dynamics** - performing actions \leadsto behaviours

Niche:

- logic-based KR for modelling knowledge \leadsto NMR/ASP
- dynamic & unstructured environments \leadsto DyLP

State of the art (BDI):

- fixed KR technology \leadsto simple Prolog-based
- complex semantics bound to KR \leadsto engineering? larger case-studies?
Cognitive agents

Knowledge intensive/cognitive agents

- knowledge - state of environment, attitudes \leadsto mental state
- body - sensors/effectors \leadsto environment
- system dynamics - performing actions \leadsto behaviours

Niche:

- logic-based KR for modelling knowledge \leadsto NMR/ASP
- dynamic & unstructured environments \leadsto DyLP

State of the art (BDI):

- fixed KR technology \leadsto simple Prolog-based
- complex semantics bound to KR
 \leadsto engineering? larger case-studies?
Cognitive agents

Knowledge intensive/cognitive agents

- **knowledge** - state of environment, attitudes \rightsquigarrow mental state
- **body** - sensors/effectors \rightsquigarrow environment
- **system dynamics** - performing actions \rightsquigarrow behaviours

Niche:

- logic-based KR for modelling knowledge \rightsquigarrow NMR/ASP
- dynamic & unstructured environments \rightsquigarrow DyLP

State of the art (BDI):

- fixed KR technology \rightsquigarrow simple Prolog-based
- complex semantics bound to KR
 \rightsquigarrow engineering? larger case-studies?
Motivation

Problem statement

Thesis: scope & outline

Driving question

Can non-monotonic reasoning be practically used as a KR technology in non-trivial cognitive agent systems?

1 theoretical basis: agent programming language
 - heterogeneous KRvs. behaviours \(\leadsto\) hybrid architectures

2 evaluation: case studies \(\leadsto\) single agent, non-critical
 - videogames & virtual spaces
 - entertainment robotics

3 methodology guidelines
Driving question

Can non-monotonic reasoning be practically used as a KR technology in non-trivial cognitive agent systems?

1 **theoretical basis**: agent programming language
 - heterogeneous KRs vs. behaviours \leadsto hybrid architectures

2 **evaluation**: case studies \leadsto single agent, non-critical
 - videogames & virtual spaces
 - entertainment robotics

3 **methodology guidelines**
Behavourial State Machines/Jazzyk

core concept: KR module $\mathcal{M} = (\mathcal{L}, \mathcal{Q}, \mathcal{U})$

- \mathcal{L} - a KR language,
- \mathcal{Q} - a set of query operators $\models: S \times \mathcal{L} \rightarrow \{\top, \bot\}$,
- \mathcal{U} - set of update operators $\oplus: S \times \mathcal{L} \rightarrow S$.

BDI agent system

- **capabilities**
- **interaction rules**
 - $Q_B \rightarrow \mathcal{U}_D \rightarrow Q_I \rightarrow \mathcal{U}_C$
 - **interpreter**
- **Environment**
 - **events**
 - **actions**
Case-studies: Jazzbot

1. Jazzbot - softbot in a simulated 3D world
2. Agent Contest 2009 - small MAS/coordination
 \(\leadsto\) inter-agent communication
3. simulated robots?

Agent program:

```c
when believes goals(Obj) [[find(Obj)]] and
   believes brain(Obj) [[see(Obj)]] and
   query map(Object, Dist) [[Dist=dist_distance_of(Obj)]]
then {
   act body(Dist) [[move forward Dist]],
   update brain(Obj) [[keeps(Obj)]]
}
```

Jazzyk interpreter

Belief base

- Q: U
- brain
- ASP solver (Smodels/Ipars)
- Ruby interpreter

Goal base

- Q: U
- goals
- ASP solver (Smodels/Ipars)

Environment

- Q: U
- body
- Nexuiz client
- Net
- Game server
Using BSM & Jazzyk

Goal-Oriented Behaviours:

- semi-formal design specification
 - higher level syntactic/semantic constructs
 - code templates: perceptions, goals, interruption handlers, re-usable behaviours, modules, ...
 - logic for BSM
 - annotations (FOL, the language of beliefs)

... towards design guidelines.

Jazzyk BSM = an intermediate/assembly language
- enforces explicit control cycle \(\implies\) comparison platform
- compiling BDI languages to BSM (GOAL)
Using BSM & Jazzyk

Goal-Oriented Behaviours:

- semi-formal design specification
 - higher level syntactic/semantic constructs
 - code templates: perceptions, goals, interruption handlers, re-usable behaviours, modules, ...
- logic for BSM
 - annotations (FOL, the language of beliefs)

... towards design guidelines.

- Jazzyk BSM = an intermediate/assembly language
 - enforces explicit control cycle \(\rightarrow\) comparison platform
 - compiling BDI languages to BSM (GOAL)
Conclusion

Summary & contributions

Thesis

A more abstract computational model is needed to enable a practical use of heterogeneous KRs (NMR/ASP) in non-trivial cognitive agents.

⇝ BSM is a suitable model for this task!

- Behavioural State Machines (AAMAS’06, ProMAS’07, AAAI-SS08/AlTA)
- Jazzyk (ProMAS’08, http://jazzyk.sourceforge.net/)
- Jazzbot original application of ASP (ProMAS’08)
- further case studies
- BSM as an intermediate language (submitted)
- design guidelines/methodology (first steps - submitted)
Summary & contributions

Thesis
A more abstract computational model is needed to enable a practical use of heterogeneous KRs (NMR/ASP) in non-trivial cognitive agents.
⇝ BSM is a suitable model for this task!

- **Behavioural State Machines** (AAMAS’06, ProMAS’07, AAAI-SS08/AlTA)
- **Jazzyk** (ProMAS’08, http://jazzyk.sourceforge.net/)
- **Jazzbot** original application of ASP (ProMAS’08)
- further case studies
- **BSM** as an intermediate language (submitted)
- design guidelines/methodology (first steps - submitted)
Thank you for your attention.

Questions

?